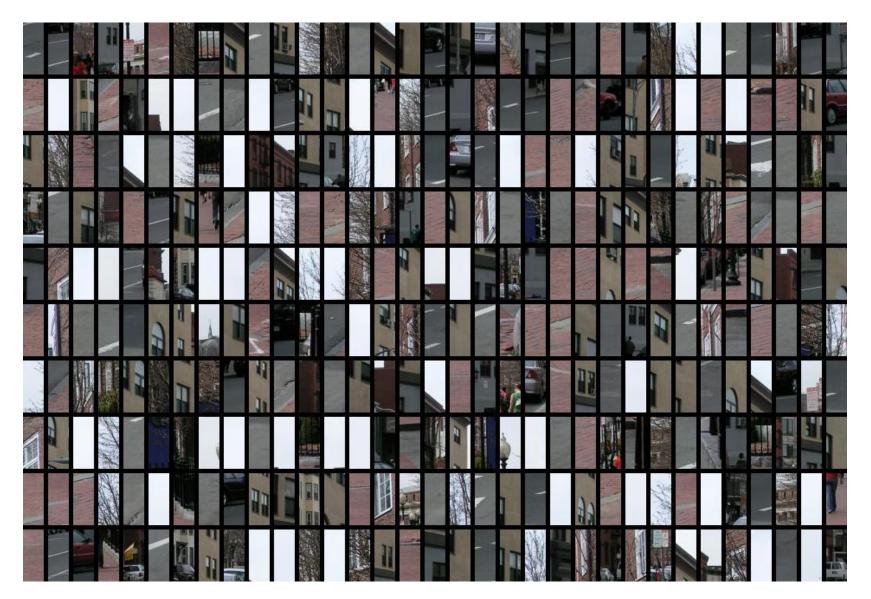
What can we learn from a single image?

Alexei (Alyosha) Efros Carnegie Mellon University

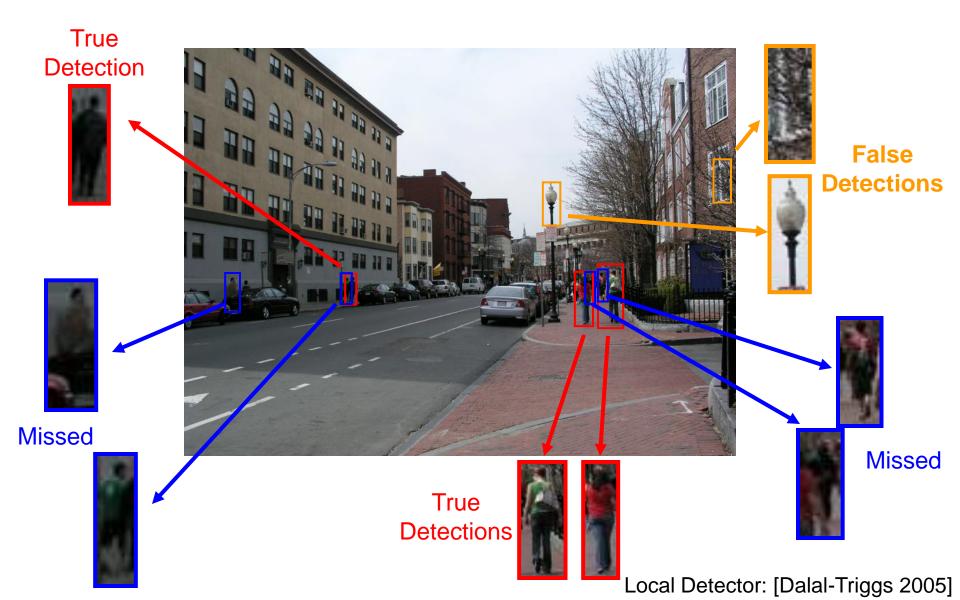
What do we see?

The Miserable Life of an Object Detector

What the Detector Sees



State-of-the-Art Pedestrian Detection



Importance of Looking Globally



Claude Monet Gare St.Lazare Paris, 1877

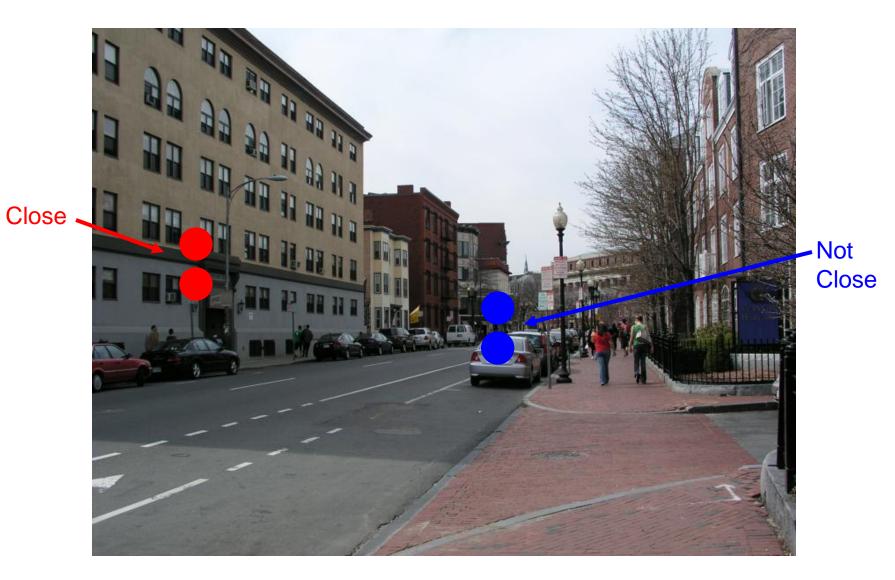
There is almost nothing *inside*!

Seeing less than you think...

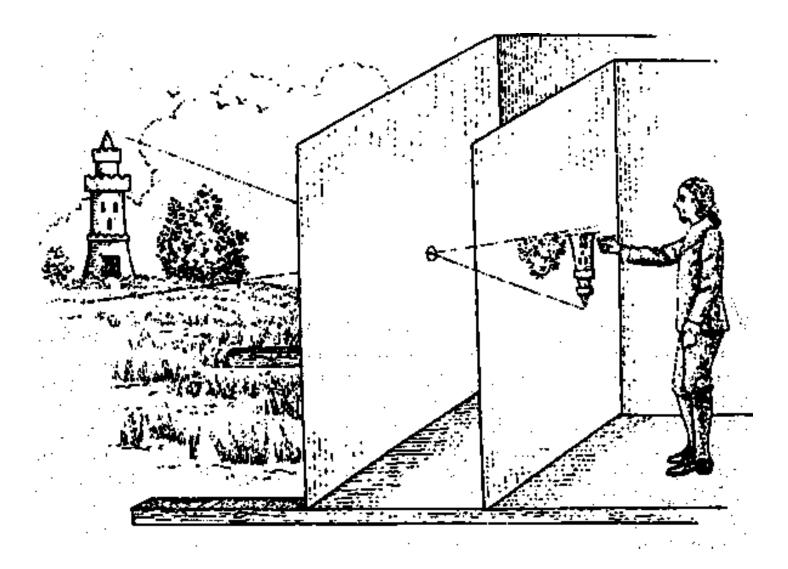
Seeing less than you think...

Need to think "outside the box"

Real Relationships are 3D

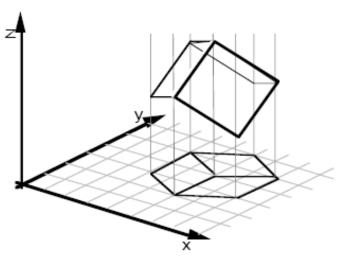


Imaging Process



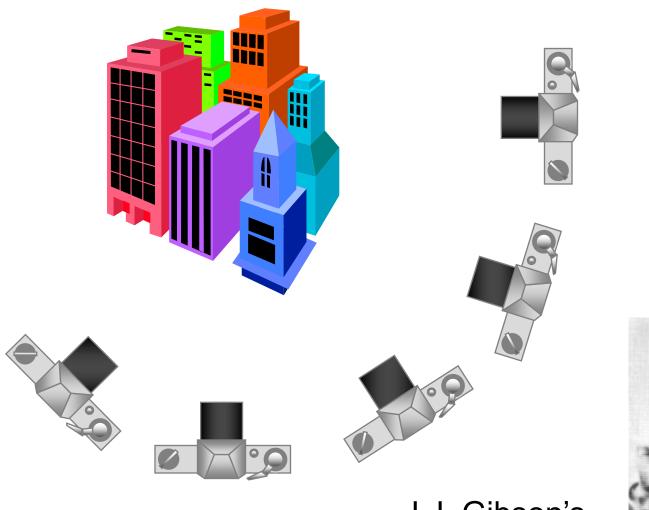
Unsolvable Problem

- Recovering 3D geometry from single 2D projection
- Infinite number of possible solutions!



from [Sinha and Adelson 1993]

Ecological Optics



J.J. Gibson's "actively exploring organism"

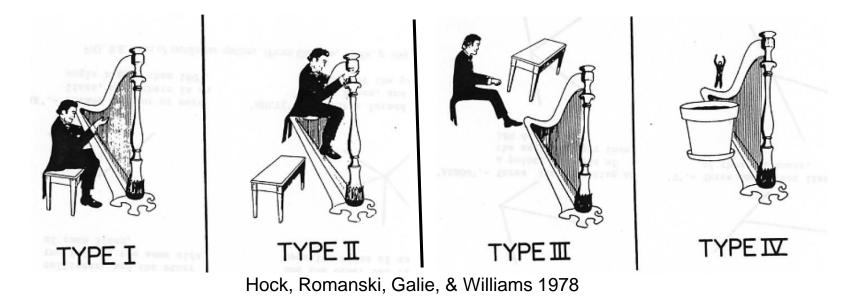
Our World is Structured

Abstract World

Our World

Image Credit (left): F. Cunin and M.J. Sailor, UCSD

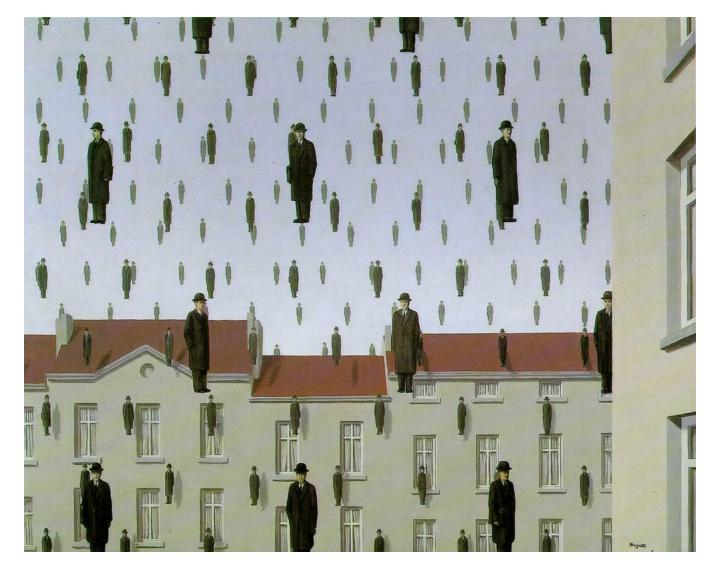
Understanding Scenes



- Biederman's Relations among Objects in a Well-Formed Scene (1981):
 - Support
 - Size

