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1 Overview  

•	 The Practical Importance of Duality 

•	 Definition of the Dual Problem 

•	 Steps in the Construction of the Dual Problem 

•	 Examples of Dual Constructions 

•	 The Column Geometry of the Primal and Dual Problems 

•	 The Dual is a Concave Maximization Problem 

•	 Weak Duality 

•	 Saddlepoint Optimality Criteria 

•	 Strong Duality for Convex Problems 

•	 Duality Strategies 

•	 Illustration of Lagrange Duality in Discrete Optimization 

•	 Conic Duality 

2 The Practical Importance of Duality 

Duality arises in nonlinear (and linear) optimization models in a wide variety 
of settings. Some immediate examples of duality are in: 

•	 Models of electrical networks. The current flows are “primal vari-
ables” and the voltage differences are the “dual variables” that arise in 
consideration of optimization (and equilibrium) in electrical networks. 

•	 Models of economic markets. In these models, the “primal” vari-
ables are production levels and consumption levels, and the “dual” 
variables are prices of goods and services. 
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•	 Structural design. In these models, the tensions on the beams are 
“primal” variables, and the nodal displacements are the “dual” vari-
ables. 

Nonlinear (and linear) duality is very useful. For example, dual problems 
and their solutions are used in connection with: 

•	 Identifying near-optimal solutions. A good dual solution can be 
used to bound the values of primal solutions, and so can be used to 
actually identify when a primal solution is near-optimal. 

•	 Proving optimality. Using a strong duality theorem, one can prove 
optimality of a primal solution by constructing a dual solution with 
the same objective function value. 

•	 Sensitivity analysis of the primal problem. The dual variable on 
a constraint represents the incremental change in the optimal solution 
value per unit increase in the RHS of the constraint. 

•	 Karush-Kuhn-Tucker (KKT) conditions. The optimal solution 
to the dual problem is a vector of KKT multipliers. 

•	 Convergence of improvement algorithms. The dual problem is 
often used in the convergence analysis of algorithms. 

•	 Good Structure. Quite often, the dual problem has some good 
mathematical, geometric, or computational structure that can ex-
ploited in computing solutions to both the primal and the dual prob-
lem. 

•	 Other uses, too . . . . 
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3 The Dual Problem 

3.1 Warning: Conventions involving ±∞ 

Suppose that we have a problem: 

∗(P) : z = maximumx f(x) 

s.t. x ∈ S .  

We could define the function: 

f(x) if  x ∈ S 
h(x) :=  −∞ if x /∈ S .  

Then we can rewrite our problem as: 

∗(P) : z = maximumx h(x) 

s.t. x ∈ IRn . 

Conversely, suppose that we have a function k(·) that takes on the value 
−∞ outside of a certain region S, but that k(·) is finite for all x ∈ S. Then 
the problem: 

∗(P) : z = maximumx k(x) 

s.t. x ∈ IRn 

is equivalent to: 
∗(P) : z = maximumx k(x) 

s.t. x ∈ S .  

Similar logic applies to minimization problems over domains where the func-
tion values might take on the value +∞. 

3.2 Defining the Dual Problem 

Recall the basic constrained optimization model: 
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OP : minimumx f(x) 

s.t. 
g1(x) 
· 
· 
. . . 

gm(x) 

x ∈ X, 

≤ 0, 
= 
≥ 

≤ 0, 

→ IR and gi(x) : IRn �In this model, we have f(x) : IRn � → IR, i  = 1, . . . , m. 

Of course, we can always convert the constraints to be “≤”, and so for 
now we will presume that our problem is of the form: 

∗OP : z = minimumx f(x) 

s.t. 
g1(x) ≤ 0, 

. . . 

gm(x) ≤ 0, 

x ∈ X, 

Here X could be any set, such as: 

• X = IRn 
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• X = {x | x ≥ 0} 

• X = {x | gi(x) ≤ 0, i  = m + 1, . . . , m + k} 

• X = x | x ∈ Zn 
+ 

• X = {x | Ax ≤ b} 

∗Let z denote the optimal objective value of OP.


For a nonnegative vector u, form the Lagrangian function:


m 
TL(x, u) :=  f(x) +  u g(x) =  f(x) +  uigi(x) 

i=1 

by taking the constraints out of the body of the model, and placing them in 
the objective function with costs/prices/multipliers ui for i = 1, . . . , m. 

We then solve the presumably easier problem: 

∗L (u) := minimumx L(x, u) = minimumx f(x) +  uT g(x) 

s.t. x ∈ X s.t. x ∈ X 

∗The function L (u) is called the dual function. 

