Furniture scenario

Delocalisation with production networks to countries with cheaper human efforts, or skill competencies

Scenario

- Delocalisation is a fact that nowadays
 - cannot be avoided
 - suppliers and manufacturers moving their production networks
 - to countries with cheaper human efforts
 - To partners with skill competencies.
- E.g., Today there is no apparent reason for not having a Portuguese costumer ordering an Italian designed, Chinese manufactured piece of furniture in a Spanish e-marketplace or online retailer.
- E.g., Considering interior/exterior design/decoration of rooms and spaces
 - The huge number of potential combinations that can be addressed to fulfill the costumer/designer/user interest is of very large complexity
 - the number of regions that are able to manufacture, assembly, market the products and components, make this situation as combinatory non-linear and very complex.

Challenges for the scenario

- This scenario brings globalization to a new level, however, nowadays for this to be feasible at a large scale some interopability challenges need to be addressed:
- Multilanguage and multimodal e-procurement
- Advanced user-customization
- Business information for product transaction and management fully integrated with the product data
- Integrated logistics information
- Optimized products development

Multilanguage and multimodal e-procurement,

- i.e., depending on the region the furniture information as different semantics that need to be integrated for such an international scenario to be feasible
 - semantic interoperability;

Advanced user-customization

- i.e., more and more the costumer likes to experiment new part configurations and product combinations. However, most of the times that is not possible without having to wait more than a week for the response of the manufacturer/supplier
 - Interoperable electronic catalogues and parameterized information across the supply chain through the usage to product data standards;

- Business information for product transaction and management fully integrated with the product data
- thus enabling seamless integration of ERP with ecommerce, supply chain management, and customer relationship management;
 - Standards harmonization (e-business + product data)

Integrated logistics information

- to lower costs concerning the outsourcing of different product components and services.
 - Process monitoring and usage of standards

Optimized products development

 taking in consideration the sources from the different players, to better meet the users requests, with lower enterprise resources and costs.

Standards and the scenario

- The use of standards in the business relationships raises the confidence of sellers and buyers of the products and services, and increases performance.
- This boost of confidence means successful manufacturing networks promoting an enlargement of both the market size and growth rates.
- However, the increasing number of non-harmonized and noninteroperable standards put in the market may block or slow down growth and innovation associated with the presented scenario.

Standards and the scenario

- In this scenario ISO 10303-236 (AP236) standard covers part of the supply chain exchange of data among different stakeholders
 - but its implementation needs to be facilitated
 - Enterprise services for data and knowledge integration (AP236+domain ontology) are required.
- E-business, logistics and transport are still out of the scope of ISO 10303-236
 - but multiple standards exist.
- Therefore, there is the need to consider the signed Memorandum of Understanding for e-Business standards harmonization ensuring that interoperability possible.
- Also, extensions to cover cultural and language depending characteristics in enterprise business need to be integrated.

Benefits

 With all these aspects covered on the daily business transactions, the SME-based furniture sector will see tremendous benefits

Challenge

Delocalisation with production networks to countries with cheaper human efforts, or skill competencies.

So... ©

Layers of a Standard-based Integration Platform

2009

Standards Implementation

Using.... Model Morphisms

- Relationships between two or more model specifications that can be represented in different technologies and languages
- Unary and binary operations that can be applied to models

<u>Transformations</u> having $A \in MOD$, and a function $t:MOD \to MOD$, if t(A) = B, then $B \in MOD$

And... MDA Methodology

- Use of platform independent models (PIMs) as specification
- Transformation into platform specific models (PSMs) using automated tools

15th International Conference on Concurrent Enterprising Leiden - The Netherlands, 22-24 June 2009

2009 Transformation Framework

Express2XMI mapping

```
SCHEMA Activity arm;
```

```
USE FROM Activity method arm;
                                                                                 Activity_status
TYPE activity item = EXTENSIBLE GENERIC ENTITY SELECT;
                                                                                                                          Activity_item
END TYPE;
                                                                            +assigned_activity : Activity [1]
                                                                           +status : String
ENTITY Activity;
  id : STRING;
                                                                -reverse-of-assigned_activity
 name : STRING;
 description : OPTIONAL STRING;
 chosen method : Activity method;
                                                                                                                                   Activity
END ENTITY;
                                                                                                     -assigned_activity
                                                                                                                       +id: String
ENTITY Activity relationship;
                                                                                                                       +name : String
  name : STRING;
                                                                                          -reverse-of-assigned_activity
                                                                                                                       +description : String [0..1]
 description : OPTIONAL STRING;
                                                              Applied_activity_assignment
                                                                                                                       +chosen_method : Activity_method [1]
 relating_activity : Activity;
                                                              +assigned_activity : Activity [1]
 related activity: Activity;
                                                                                                      -assigned_activity
                                                                                                                                -relating_activity
                                                                                                                                                   -related_activity
                                                              +items
END ENTITY;
                                                              +role: String
ENTITY Activity_status;
  assigned activity : Activity;
 status : STRING;
END ENTITY;
ENTITY Applied activity assignment;
  assigned activity : Activity;
                                                                                                      -reverse-of-relating activity
 items : SET[1:?] OF activity item;
  role : STRING;
                                                                                                              Activity_relationship
END ENTITY;
                                                                                                            +name : String
                                                                                                            +description : String [0..1]
ENTITY Activity method;
                                                                                                            +relating_activity : Activity [1]
 name : STRING;
                                                                                                            +related_activity : Activity [1]
 description : OPTIONAL STRING;
                                                                                                                                        -reverse-of-related_activity
 consequence : OPTIONAL STRING;
  purpose : STRING;
END ENTITY;
END SCHEMA; -- Activity arm
```

Express2Schematron

WHERE

WR1: quantity >0;

END ENTITY:

2009

Model Driven Approach

Framework instantiation

Integration with industrial e-commerce tool

CADEF, a tool to build product catalogues, has been integrated with the framework to enable access to visualization data for assistance in the manufacturer catalogue construction.

Furniture scenario

Delocalisation with production networks to countries with cheaper human efforts, or skill competencies