- Position
- Interposition
- Likelihood of Appearance

Support

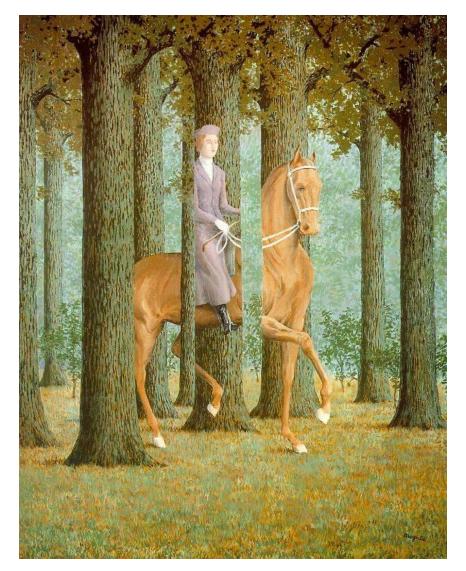


Rene Magritte, Golconde

Size

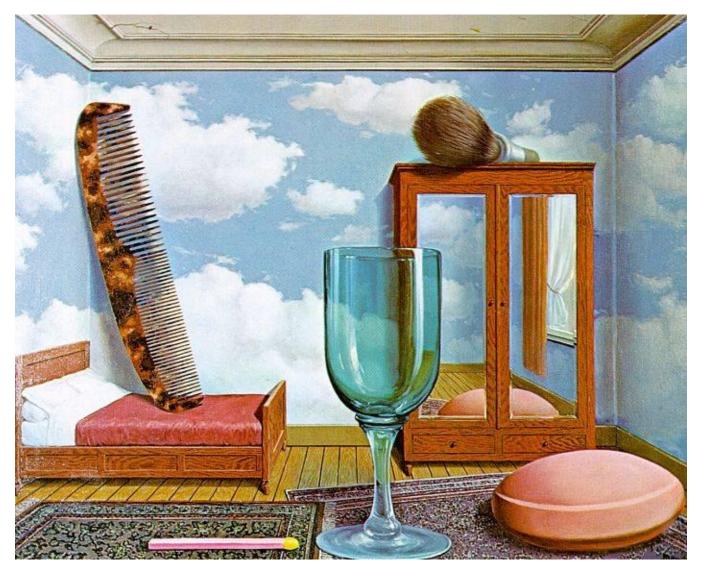
Rene Magritte, The Listening Room

Interposition



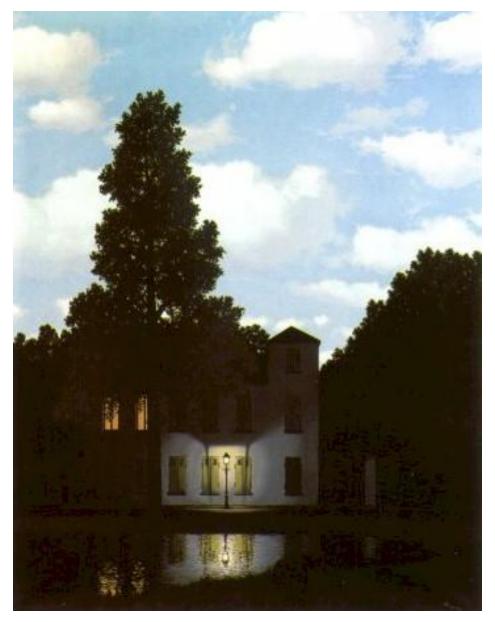
Rene Magritte, Black Check

Position, Probability, Size



Rene Magritte, Personal Values

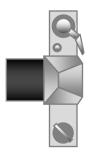
+ illumination



Our Goal: Scene Understanding

- scene layout
- occlusions
- camera viewpoint
- scale
- illumination
- location semantics

Ecological Statistics



Labeled Data

LabelMe, Caltech 101, PASCAL, etc.

Unlabelled Data

Flickr, Google, YouTube, etc.

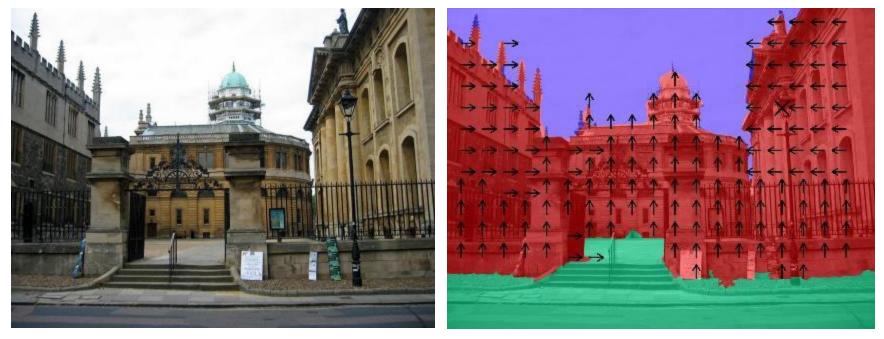
Collaborators

- Derek Hoiem
 - (PhD 2007, now assistant professor at UIUC)
 - co-advised with Martial Hebert
- James Hays
 - (PhD 2009, now assistant professor at Brown University)

- Jean-Francois Lalonde
 - (PhD 2010 ??)
 - co-advised with Srinivas Narasimhan

Thanks for many great discussions while at Oxford: Mark Everingham, Josef Sivvic, Fred Schaffalitsky Andrew Fitzgibbon, and, of course, AZ.

Scene Layout

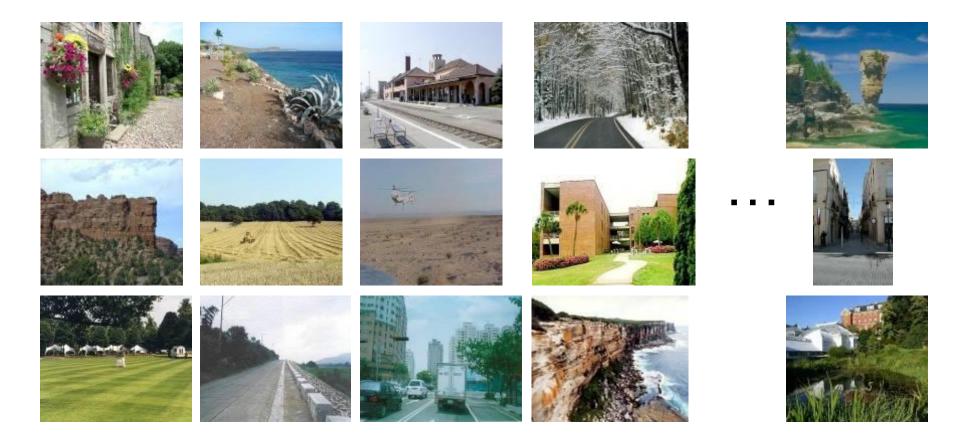


Goal: learn labeling of image into 7 <u>Geometric Classes</u>:

- Support (ground)
- Vertical
 - Planar: facing Left (←), Center (个), Right (→)
 - Non-planar: Solid (X), Porous or wiry (O)
- Sky

Learn from labeled data

300 outdoor images from Google Image Search



What cues to use?

Vanishing points, lines

Color, texture, image location

Texture gradient

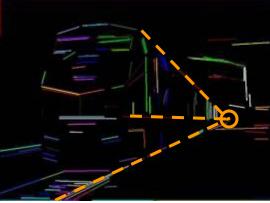
Weak Geometric Cues

Color

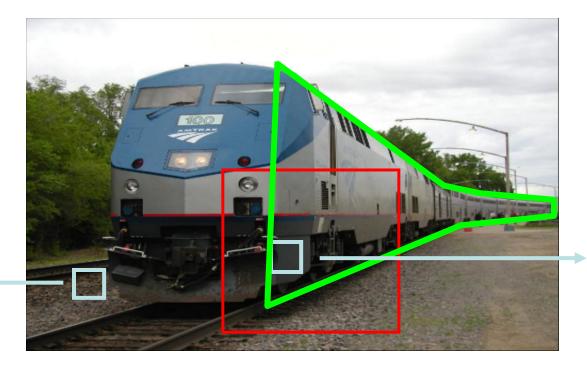
Texture

Location

Perspective



Need Good Spatial Support



50x50 Patch

50x50 Patch

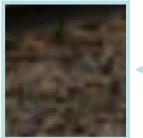
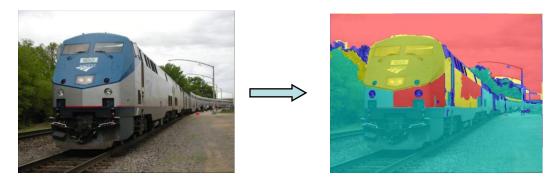


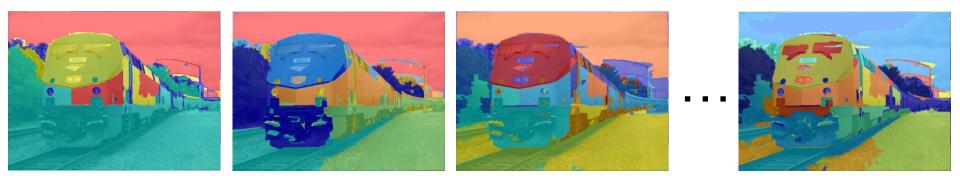
Image Segmentation

• Naïve Idea #1: segment the image



- Chicken & Egg problem

• Naïve Idea #2: <u>multiple</u> segmentations



- Decide later which segments are good

Estimating surfaces from segments

- We want to know:
 - Is this a good (coherent) segment?

P(good segment | data)

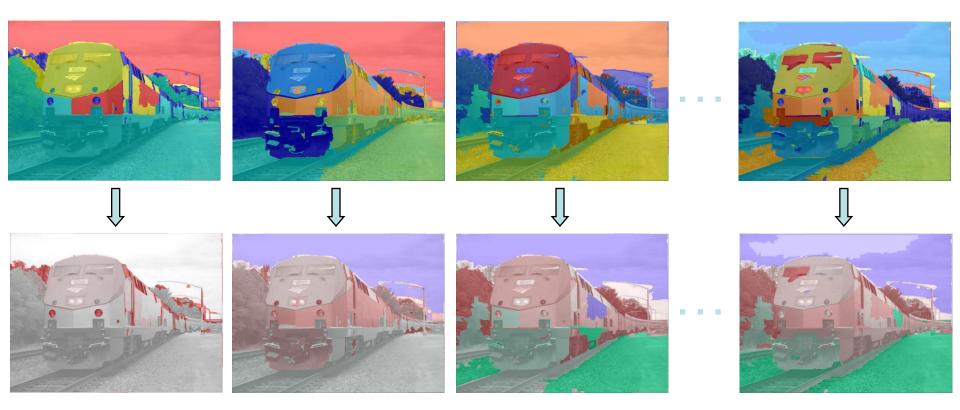
- If so, what is the surface label?

P(label | good segment, data)

 Learn these likelihoods from training images

 we use Boosted Decision Trees

Labeling Segments



For each segment:

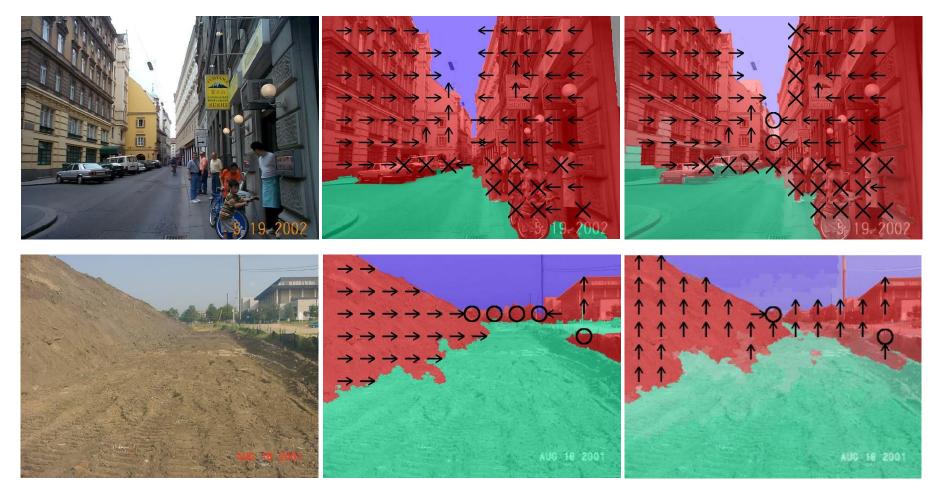
- Get P(good segment | data) P(label | good segment, data)