∗We presume that computing L (u) is an easy task. 


The dual problem is then defined to be:


∗ ∗D :  v = maximumu L (u) 

s.t. u ≥ 0 
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4 Steps in the Construction of the Dual Problem 

We start with the primal problem: 

∗OP : z = minimumx f(x) 

s.t. 
gi(x) ≤ 0, i  = 1, . . . , m,  

x ∈ X, 

Constructing the dual involves a three-step process: 

• Step 1. Create the Lagrangian 

TL(x, u) :=  f(x) +  u g(x) . 

• Step 2. Create the dual function: 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ X 

• Step 3. Create the dual problem: 

∗ ∗D :  v = maximumu L (u) 

s.t. u ≥ 0 
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5	 Examples of Dual Constructions of Optimiza-
tion Problems 

5.1 The Dual of a Linear Problem 

Consider the linear optimization problem: 

TLP : minimumx c x 

s.t. Ax ≥ b 

What is the dual of this problem? 

TL(x, u) =  c x + u T (b − Ax) =  u T b + (c − AT u)T x. 

∗	 −∞, if AT u �= c 
L (u) =  inf  L(x, u) =  

uT b, if AT u = cx∈IR n 

The dual problem (D) is: 

(D) max L ∗(u) = max  u T b s.t. AT u = c, u ≥ 0. 
u≥0 

5.2 The Dual of a Binary Integer Problem 

Consider the binary integer problem: 

TIP : minimumx c x 

s.t. Ax ≥ b 

xj ∈ {0, 1}, j  = 1, . . . , n  .  

What is the dual of this problem? 



∑ 

9 

5.3 The Dual of a Log-Barrier Problem 

Consider the following logarithmic barrier problem: 

3 
BP : minimumx1,x2,x3 5x1 + 7x2 − 4x3 − ln(xj ) 

j=1 

s.t.	 x1 + 3x2 + 12x3 = 37  

x1 > 0, x2 > 0, x3 > 0 . 

What is the dual of this problem? 

5.4 The Dual of a Quadratic Problem 

Consider the quadratic optimization problem: 

1 TQP : minimumx 2 x
T Qx + c x 

s.t.	 Ax ≥ b 

where Q is SPSD (symmetric and positive semi-definite). 

What is the dual of this problem? 

1 TL(x, u) =  
1 
x T Qx + c T x + u T (b − Ax) =  u T b + (c − AT u)T x + x Qx.

2	 2 

∗L (u) =  inf  L(x, u). 
x∈IR n 
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Assuming that Q is positive definite, we solve: Qx̃ = −(c − AT u), i.e., 
x̃ = −Q−1(c − AT u) and  

1∗L (u) =  L(x̃, u) =  − 
2
(c − AT u)T Q−1(c − AT u) +  u T b. 

The dual problem (D) is: 

1
(D) max L ∗(u) = max  − 

2
(c − AT u)T Q−1(c − AT u) +  u T b. 

u≥0 u≥0 

5.5	 Remarks on Problems with Different Formats of Con-
straints 

Suppose that our problem has some inequality and equality constraints. 
Then just as in the case of linear optimization, we assign nonnegative dual 
variables ui to constraints of the form gi(x) ≤ 0, unrestricted dual variables 
ui to equality constraints gi(x) = 0, and non-positive dual variables ui to 
constraints of the form gi(x) ≥ 0. For example, suppose our problem is: 

OP :	 minimumx f (x) 

s.t. 
gi(x) ≤ 0, i  ∈ L 

gi(x) ≥ 0, i  ∈ G 

gi(x) = 0, i  ∈ E 

x ∈ X, 

Then we form the Lagrangian: 

TL(x, u) :=  f (x) +  u g(x) =  f (x) +  uigi(x) +  uigi(x) +  uigi(x) 
i∈L i∈G i∈E 
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∗and construct the dual function L (u): 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ X 

The dual problem is then defined to be: 

∗D :  maximumu L (u) 

s.t. 

ui ≥ 0, i ∈ L 

ui ≤ 0, i ∈ G 

> 
ui <, i ∈ E 

For simplicity, we presume that the constraints of OP are of the form 
gi(x) ≤ 0. This is only for ease of notation, as the results we develop pertain 
to the general case just described. 

