Skeleton-search: Category-specific object segmentation/recognition using a skeletal shape model

Nhon Trinh & Benjamin Kimia Brown University

British Machine Vision Conference Sep 08, 2009

Category-specific object recognition

- Q: Is there a giraffe in this image?
- A: Yes.
- Q: Really? Can you delineate it?

Faces of Object Recognition

increasing difficulty

classification

Segmentation + Part labeling

Skeleton Search:

Our goal

Top-down approach

- 1. How to represent shapes of an object category?
- 2. How to measure support for a shape in an image?
- 3. How to search for the best supported shapes?

Contributions

- How to represent shapes of an object category?
 → Fragment-Based Generative Model for Shape
- 2. How to measure support for a shape in an image?
 - → Improvement to Oriented Chamfer Matching
- 3. How to search for the best supported shapes?
 - → Extension to the Viterbi algorithm to compute multiple solutions

1. How to represent shapes of an object category?

Giraffes in Images

Courtesy of Vittorio Ferrari

Giraffe Shapes

Giraffe Skeleton

Shared Skeletal Topology

Idea: Represent a shape using its skeleton

Intrinsic Symmetry-based Shape Model (Trinh and Kimia (ICCV07) m_g Lg **m**₁₀ $m_5 L_5$ m₈/ Φ_2 m₇ $m_2 \phi_1$ m m₃ L₇ m $(x_0, y_0, r_0, \theta_0)$ D

Intrinsic Shape Model for Segmentation

- Drawback: global dependency of each fragment's boundary on other fragments.
- New model: able to reconstruct each fragment LOCALLY from its adjacent nodes.

Fragment-Based Generative Model for Shape

Reconstructing a Shape Fragment's Boundary

 Interpolate A→B and D→C contours using smooth bi-arcs (Kimia *et al.*, IJCV 2003).

Generative Model

2. How to measure support for a shape in an image?

Cost function

 Cost of a shape = sum of its fragments' costs.

$$f(Z) = \sum_{i=1}^{N} f_i(F_i)$$
$$= \sum_{i=1}^{N} f_i(z_i, z_i)$$

Cost of a shape fragment

- Shape prior: uniform distribution on the fragment's intrinsic parameters.
- Image support:
 - Region appearance
 - Edge support for pair of boundary contours

Oriented Chamfer Matching (OCM) (Shotton *et al*, PAMI'08 and Jain *et al*, CVIU'07)

Oriented Chamfer Matching (OCM) (Shotton *et al*, PAMI'08 and Jain *et al*, CVIU'07)

- Match each contour point to its closest edge
- OCM cost:

$$d_{OCM} = \frac{1}{N} \sum_{1}^{N} \left[\lambda_{1} \min\left(\frac{d_{i}}{\tau_{1}}, 1\right) + \lambda_{2} \min\left(\frac{\theta_{i}}{\tau_{2}}, 1\right) \right]$$

normalized distance normalized orientation difference

Drawbacks of OCM

- Over-counting support when edges missing.
- Under-counting support when many spurious edges present.
- Awarding accidental alignment.

Improvement: Contour Chamfer Matching (CCM)

- Partition edges into thin stripes.
- Match contour points to image edges using OCM cost.
- Penalize orientation discrepancies between query contour and the contour connecting image edges.

How to search for the best supported shapes?

Single Global Solution

The need for multiple solutions

Single-Pass Multiple Solution Using DP

- Candidate pool: optimal solutions for each position of root node.
- Differential Exclusion Principle
- Trimming: discarding non-max solutions the candidate pool.

Experiments

Dataset: ETHZ Shape Classes

- 255 images
- 5 categories: giraffes, bottles, applelogos, swans, mugs.

Courtesy of Vittorio Ferrari

Detection / Segmentation - Giraffes

Detection/Segmentation - Bottles

Detection/Segmentation - Swans

Detection/Segmentation - Applelogos

Detection/Segmentation - Mugs

False Positives

Object Detection Evaluation

• PASCAL criterion:

$$\frac{area(\det \cap gt)}{area(\det \cap gt)} \ge 0.5$$

Object Detection Performance

Evaluation: Segmentation Performance

(Ferrari et al, INRIA Tech Report 2008)

- Boundary Coverage: proportion of the ground-truth that is close to the segmented shape.
- Boundary Precision: proportion of the segmented shape that is close to the ground-truth.

Performance – boundary coverage

Performance – Boundary Precision

Summary

- A skeleton-based generative model for shape where each fragment can be reconstructed locally.
- Improvement to Oriented Chamfer Matching cost.
- Extension to Viterbi algorithm to compute multiple solutions in a single pass.

Thank you

Questions?

Email: ntrinh@lems.brown.edu