Image Labeling

Labeled Segmentations

Labeled Pixels

Results

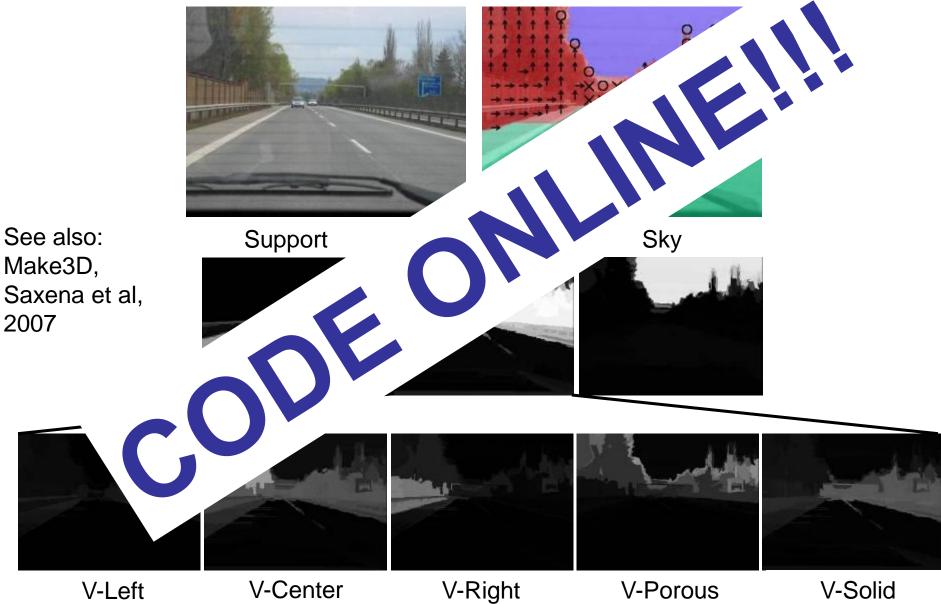


Input Image

Ground Truth

Our Result

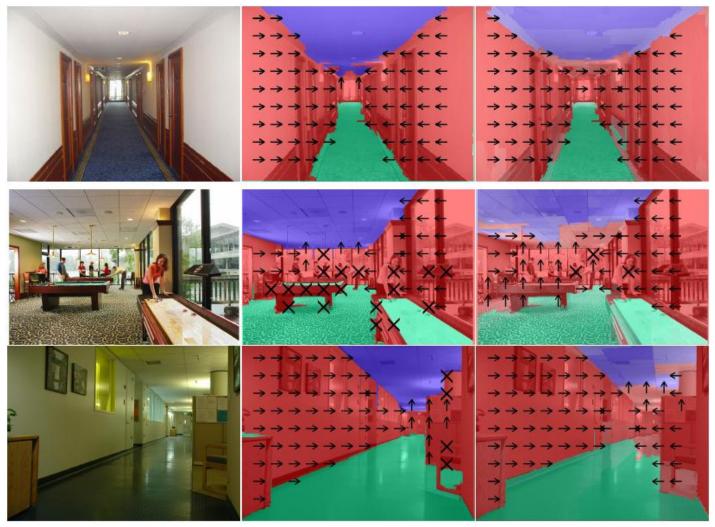
No Hard Decisions



V-Left

V-Center

Indoor Images

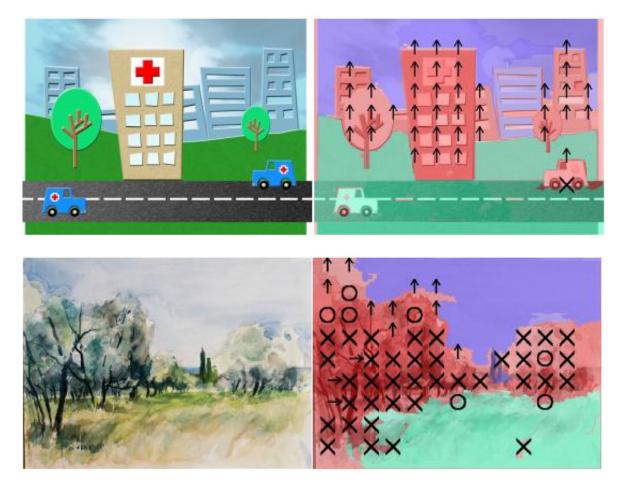


Input Image

Ground Truth

Our Result

Paintings



Input Image

Our Result

Graphics application: Automatic Photo Pop-up (SIGGRAPH'05)

Original Image

Geometric Labels

Fit Segments

Cut and Fold

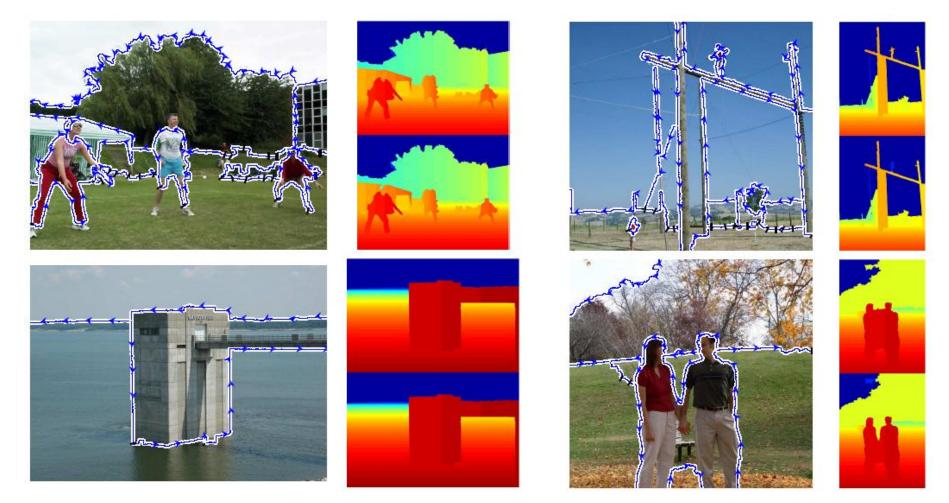
Novel View

Automatic Photo Pop-up

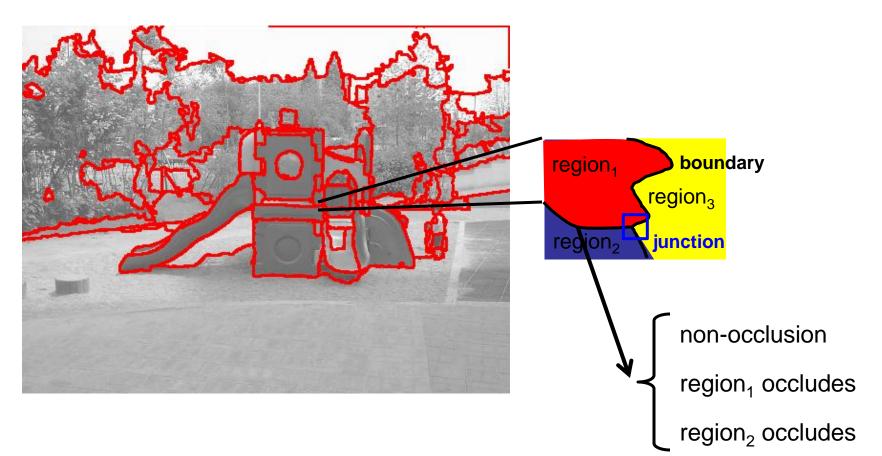
Failures

Occlusions are everywhere!

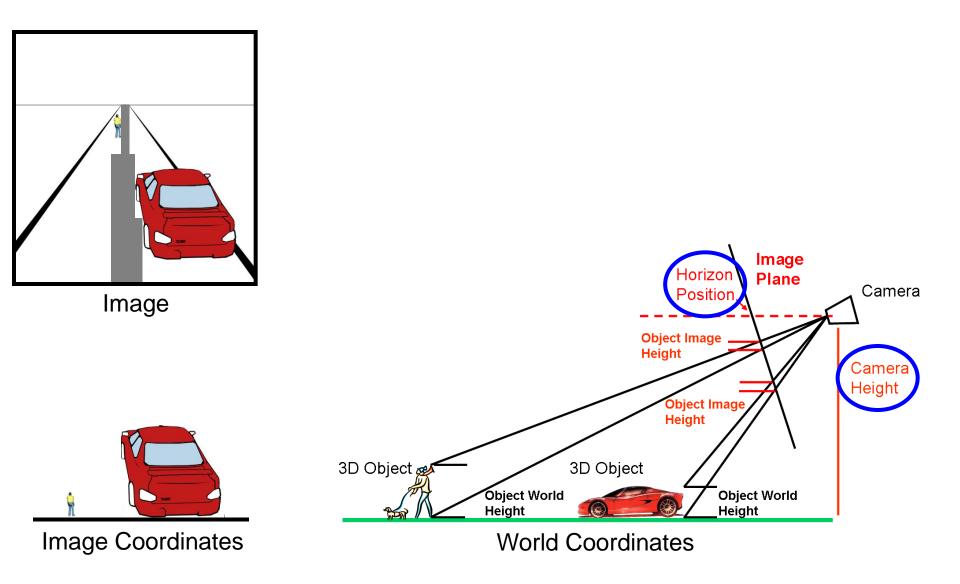
Finding occlusions (Hoiem et al, ICCV'07)



Occlusion Reasoning as Classification



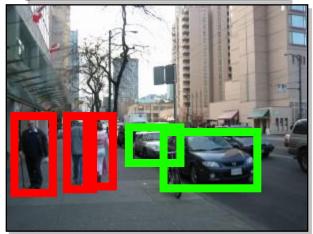
Object Size / Camera Viewpoint

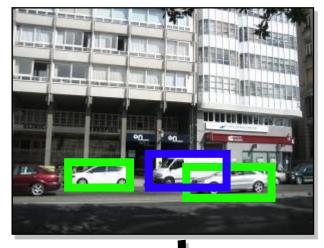


Camera viewpoint for LabelMe

Human height distribution 1.7 +/- 0.085 m (National Center for Health Statistics)

Car height distribution 1.5 +/- 0.19 m (automatically learned)

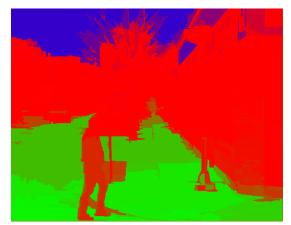




000

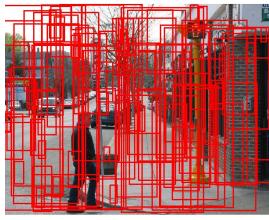
Helping Object Detection

Image

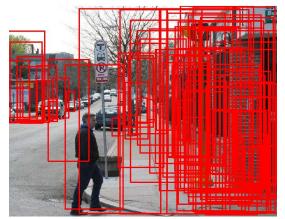


P(surfaces)

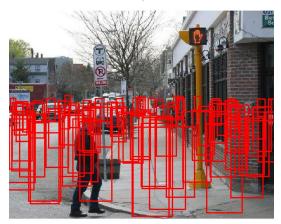
P(viewpoint)



P(object)



P(object | surfaces)



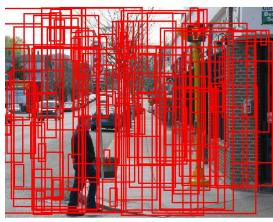
P(object | viewpoint)

Helping Object Detection

Image

P(surfaces)

P(viewpoint)



P(object)

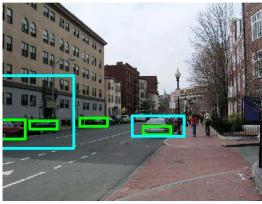
P(object | surfaces, viewpoint)

More Chickens, More Eggs...