6	 The Column Geometry of the Primal and Dual 
Problems 

Let us consider the primal problem from a “resource-cost” point of view. 
For each x ∈ X, we have an array of resources and costs associated with x, 
namely: 
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⎛ 
s1 

⎞ ⎛ 
g1(x) ⎞ 

⎜ s2 ⎟ ⎜ g2(x) ⎟ ⎜ ⎟ ⎜ ⎟ s ⎜ . ⎟ ⎜ . ⎟ g(x)
= ⎜ .. ⎟ = ⎜ . ⎟ = 

z ⎜ ⎟ ⎜ . ⎟ f(x) 
. ⎝ ⎠ ⎝ gm(x) ⎠sm 

z f(x) 

We can think of each of these arrays as an array of resources and cost in 
IRm+1 . Define the set I: 

I := (s, z) ∈ IRm+1 | there exists x ∈ X for which s ≥ g(x) and  z ≥ f(x) . 

This region is illustrated in Figure 1. 

z 

s 

-u 

H(u,α) 

I 

Figure 1: The set I. 

Proposition 6.1 If X is a convex set, and f(·), g1(·), . . . , gm(·) are convex 
functions on X, then I is a convex set. 



13 

TLet Hu,α = {(s, z) ∈ IRm+1 : u s + z = α}.

We call Hu,α is a lower support of I if uT s + z ≥ α for all (s, z) ∈ I.


Let L = {(s, z) ∈ IRm+1 : s = 0}. Note that Hu,α ∩ L = {(0, α)}.

The problem of determining a hyperplane Hu,α that is a lower support


of I, and whose intersection with L is the highest is: 
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maximumu,α 

s.t. 

=  maximumu,α 

s.t. 

= maximumu≥0,α 

s.t. 

= maximumu≥0,α 

s.t. 

= maximumu≥0,α 

s.t. 

= maximumu≥0,α 

s.t. 

= maximumu≥0,α 

s.t. 

α 

Hu,α is a lower support of I 

α 

Tu s + z ≥ α for all (s, z) ∈ I 

α 

Tu s + z ≥ α for all (s, z) ∈ I 

α 

uT g(x) +  f (x) ≥ α for all x ∈ X 

α 

L(x, u) ≥ α for all x ∈ X 

α 

infx∈X L(x, u) ≥ α 

α 

∗L (u) ≥ α 

∗=  maximumu L (u) 

s.t. u ≥ 0 . 
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This last expression is exactly the dual problem. Therefore: 

The dual problem corresponds to finding a hyperplane Hu,α that is a lower 
support of I, and whose intersection with L is the highest. This highest value 

∗is exactly the value of the dual problem, namely v . 

7 The Dual is a Concave Maximization Problem 

We start with the primal problem: 

OP : minimumx f(x) 

s.t. 
gi(x) ≤ 0, i  = 1, . . . , m  

x ∈ X, 

We create the Lagrangian: 

TL(x, u) :=  f(x) +  u g(x) 

and the dual function: 

∗L (u) := minimumx f(x) +  uT g(x) 

s.t. x ∈ X 

The dual problem then is: 
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∗D :  maximumu L (u) 

s.t. u ≥ 0 

∗Theorem 7.1 The dual function L (u) is a concave function. 

Proof: Let u1 ≥ 0 and  u2 ≥ 0 be two values of the dual variables, and let 
u = λu1 + (1  − λ)u2, where λ ∈ [0, 1]. Then 

∗L (u) = minx∈X f (x) +  uT g(x) 

T T= minx∈X λ f (x) +  u1 g(x) + (1  − λ) f (x) +  u2 g(x) 

T T≥ λ minx∈X f (x) +  u1 g(x) + (1  − λ) minx∈X (f (x) +  u2 g(x) 

∗ ∗= λL (u1) + (1  − λ)L (u2) . 

∗Therefore we see that L (u) is a concave function. 

8 Weak Duality 

∗Let z ∗ and v be the optimal values of the primal and the dual problems: 
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∗OP : z = minimumx f(x) 

s.t.	 gi(x) ≤ 0, i  = 1, . . . , m  

x ∈ X, 

∗	 ∗D :  v = maximumu L (u) 

s.t.	 u ≥ 0 

Theorem 8.1 Weak Duality Theorem: If ¯	 u isx is feasible for OP and ¯
feasible for D, then 

x) ≥ L ∗(¯f(¯ u) 

In particular, 
∗ ∗ z ≥ v . 

Proof: If ¯ u is feasible for D, then x is feasible for OP and ¯
T	 T x) ≥ f(¯ u x) ≥ min f(x) +  ̄ g(x) =  L ∗(¯f(¯ x) +  ̄ g(¯	 u u) . 

x∈X


∗ ∗
Therefore z ≥ v . 

¯ ¯Corollary 8.1 If x is feasible for OP and u ≥ 0 is feasible for D, and 
∗x) =  L (¯ x and ¯f(¯ u), then ¯ u are optimal solutions of OP and D, respectively. 