Best Guesses

Object Detection

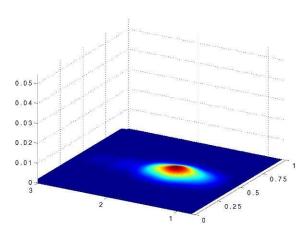


Local Car Detector

Local Ped Detector

Surface Estimates

Viewpoint Prior



Surfaces

Putting it all together

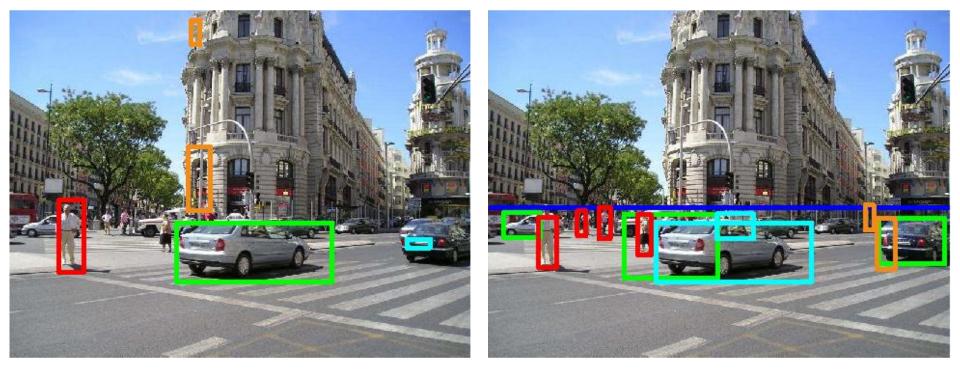
Objects

Viewpoint

3D Surfaces

Some Results

Car: TP / FP Ped: TP / FP



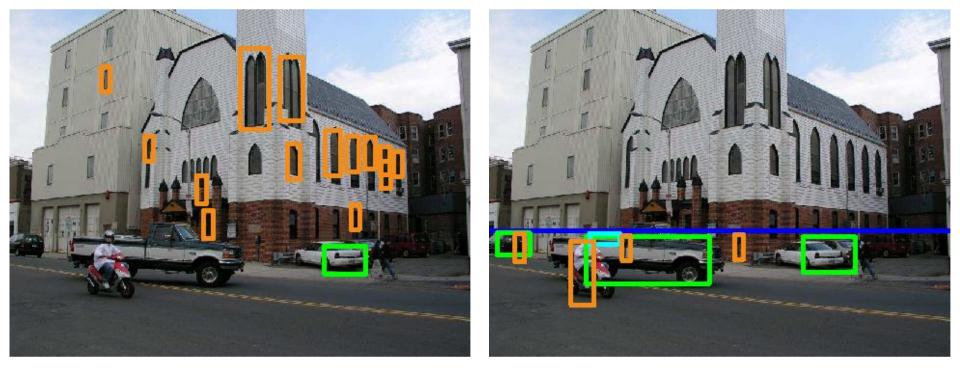
Initial: 2 TP / 3 FP

Final: 7 TP / 4 FP

Local Detector from [Murphy-Torralba-Freeman 2003]

Some Results

Car: TP / FP Ped: TP / FP



Initial: 1 TP / 14 FP

Final: 3 TP / 5 FP

Local Detector from [Murphy-Torralba-Freeman 2003]

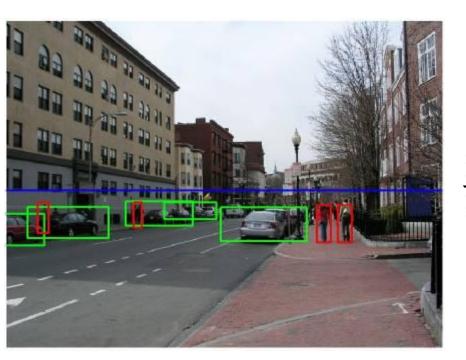
More Results

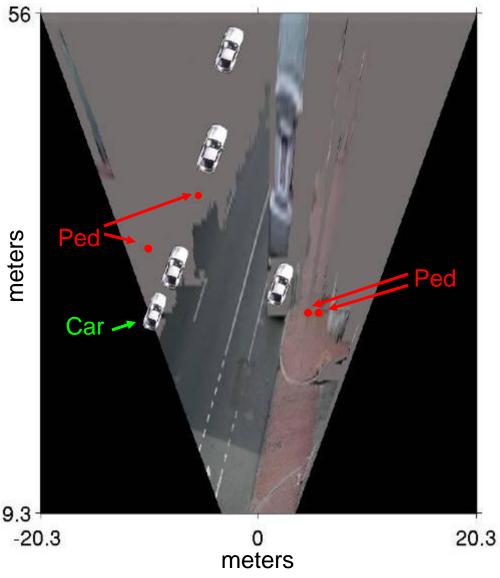
Car: TP / FP Ped: TP / FP

Initial: 1 TP / 5 FP

Final: 5 TP / 2 FP

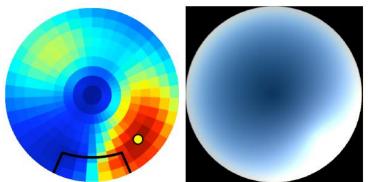
Putting Objects in Perspective





Illumination from a Single Image

Illumination from a Single Image



Lalonde. Efros, Narshimhan ICCV'09

Illumination from a Single Image

Synthetic Object Insertion

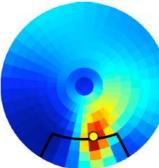
Algorithm

- Step 1: use weak cues considering 1) Sky,
 2) Shadows, 3) Shading
- Step 2: Integrated them with a data-driven prior (6 million Geo-tagged images)
- Step 3: Hope for the best!!

Weak cues

(a) Image and estimated horizon

(b) Sky mask [9]

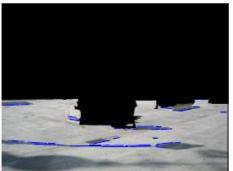


(c) $P(\theta_s, \Delta \phi_s | S)$

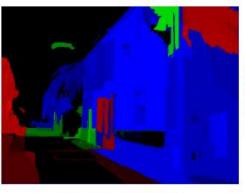
(d) Inserted sun dial

(a) Image and estimated horizon

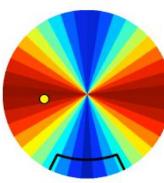
(a) Image and estimated horizon



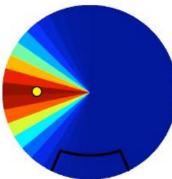
(b) Ground mask [9] and shadow lines



(b) Vertical mask [9]



(c) $P(\theta_s, \Delta \phi_s | \mathcal{G})$

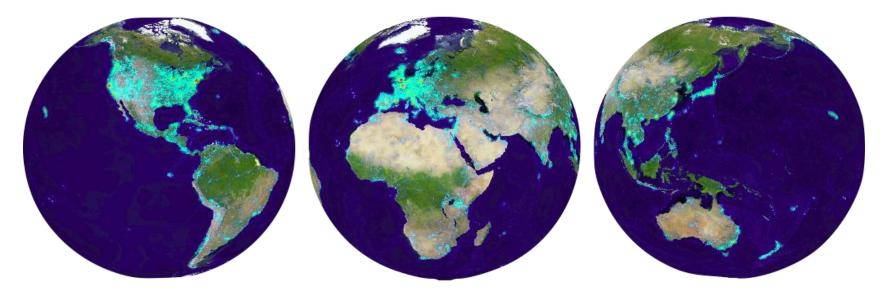


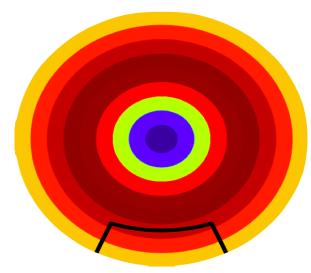
(c) $P(\theta_s, \Delta \phi_s | \mathcal{V})$

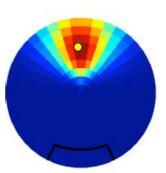
(d) Inserted sun dial

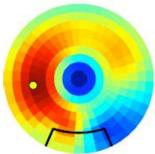
(d) Inserted sun dial

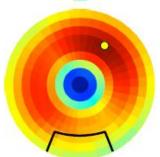
Data-driven Sun Elevation Prior

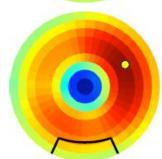


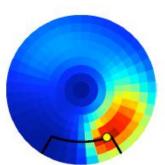


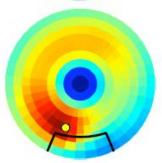


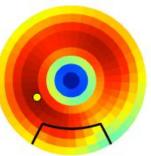








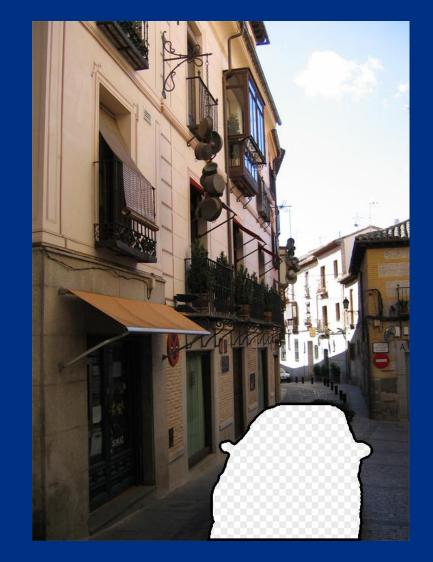




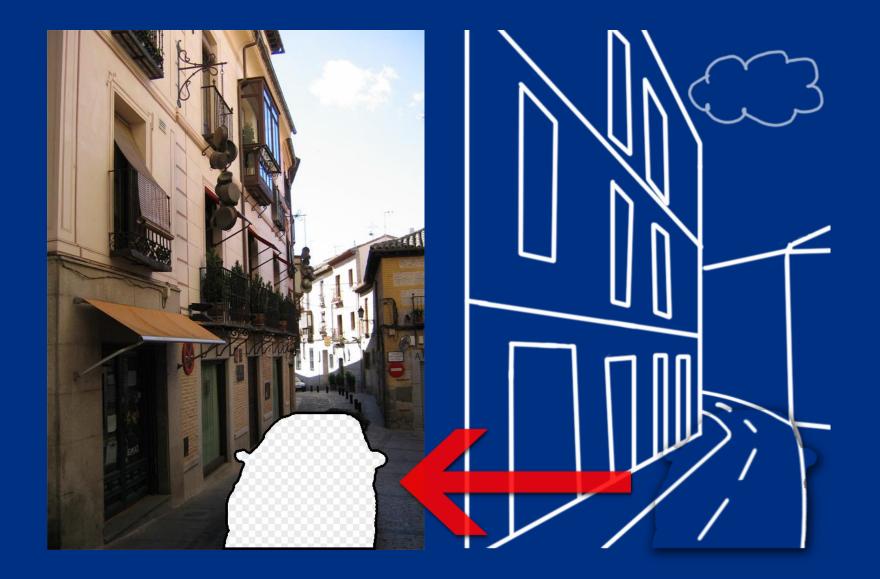
Scene Semantics: Understanding the <u>Entire</u> Scene

Hays & Efros, SIGGRAPH'07

Where does the knowledge come from?



Scene Semantics!



\mathbf{c}					
	e	alley	Search Images	Search the Web	Advanced Image Search Preferences
0	-	Strict SafeSearch is on			

All image sizes 🛛 🔽 Images Showing:

Results 1 - 20 of about 908,000 for alley [definition] with Safesearch on. (0.07 seconds)

Change Alley Aerial Plaza with its The Printer's Alley sign looking ... Looking west past Printers Alley. 679 x 450 - 469k - jpg 300 x 400 - 21k franklin.thefuntimesquide.com

679 x 450 - 464k - jpg franklin.thefuntimesguide.com

More Bubble Gum Alley photos can be ... 764 x 591 - 33k - gif www.locallinks.com

Gasoline Alley gang 692 x 430 - 177k - jpg newcritics.com

en.wikipedia.org

2007 Alley Loop Sponsors 300 x 453 - 51k - jpg www.cbnordic.org

Change Alley : interior 550 x 413 - 98k infopedia.nlb.gov.sg

Earl G. Alley ... 321 x 383 - 19k - jpg www.msstate.edu

Gun Alley 8.5x11 Full Color Ink Wash ... 390 x 301 - 14k - jpg www.rorschachentertainment.com

Grace Court Alley 732 x 549 - 98k - jpg www.bridgeandtunnelclub.com

Grace Court Alley 732 x 549 - 80k - jpg www.bridgeandtunnelclub.com

panoramic photo of Alligator Alley 4902 x 460 - 1048k - jpg sflwww.er.usqs.gov

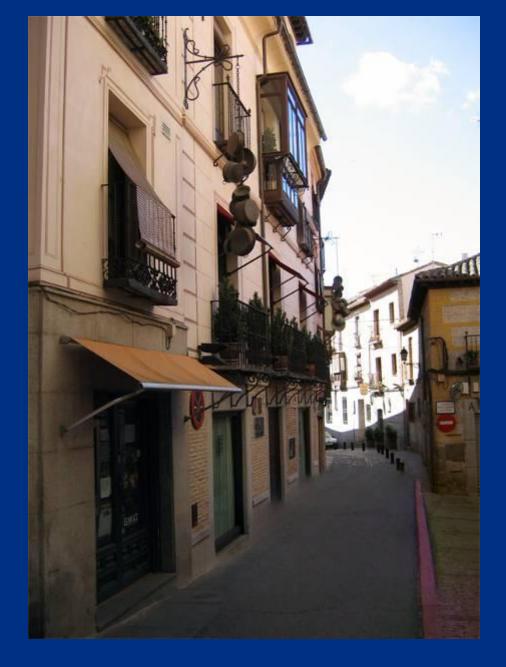


Richard B. Alley 450 x 361 - 29k - gif www.ncdc.noaa.gov

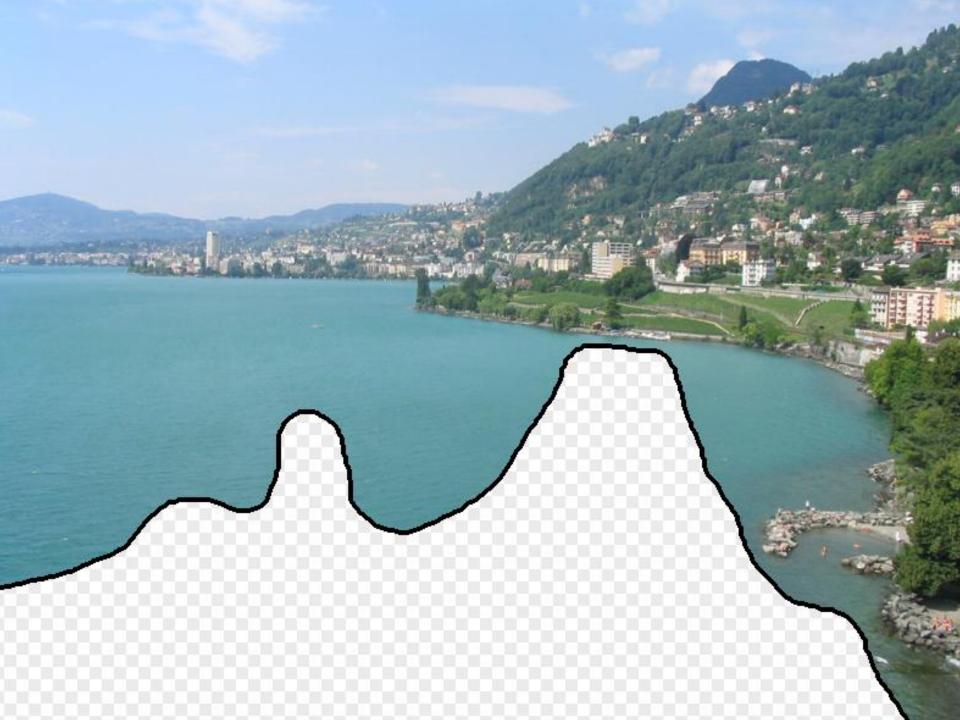
Also, Chicken Alley is reported to

450 x 337 - 82k phidoux.typepad.com

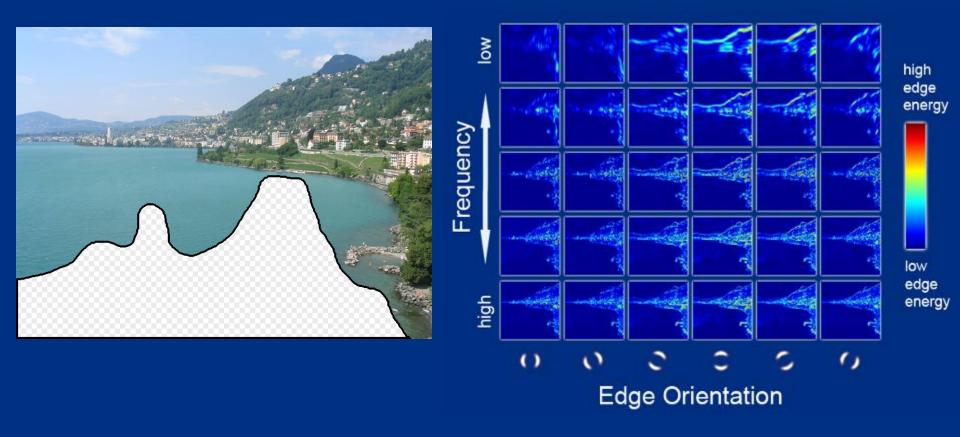
Ego Alley 500 x 375 - 48k - jpg dc.about.com



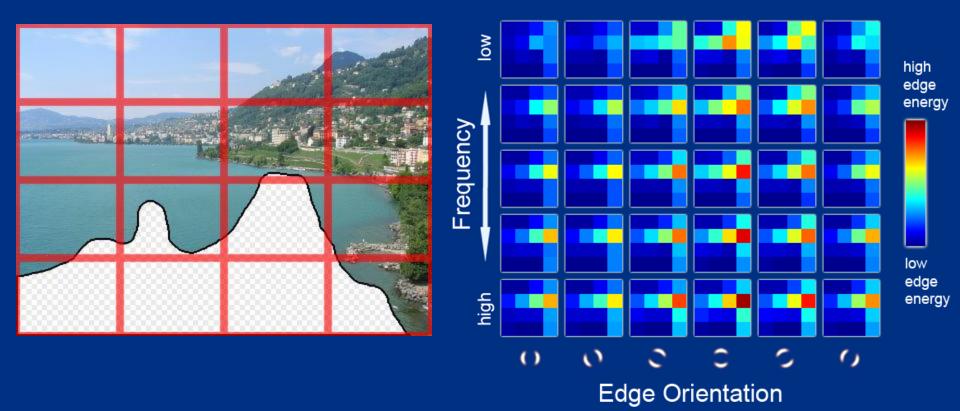
Scene Completion Result



Scene Descriptor

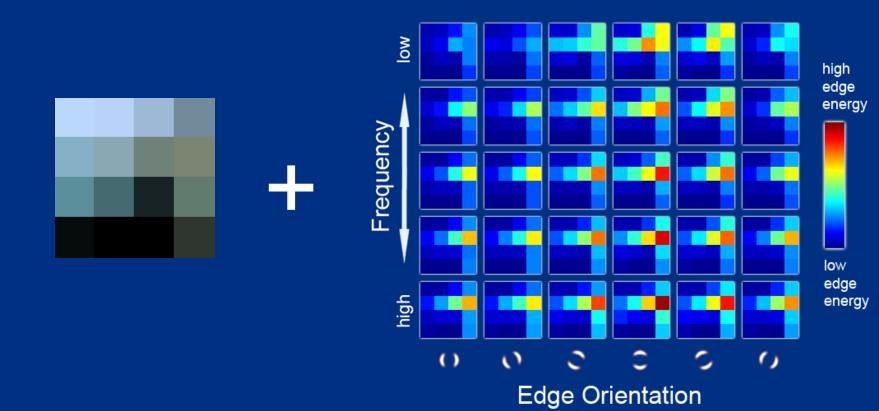


Scene Descriptor



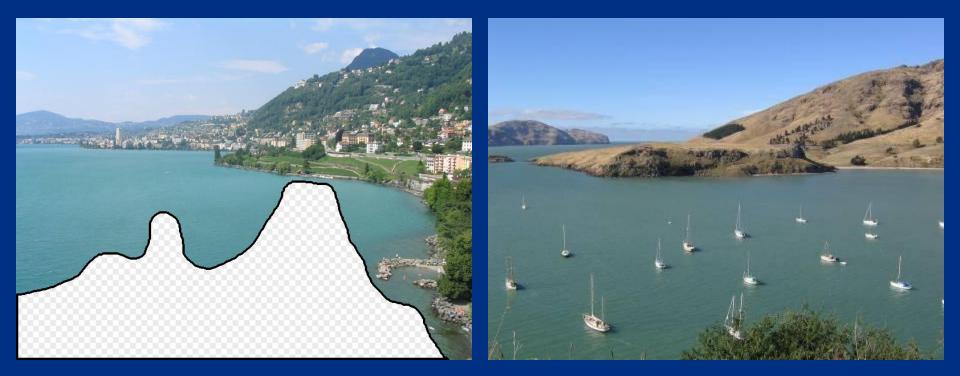
Gist scene descriptor (Oliva and Torralba 2001)

Scene Descriptor

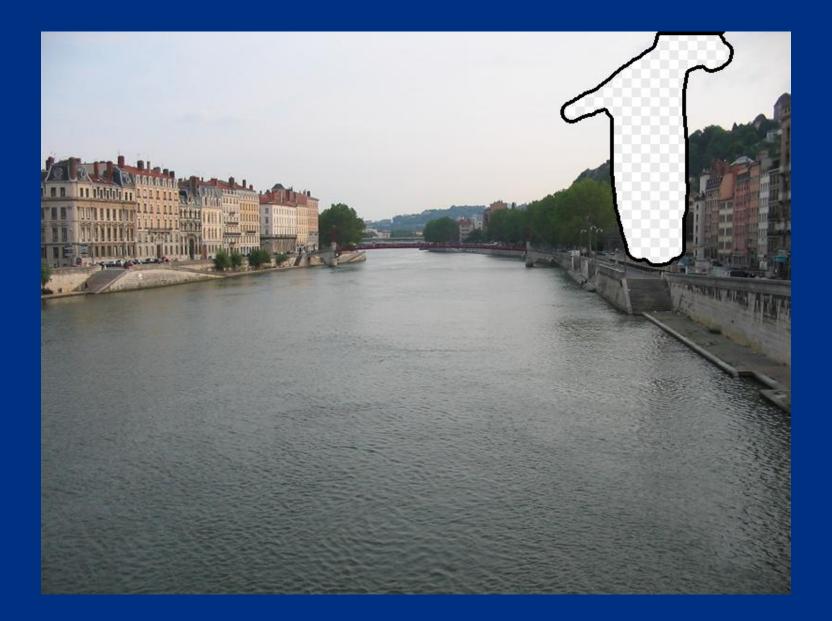


Gist scene descriptor (Oliva and Torralba 2001)