∗Corollary 8.2 If z = −∞, then D has no feasible solution. 

∗Corollary 8.3 If v = +∞, then OP has no feasible solution. 

Unlike in linear optimization, strong duality theorem cannot necessarily 
be established for general nonlinear optimization problems. 
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9 Saddlepoint Optimality Criteria 

The pair (¯ u) is called a saddlepoint of the Lagrangian L(x, u) if  ̄x, ¯ x ∈ X, 
ū ≥ 0, and 

L(¯ x, ¯ u) for all x ∈ X and u ≥ 0 .x, u) ≤ L(¯ u) ≤ L(x, ¯

x, ¯Theorem 9.1 A pair  (¯ u) is a saddlepoint of the Lagrangian if and only 
if 

∗x, ¯ u)1. L(¯ u) =  L (¯

2. g(x̄) ≤ 0, and  

¯ x) = 0.3. uT g(¯

Moreover, (¯ u) is a saddlepoint if and only if x and u are, respectively, x, ¯ ¯ ¯
∗optimal solutions of OP and D with no duality gap, that is, z = f (x̄) =  

∗ ∗L (ū) =  v . 

x, ¯Proof: Suppose that (¯ u) is a saddlepoint. By definition, condition (1.) 
must be true. Also, for any u ≥ 0, 

T Tf (¯ u x) ≥ f (¯ x).x) +  ̄ g(¯ x) +  u g(¯

This implies that g(x̄) ≤ 0, since otherwise the above inequality can be 
violated by picking u ≥ 0 appropriately. This establishes (2.). Taking 
u = 0,  we  get  ̄ x) ≥ 0; hence, ¯T g(¯uT g(¯ u x) = 0, establishing (3.). 

Also, note that from the above observations that x and u are feasible ¯ ¯
∗x) =  L(¯ u) =  L (¯for OP and D, respectively, and f (¯ x, ¯ u), which implies 

that they are optimal solutions of their respective problems, and there is no 
duality gap. 

¯ ¯Suppose now that x and u ≥ 0 satisfy conditions (1.)–(3.). Then 
L(¯ u) ≤ L(x, ¯x, ¯ u) for all x ∈ X by (1.). Furthermore, 

L(¯ u) =  f (¯ x, u) ∀u ≥ 0.x, ¯ x) ≥ L(¯
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Thus (¯ u) is a saddlepoint. x, ¯

Finally, suppose x and u are optimal solutions of OP and D with no ¯ ¯
duality gap. Primal and dual feasibility implies that 

L ∗(¯ x) +  ̄ T x) ≤ f(¯u) ≤ f(¯ u g(¯ x). 

Since there is no duality gap, equality holds throughout, implying conditions 
(1.)–(3.), and hence (¯ u) is a saddlepoint. x, ¯

Remark 1 Note that up until this point, we have made no assumptions 
about the functions f(x), g1(x), . . . , gm(x) or the structure of the set X. 

Suppose that our constrained optimization problem OP is a convex pro-
gram, namely f(x), g1(x), . . . , gm(x) are convex functions, and that X = IRn: 

∗OP : z = minimumx f(x) 

s.t. g(x) ≤ 0, 

x ∈ IRn . 

Suppose that ¯ u satisfy the KKT conditions: x together with ¯

(i) ∇f(¯ u x) = 0x) +  ̄ T ∇g(¯

(ii) g(x̄) ≤ 0 

(iii) u ≥ 0¯

(iv) u x) = 0  .¯T g(¯

Then because f(x), g1(x), . . . , gm(x) are convex functions, condition (i) is  
∗equivalent to “L(¯ u) = minx L(x, ¯ u)”. Therefore the KKT condi-x, ¯ u) =  L (¯

tions imply conditions (1.)–(3.) of Theorem 9.1, and so we have: 
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Theorem 9.2 Suppose X = IRn, and  f(x), g1(x), . . . , gm(x) are convex dif-
ferentiable functions, and x together with u satisfy the KKT conditions. ¯ ¯
Then ¯ u are optimal solutions of OP and D, with no duality gap. x and	 ¯

10	 Strong Duality for Convex Optimization Prob-
lems 

We now assume throughout this section that X is an open convex set and 
f(x), g1(x), . . . , gm(x) are convex functions. In this section we will explore 
and state sufficient conditions that will guarantee that the dual problem will 
have an optimal solution with no duality gap. 

10.1	 The Perturbation Function and the Strong Duality The-
orem 

We begin with the concept of perturbing the RHS vector of the optimization 
problem OP. Our standard optimization problem OP is: 

∗OP :	 z = minimumx f(x) 

s.t. gi(x) ≤ 0, i  = 1, . . . , m  

x ∈ X .  

For a given vector y = (y1, . . . , ym), we perturb the RHS and obtain the new 
problem OPy : 

∗OPy :	 z (y) = minimumx f(x) 

s.t. gi(x) ≤ yi, i  = 1, . . . , m  

x ∈ X .  

∗We call OPy the perturbed primal problem and z (y) the perturbation func-
∗ ∗tion. Note that our original problem OP is just OP0 and that z = z (0). 
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Next define 

Y := {y ∈ IRm | there exists x ∈ X for which g(x) ≤ y} . 

Lemma 10.1 Y is a convex set, and z(y) is a convex function whose do-
main is Y . 

1Proof: Let y , y2 ∈ Y and let y3 = λy1 + (1  − λ)y2 where λ ∈ [0, 1]. Let 
1 2x , x2 ∈ X satisfy y1 ≥ g(x1), y2 ≥ g(x2) and  let  x3 = λx1 + (1  − λ)x . 

Then g(x3) ≤ y3, whereby y3 ∈ Y , proving that Y is convex. 

1To show that z(y) is a convex function, let y , y2, y3 be as given above. 
The aim is to show that z(y3) ≤ λz(y1) + (1  − λ)z(y2). First assume that 
z(y1) and  z(y2) are finite. For any ε >  0, there exist x1 and x2 for which 
x1, x2 ∈ X, g(x1) ≤ y1, g(x2) ≤ y2, and  |z(y1)−f (x1)| ≤ ε, |z(y2)−f (x2)| ≤

2ε. Now  let  x3 = λx1 + (1  − λ)x . Then g(x3) ≤ λg(x1) + (1  − λ)g(x2) ≤ 
λy1 + (1  − λ)y2 = y3, and  

z(y 3) ≤ f (x 3) ≤ λf (x 1) + (1  − λ)f (x 2) ≤ λ(z(y 1) +  ε) + (1  − λ)(z(y 2) +  ε) 

= λz(y 1) + (1  − λ)z(y 2) +  ε .  

As this is true for any ε >  0, z(y3) ≤ λz(y1) + (1  − λ)z(y2), and so z(y) 
is convex. If z(y1) and/or z(y2) is not finite, the proof goes through with 
appropriate modifications. 

The perturbation function z(y) is illustrated in Figure 2. 

Corollary 10.1 1. z(y) is continuous on intY 

2. z 
� 
(y; d) exists wherever z(y) is finite 

3. for every ȳ ∈ intY there exists a subgradient of z(·) at y = ȳ 

4. the subgradient of z(y) at y = ȳ is unique if and only if z(·) is differ-
entiable at y = ȳ. 
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z 

y 

-u 

H(u,α) 

z(y) 

0 

Figure 2: The perturbation function z(y). 

Theorem 10.1 (Strong Duality Theorem) Suppose that X is an open 
convex set and f(x), g1(x), . . . , gm(x) are convex functions. Under the hy-
pothesis that ∂z(0) �= ∅, then: 

1. D attains its otimum at some ū ≥ 0. 

2. u is an optimal solution of D if and only if (−¯¯ u) ∈ ∂z(0). 

∗ ∗3. z = v 

4. Let ū be any dual optimal solution. The set of primal optimal solutions 
(if any) is characterized as the intersection S1 ∩ S2, where: 

TS1 = {x ∈ X | g(x) ≤ 0, ū g(x) = 0}
∗S2 = {x ∈ X | L(x, ¯ u)} .u) =  L (¯

Proof: Since ∂z(0) � u ∈ ∂z(0). Then = ∅, let  −¯

z(y) ≥ z(0) − ū T (y − 0). 
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iNoting that z(y) is non-increasing in y, let  e denote the ith unit vector, 
and observe: 

u −T (e i − 0) = z(0) − ¯z(0) ≥ z(e i) ≥ z(0) − ¯ ui, 

which shows that ¯ ≥ 0. Thus ¯u u is feasible for D. 

Next, note that for any x ∈ X, 

z(g(x)) = inf ̃ f(˜x x) ≤ f(x) 
s.t. g(x̃) ≤ g(x) 

˜ ∈ Xx

which implies that 

f(x) ≥ z(g(x)) ≥ z(0) − ū T (g(x) − 0), 

that is, 
T z(0) ≤ f(x) +  ̄u g(x). 