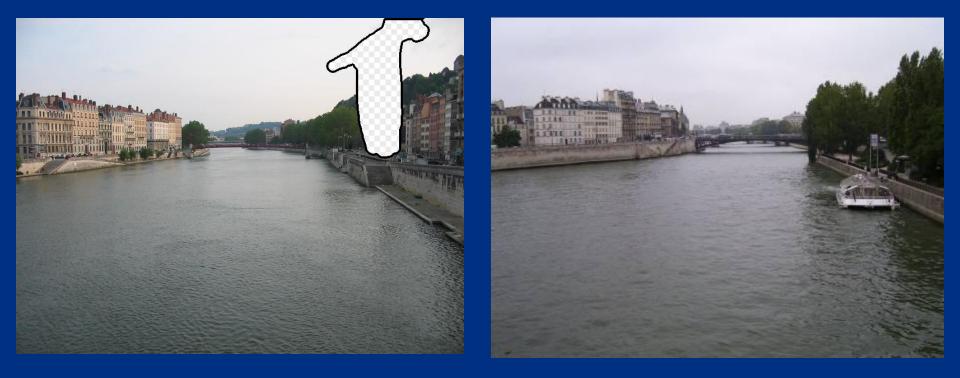
... 200 total

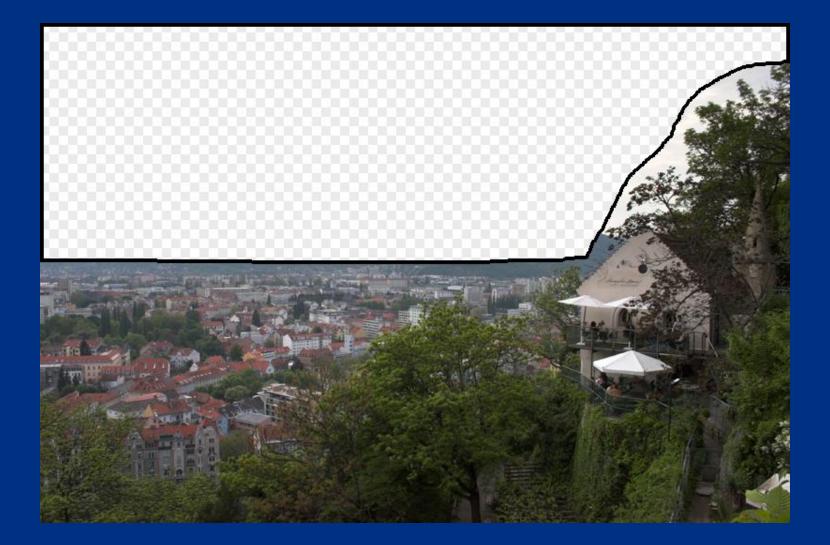


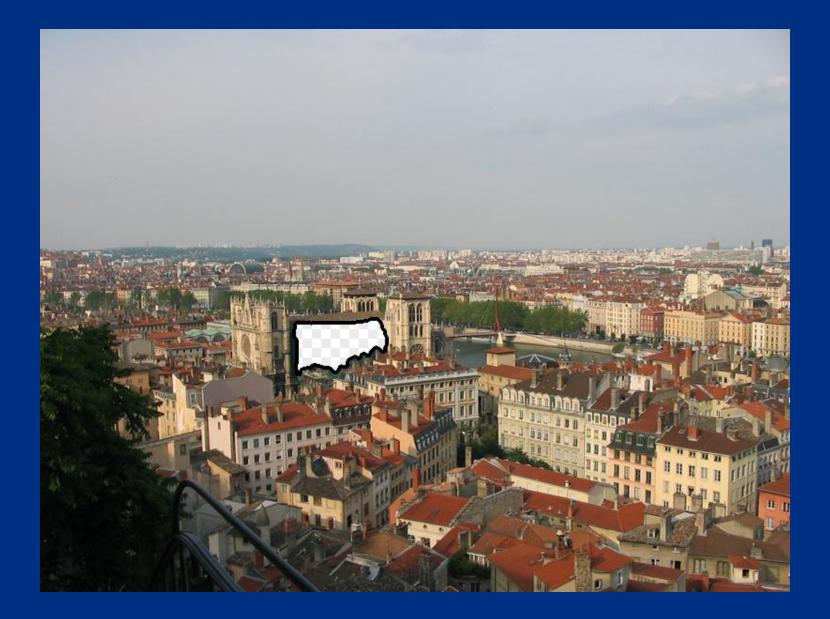
Graph cut + Poisson blending



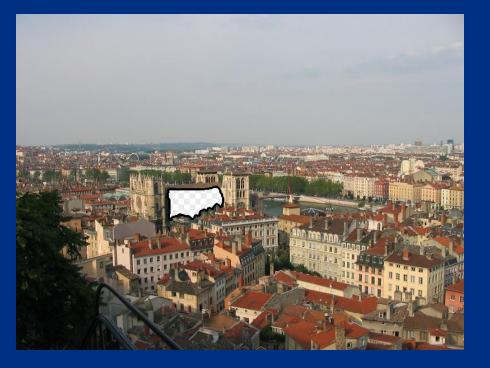
200 scene matches







... 200 scene matches



Why does it work?

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

Database of 70 Million 32x32 images

Torralba, Fergus, and Freeman. Tiny Images. MIT-CSAIL-TR-2007-024. 2007.

The Big Picture

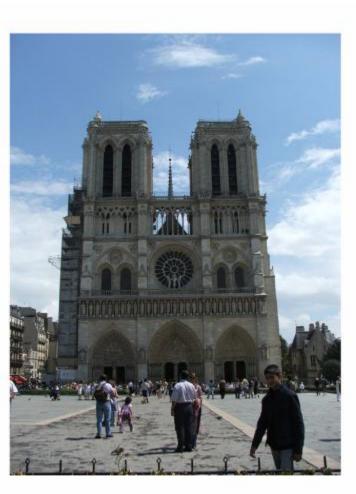
Sky, Water, Hills, Beach, Sunny, mid-day

Brute-force Image Understanding

im2gps (Hays & Efros, CVPR 2008)

6 million geo-tagged Flickr images

How much can an image tell about its geographic location?