Thus 
∗ T u u) .z = z(0) ≤ inf {f(x) +  ̄ g(x)} = L ∗(¯

x∈X

∗ ∗ ∗ ∗By weak duality, however, z ≥ L (¯ u) and  so  ̄ is optimal u), so z = L (¯ u
for D. This shows (i) and (iii) and (⇐) of (ii). 

uWe now show (⇒) of (ii). Suppose ¯ is optimal for D. Then from (iii) 
we have 

Tinf (x) +  ̄ u) =  z ∗ = z(0) . 
x∈X

{f u g(x)} = L ∗(¯

uThus, f(x) +  ̄ T g(x) ≥ z(0) for every x ∈ X. 

For any given fixed y, if  x ∈ X and g(x) ≤ y, then 

T T u uf(x) +  ̄ y ≥ f(x) +  ̄ g(x) ≥ z(0). 

Thus for fixed y, 

¯ uuT y + z(y) =  infx f(x) +  ̄ T y ≥ z(0) , 
s.t. g(x) ≤ y 

x ∈ X 
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that is, 
z(y) ≥ z(0) − ū T (y − 0), 

and so ū ∈ ∂z(0). This completes (ii). 

We now show (iv). Suppose x ∈ S1 ∩ S2 . Then u ≥ 0, x satisfies¯	 ¯ ¯
∗ u) =  L(¯ u), and ¯T g(¯ x, ¯L (¯ x, ¯ u x) = 0, whereby (¯ u) satisfy the conditions of 

Theorem 9.1 and hence x̄ is optimal for the primal problem OP. Conversely, 
∗ ∗suppose x̄ is optimal for the primal problem. Then z = v , and so again 

∗invoking Theorem 9.1 we have g(¯ u) =  L(¯ u), and ¯ x) = 0.  x) ≤ 0, L (¯ x, ¯ uT g(¯
Therefore x̄ ∈ S1 ∩ S2. 

10.2 Stability 

The only hypothesis of the Strong Duality Theorem is that z(y) has a sub-
gradient at y = 0, or equivalently, ∂z(0) �= ∅. We call an optimization 
problem OP stable if ∂z(0) �= ∅. An equivalent and generally more useful 
characterization of stability is given in the following: 

Lemma 10.2	 Let h(y) :  Y → IR ∪ {−∞, +∞} be a convex function. If h(y) 
y, then ∂h(¯ = ∅ if and only if there exists a positive scalar is finite at y = ¯ y) �

M for which: 

h(ȳ) − h(y) ≤ M for all y ∈ Y, y � y .= ¯‖y − ȳ‖ 

y) � γ ∈ ∂h(¯Proof: First suppose that ∂h(¯ = ∅. Let  ̄ y). Then 

y) +  ̄h(y) ≥ h(¯ γT (y − ȳ) for all y ∈ Y, 

and so h(y) > −∞ for all y ∈ Y . Let  M = ‖γ̄‖. Then 

y) − h(y) γT (¯ γ‖ ‖ȳ − y‖h(¯	 ¯ y − y) ‖¯≤ ≤ = ‖γ̄‖ = M. ‖y − ȳ‖ ‖y − ȳ‖ ‖y − ȳ‖ 

To prove the reverse implication, we suppose that there exists a scalar M >  0 
satisfying the stated inequality. Then h(y) > −∞ for all y ∈ Y . Define the 
sets 

S = {(y, z) ∈ Rm+1 | y ∈ Y and h(y) +  z ≤ h(ȳ)} 



25 

and 
m+1T = {(y, z) ∈ R | M‖y − ȳ‖ < z} . 

It is easy to see that S and T are convex sets, and that if (y, z) ∈ S, then 
M‖y− ȳ‖ ≥ h(¯ ∈ T . As  S∩T = ∅, there exists a y) −h(y) ≥ z, so that (y, z) /

γ, ρ) �hyperplane H separating S and T . That is, there exists (¯ = (0, 0) and 
α such that 

(y, z) ∈ S ⇒ γ̄T y + ρz ≤ α 

and 
(y, z) ∈ T ⇒ γ̄T y + ρz ≥ α .  

In particular (ȳ, 0) ∈ S which implies that 

γ̄T ȳ ≤ α .  

y, θ) ∈ T for any θ >  0 which implies that ¯Also (¯ γT ȳ + ρθ > α which implies 
γT ȳ ≥ α, and  so  ̄that ¯ γT ȳ = α. This also implies that ρ ≥ 0. 

If ρ >  0 we can assume without loss of generality that ρ = 1.  Now  for  
any y ∈ Y , let  z = h(ȳ) − h(y). Then (y, z) ∈ S and so 

γ̄T y + h(¯ γT ¯y) − h(y) ≤ ¯ y ,  

and so 
y) +  ̄ γ ∈ ∂h(¯h(y) ≥ h(¯ γT (y − ȳ), so ¯ y) , 

which proves the result in this case. 

It remains to prove that ρ = 0 is not possible. To see this, assume that 
ρ = 0. For any y ∈ Y , let  z = M‖y − ȳ‖ + 1. Then (y, z) ∈ T and so 

γT y ≥ α = ¯γ̄T y + ρz = ¯ γT ȳ. As this is true for any y ∈ Y , it follows that 
γ̄ = 0 and so (γ̄, ρ) = (0, 0), which is a contradiction. 

Therefore, we can equivalently say that an optimization problem OP 
∗is stable if z = z(0) is finite and there is a scalar M >  0 for which the 

perturbation function z(y) satisfies: 

z(0) − z(y) ≤ M for all y ∈ Y, y �= 0  . ‖y‖ 

This alternative characterization of stability says that OP is stable if the 
function z(y) does not decrease infinitely steeply in any direction away from 
y = 0.  
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10.3 Slater Points and Stability 

Now consider the problem: 

∗OPE : z = minimumx f(x) 

s.t. g(x) ≤ 0 

Ax − b = 0  

x ∈ IRn , 

where we assume here that A has full row rank and f(x), g1(x), . . . , gm(x) 
are convex functions as before. A point x0 is called a Slater point of OPE if 
x0 satisfies: 

• g(x0) < 0 and  

• Ax0 = b . 

We now state and prove the following result which shows that the exis-
tence of a Slater point in a convex problem implies stability, which in turn 
implies strong duality. 

Lemma 10.3 Suppose that f(x), g1(x), . . . , gm(x) are all convex functions, 
∗that A has full row rank, and problem OPE has a Slater point. If z is finite, 

then problem OPE is stable. 

Proof: We can rewrite OPE as OPE0 where OPEy is: 

∗OPEy : z (y) = minimumx f(x) 

s.t. g(x) ≤ y 

x ∈ X ,  

where X = {x ∈ IRn | Ax = b}. 
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We are concerned with finding an M such that


z(0) − z(y)
≤ M .  ‖y‖ 

Let h(ε) =  z(ε, . . . , ε) =  z(y) where y = (ε, . . . , ε). As z(·) is convex, so is 
h(ε). There exists ε̄ >  0 such that |ε| ≤ ε̄ implies g(x0) < (ε, . . . , ε), and so 
x0 is feasible for OPEy =OPE(ε,...,ε), whereby 

h(ε) =  z(ε, . . . , ε) ≤ f(x 0). 

∗Also z ∗	 = h(0) ≤ 1 h(¯ ε) +  1 f(x0). Thus, h(¯ε) +  1 h(−ε̄) ≤ 1 h(¯	 ε) ≥ 2z −2	 2 2 2 
f(x0) > −∞, and therefore |ε| ≤  ̄ε implies h(ε) ≥ h(ε̄) > −∞, so  h(ε) is  
convex and finite for all ε satisfying |ε| ≤ ε̄. Therefore, h(ε) has a subgradient 
at ε = 0, i.e., there is a K such that 

h(ε) ≥ h(0) + K(ε − 0). 

Let M = |K|, and for any y define ỹ = maxi |yi|. We  have  

z(0) − z(y) h(0) − h(ỹ) −Kỹ Mỹ≤ ≤ ≤ ≤ M .  ‖y‖ ‖y‖ ‖y‖ ‖y‖ 

Thus OPE is stable. 

11 Duality Strategies 

11.1	 Dualizing “Bad” Constraints 

Suppose we wish to solve: 

TOP : minimumx c x 

s.t.	 Ax ≤ b 

Nx  ≤ g .  
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Suppose that optimization over the constraints “Nx  ≤ g” is easy, but 
that the addition of the constraints “Ax ≤ b” makes the problem much more 
difficult. This can happen, for example, when the constraints “Nx  ≤ g” are  
network constraints, and when “Ax ≤ b” are non-network constraints in the 
model. 

Let

X = {x | Nx  ≤ g}


and re-write OP as: 

TOP : minimumx c x 

s.t. Ax ≤ b 

x ∈ X .  

The Lagrangian is: 

TL(x, u) =  c x + u T (Ax − b) =  −u T b + (c T + u T A)x ,  

and the dual function is: 

∗L (u) := minimumx −uT b + (cT + uT A)x 

s.t. x ∈ X ,  

which is 

∗L (u) := minimumx −uT b + (cT + uT A)x 

s.t. Nx  ≤ g .  
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∗Notice that L (u) is easy to evaluate for any value of u, and  so  we  can  
attempt to solve OP by designing an algorithm to solve the dual problem: 

∗D :  maximumu L (u) 

s.t. u ≥ 0 . 