Paris

Rome

Paris

Paris

Paris

Paris

Poland

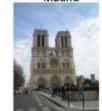
Paris

Cuba

Paris

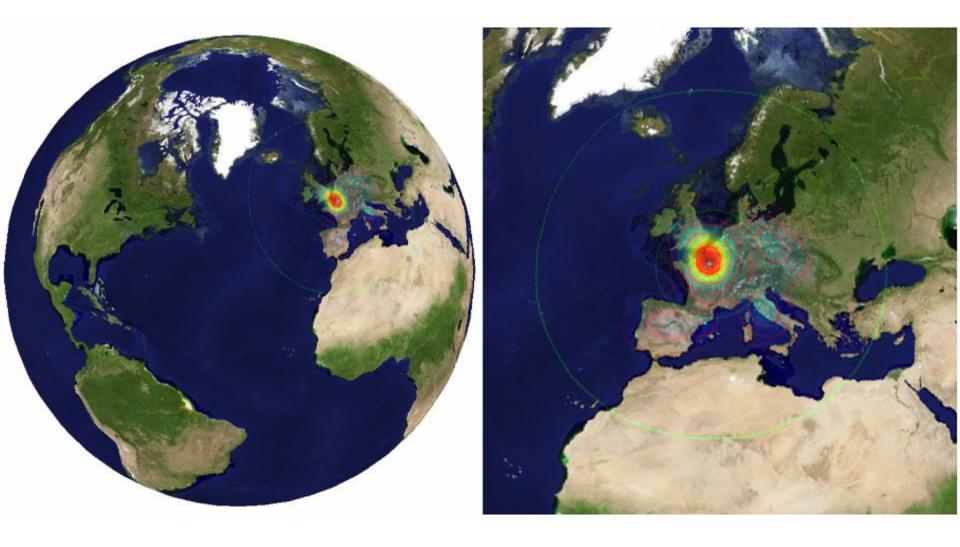
Paris

Madrid



Paris

Paris



Im2gps

Example Scene Matches

Cairo

Latvia

heidelberg

Italy

europe

France

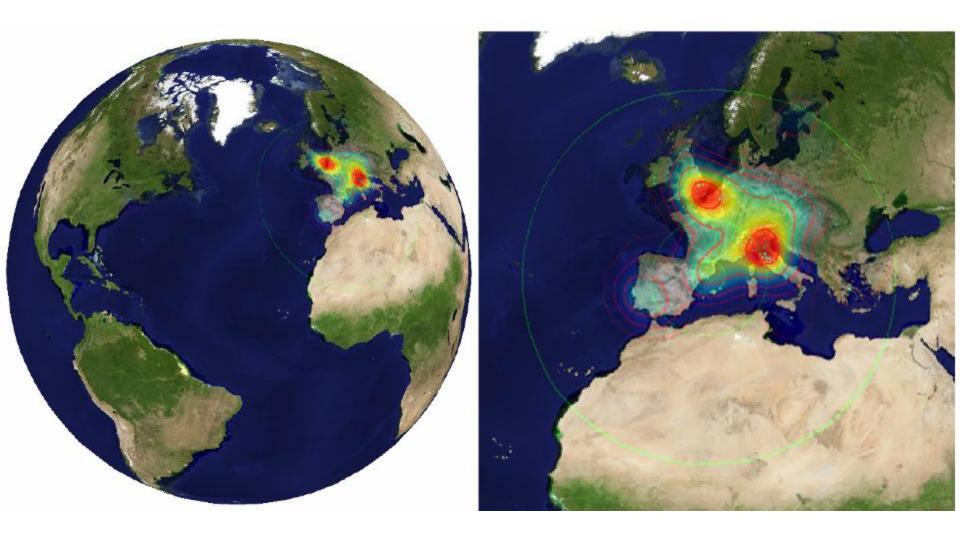
Macau

Paris

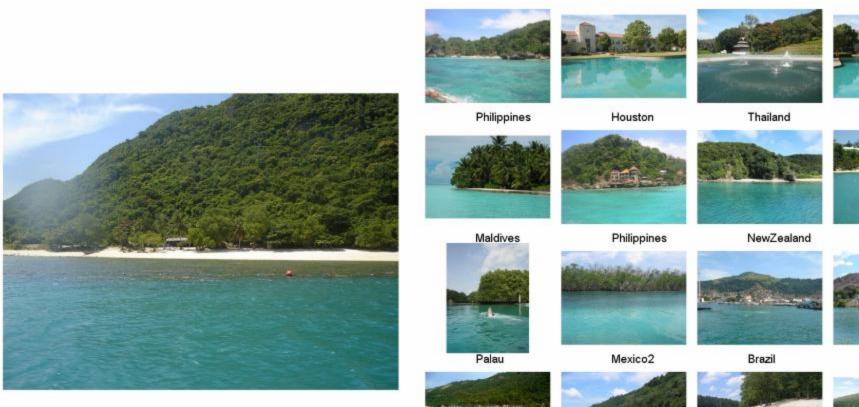
Malta

Austria

Voting Scheme



im2gps



Brazil

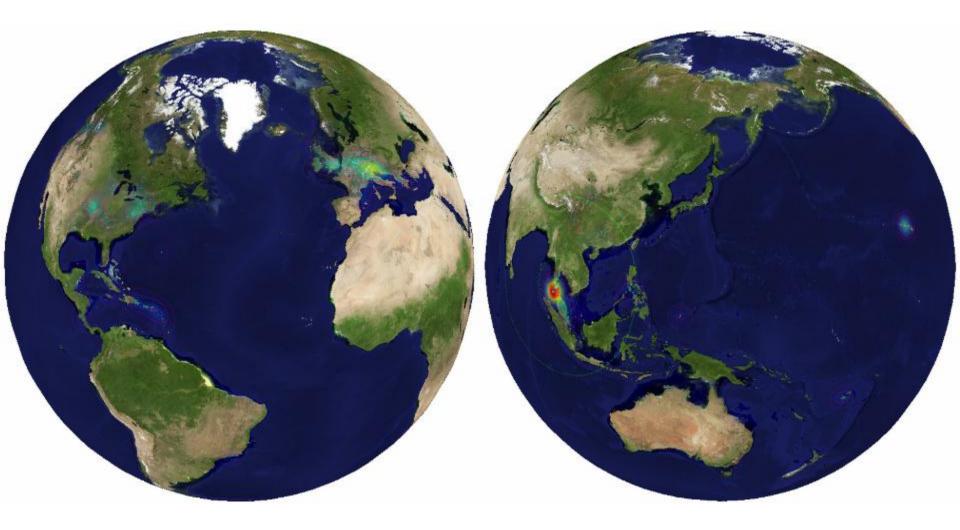
Thailand

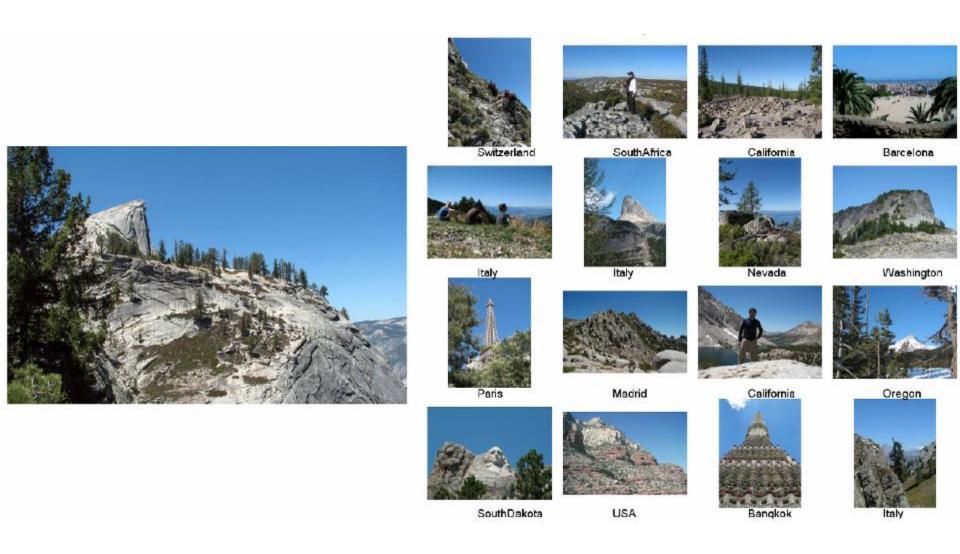
Hawaii

Houston

Bermuda

Mendoza





USA

Utah

Arizona

Utah

Utah

Utah

Kenya

Utah

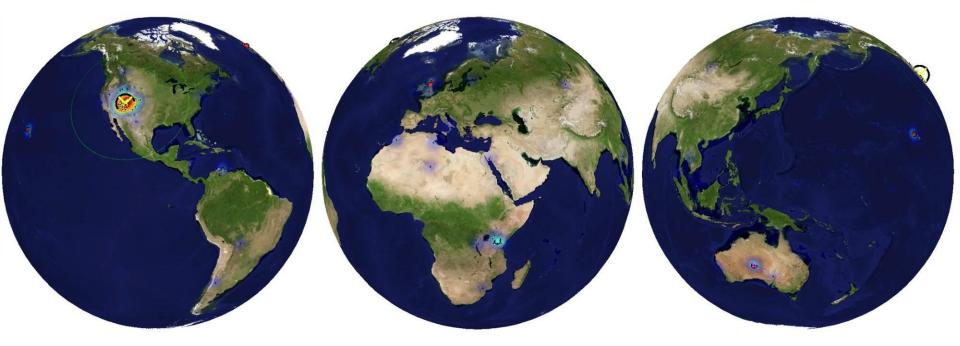
Utah

LosAngeles

NewMexico

Mendoza

Utah



California

Oklahoma

SouthAfrica

Kenya

Hyderabad

Zambia

SouthAfrica

Kenya

Kenya

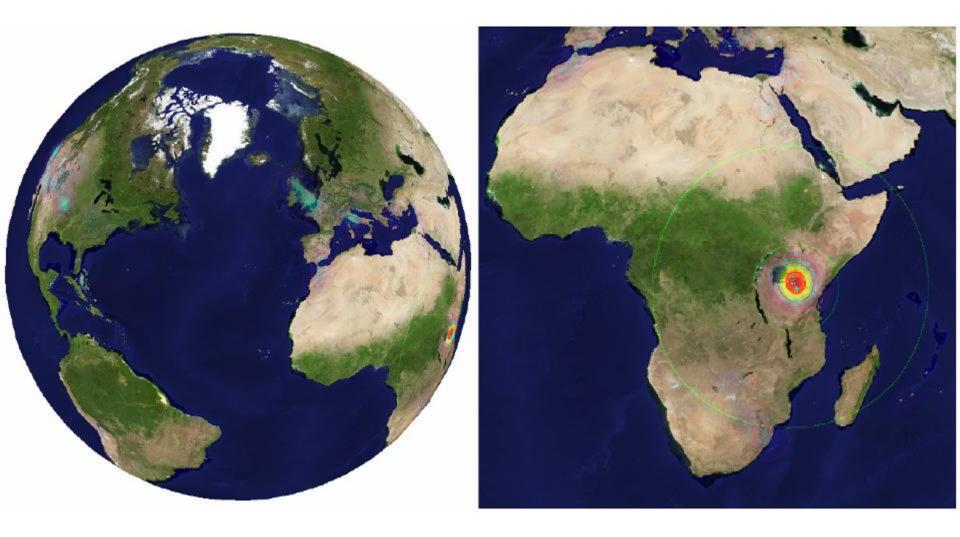
Ethiopia

Nevada

africa

Morocco

Tennessee

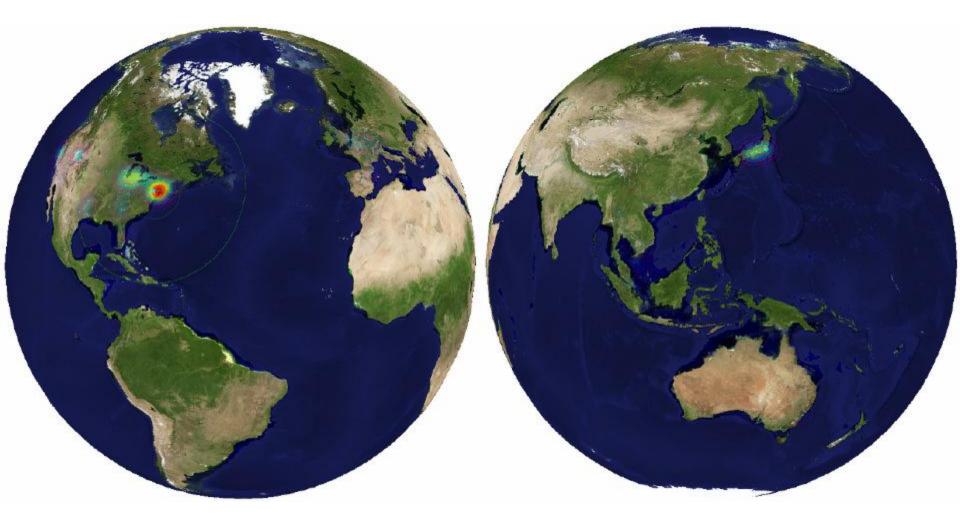


Ohio

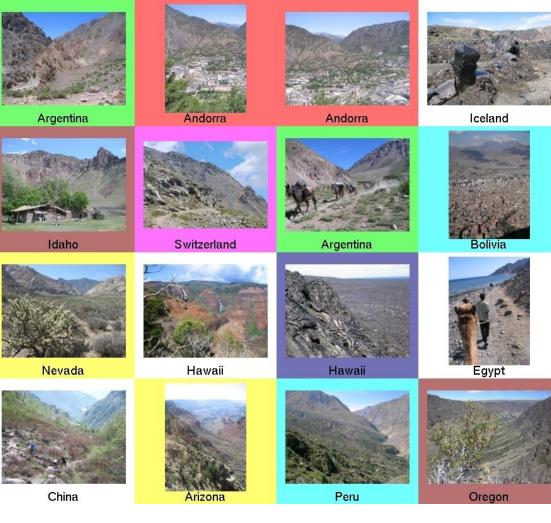
Philadelphia

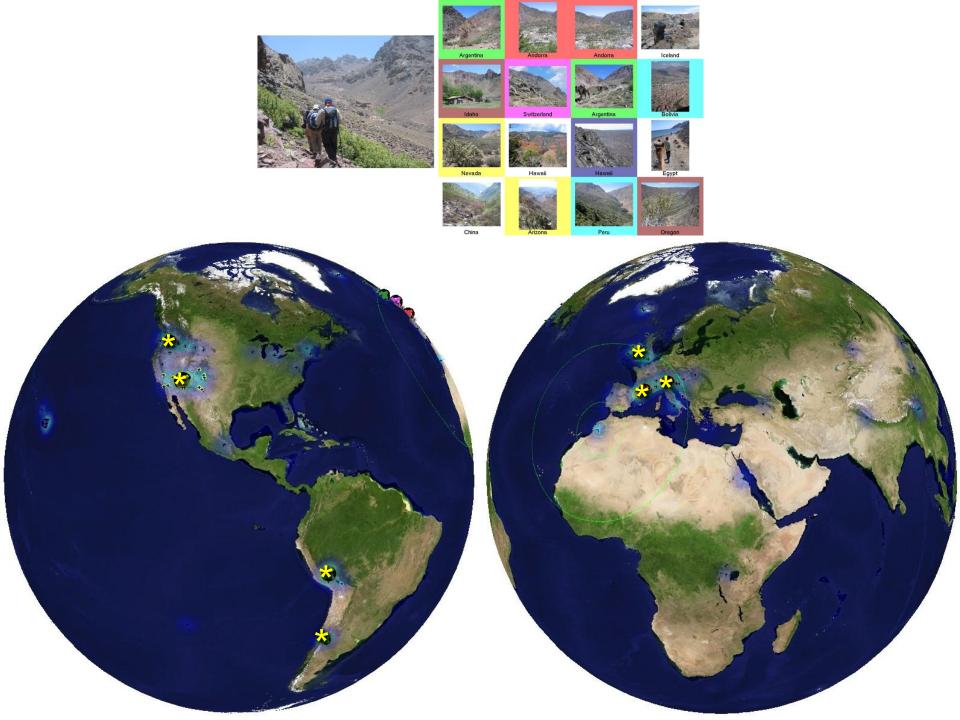
NewYorkCity

Boston

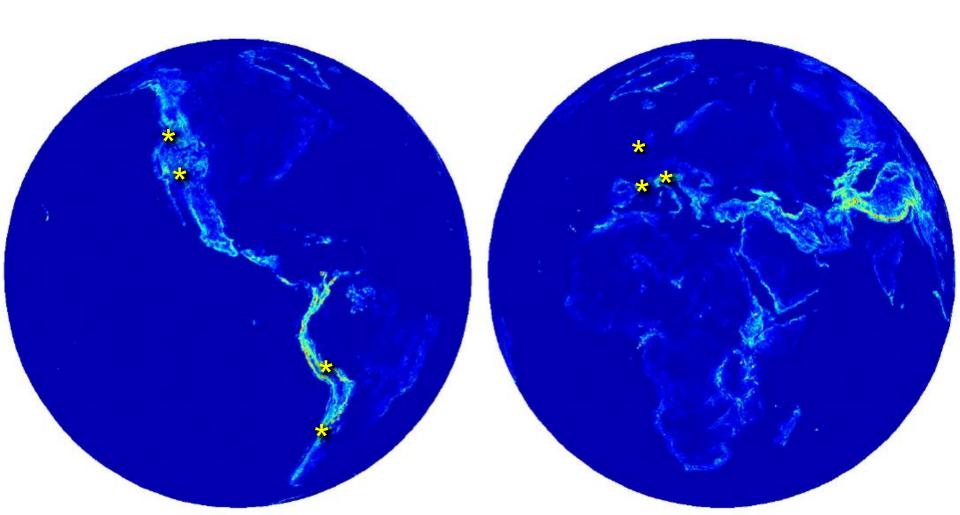


Data-driven categories





Elevation gradient = 112 m / km



Elevation gradient magnitude ranking

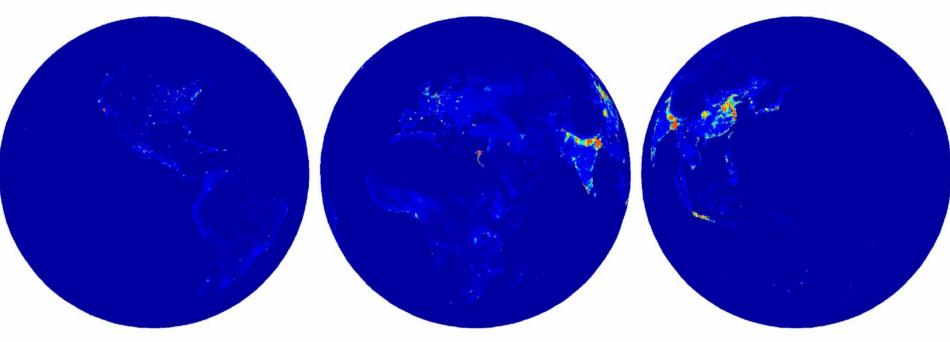
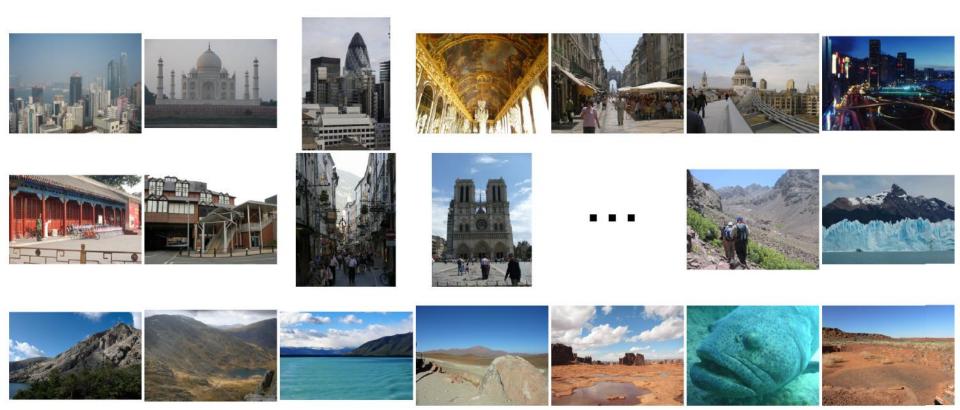


Figure 2. Global population density map.

Population density ranking



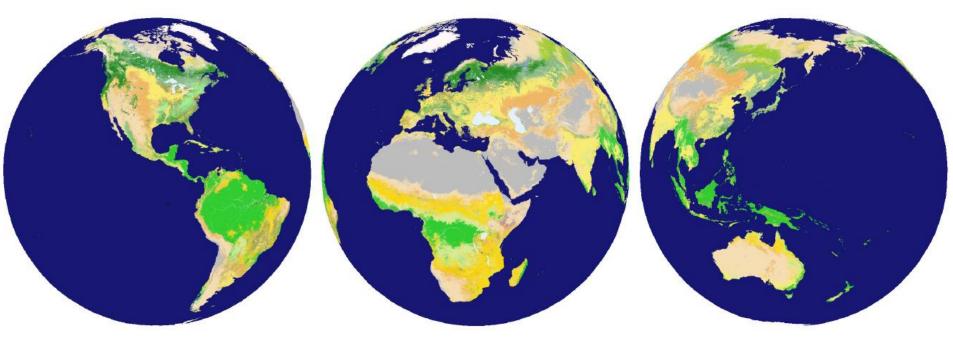
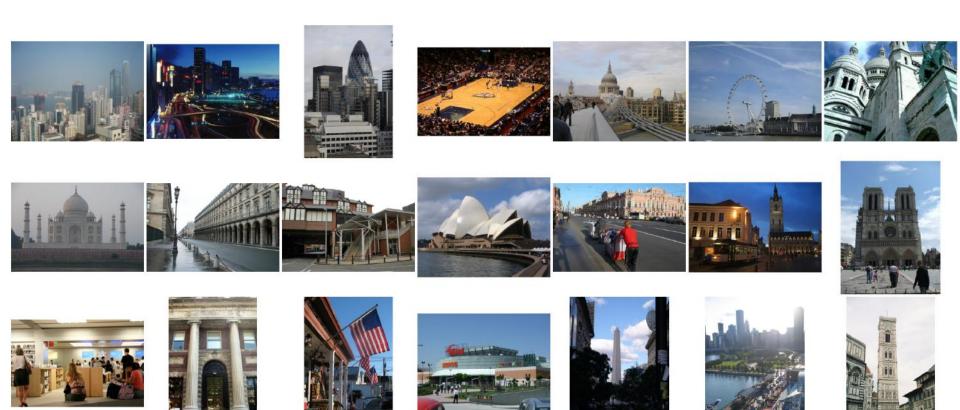


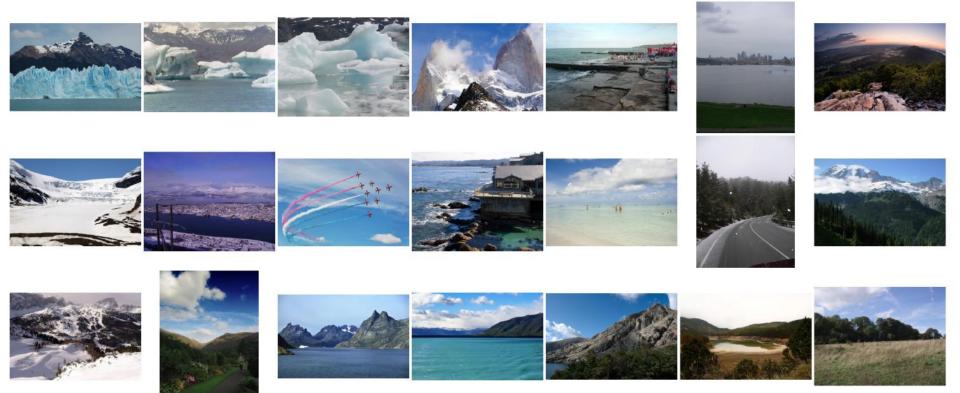
Figure 4. Global land cover classification map.

Barren or sparsely populated

Urban and built up



Snow and Ice



Savannah

Water

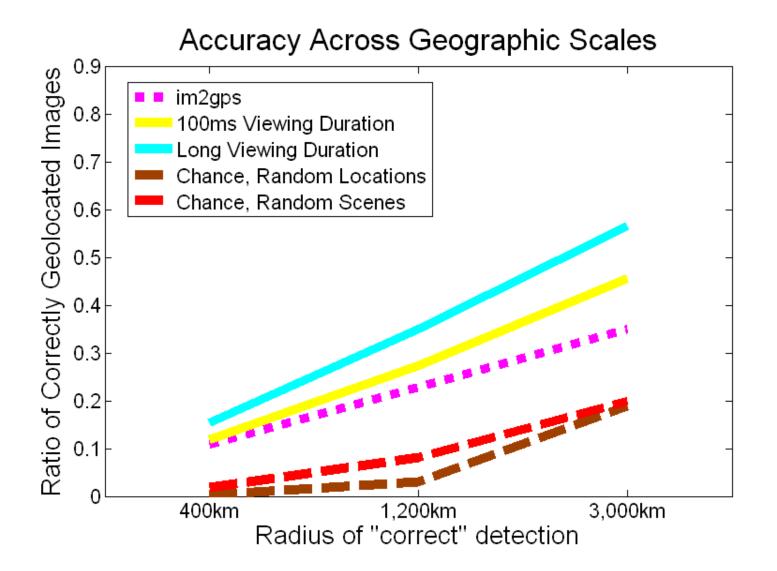
Conclusions

 There is plenty of useful information in a single image!

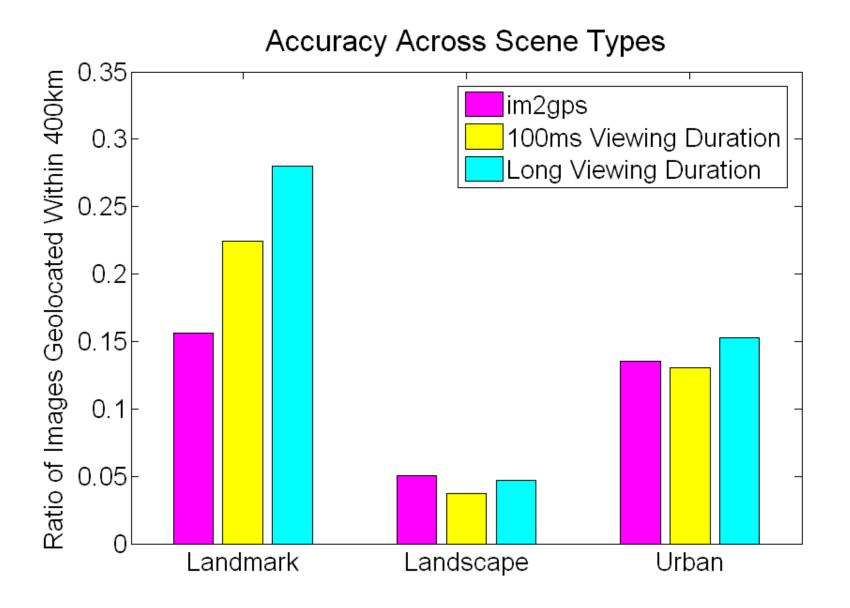
...but we must use the rest of the visual world to understand it

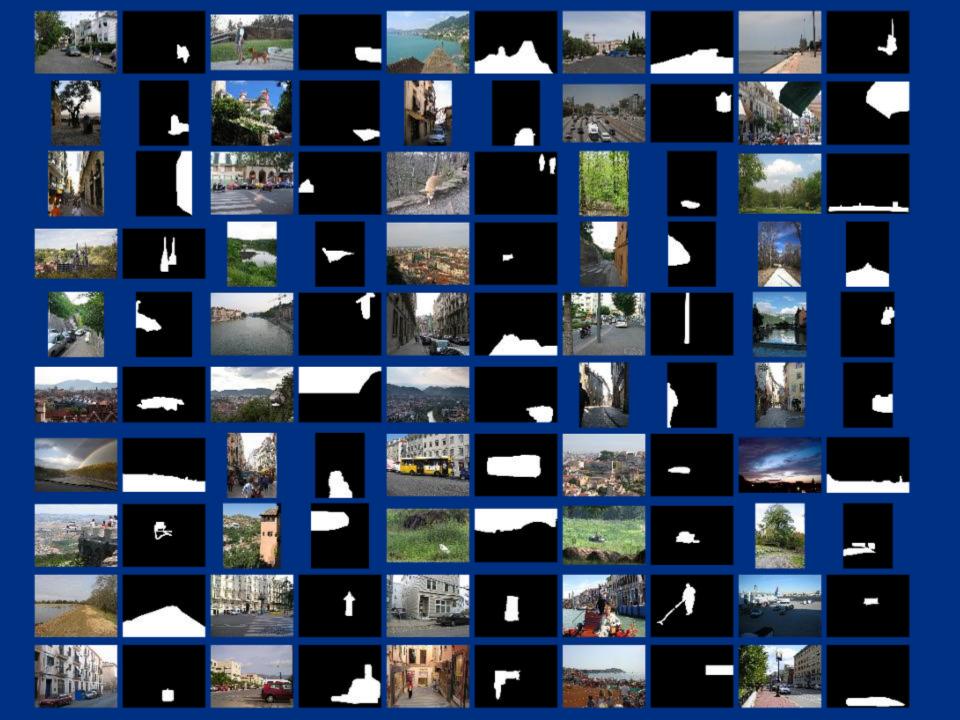
Quantitative Evaluation (first time ever!)

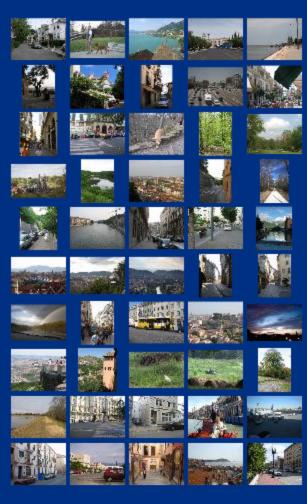
Human vs. Machine



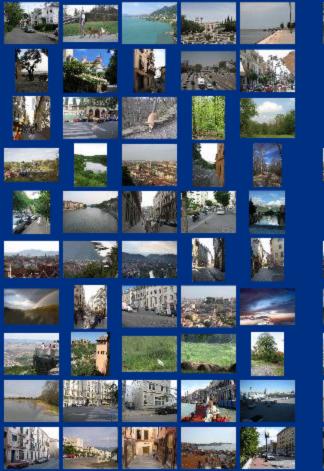
Human vs. Machine



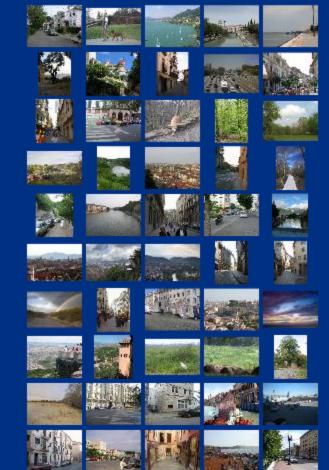




Original Images



Criminisi et al.



Scene Completion

Real Image. This image has not been manipulated

or

Fake Image. This image has been manipulated

User Study Results