11.2 Dualizing A Large Problem into Many Small Problems 

Suppose we wish to solve: 

2OP : minimum 1 2 (c1)T x1 +(c2)T xx ,x

B1 1 2s.t. x +B2x ≤ d 

A1 1x ≤ b1 

A2 2x ≤ b2 

Notice here that if it were not for the constraints “B1x1 + B2x2 ≤ d”, 
that we would be able to separate the problem into two separate problems. 
Let us dualize on these constraints. Let: 

1X = (x , x  2) | A1 x 1 ≤ b1, A2 x 2 ≤ b2 

and re-write OP as: 

2OP : minimumx1,x2 (c1)T x1 +(c2)T x

B1 1 2s.t. x +B2x ≤ d 

(x1, x2) ∈ X 
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The Lagrangian is: 

L(x, u) = (c1)T x1 + (c2)T x2 + uT (B1x1 + B2x2 − d) 

2= −uT d + ((c1)T + uT B1)x1 + ((c2)T + uT B2)x , 

and the dual function is: 

∗ 2L (u) =  minimum 1 ,x2 −uT d + ((c1)T + uT B1)x1 + ((c2)T + uT B2)xx

s.t. (x1, x2) ∈ X 

which can be re-written as: 

∗L (u) =  −uT d 

1+ minimumA1x1≤b1 ((c1)T + uT B1)x

2+ minimumA2x2≤b2 ((c2)T + uT B2)x

∗Notice once again that L (u) is easy to evaluate for any value of u, and  
so we can attempt to solve OP by designing an algorithm to solve the dual 
problem: 

∗D :  maximumu L (u) 

s.t. u ≥ 0 



31 

12	 Illustration of Lagrange Duality in Discrete Op-
timization 

In order to suggest the computational power of duality theory and to illus-
trate duality constructs in discrete optimization, let us consider the simple 
constrained shortest path problem portrayed in Figure 3. 

2 
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1 

1 1 
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1 
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3 
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Figure 3: A constrained shortest path problem. 

The objective in this problem is to find the shortest (least cost) path 
from node 1 to node 6 subject to the constraint that the chosen path uses 
exactly four arcs. In an applied context the network might contain millions 
of nodes and arcs and billions of paths. For example, in one application 
setting that can be solved using the ideas considered in this discussion, each 
arc would have both a travel cost and travel time (which for our example 
is 1 for each arc). The objective is to find the least cost path between a 
given pair of nodes from all those paths whose travel time does not exceed 
a prescribed limit (which in our example is 4 and must be met exactly). 

Table 1 shows that only three paths, namely 1-2-3-4-6, 1-2-3-5-6, and 
1-3-5-4-6 between nodes 1 and 6 contain exactly four arcs. Since path 1-3-
5-4-6 has the least cost of these three paths (at a cost of 5), this path is the 
optimal solution of the constrained shortest path problem. 
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Path Number of Arcs Cost 
1-2-4-6 3 3 
1-3-4-6 3 5 
1-3-5-6 3 6 

1-2-3-4-6 4 6 
1-2-3-5-6 4 7 
1-3-5-4-6 4 5 

1-2-3-5-4-6 5 6 

Table 1: Paths from node 1 to node 6. 

Now suppose that we have available an efficient algorithm for solving 
(unconstrained) shortest path problems (indeed, such algorithms are readily 
available in practice), and that we wish to use this algorithm to solve the 
given problem. 

Let us first formulate the constrained shortest path problem as an integer 
program: 
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CSPP : 

z ∗ = minxij x12 +x13 +x23 +x24 +3x34 +2x35 +x54 +x46 +3x56 

s.t. x12 +x13 +x23 +x24 +x34 +x35 +x54 +x46 +x56 = 4  

x12 +x13 = 1  

x12 −x23 −x24 = 0  

x13 +x23 −x34 −x35 = 0  

x24 +x34 +x54 −x46 = 0  

x35 −x54 −x56 = 0  

x46 +x56 = 1  

xij ∈ {0, 1} for all xij . 

In this formulation, xij is a binary variable indicating whether or not 
arc i − j is chosen as part of the optimal path. The first constraint in this 
formulation specifies that the optimal path must contain exactly four arcs. 
The remaining constraints are the familiar constraints describing a shortest 
path problem. They indicate that one unit of flow is available at node 1 and 
must be sent to node 6; nodes 2, 3, 4, and 5 act as intermediate nodes that 
neither generate nor consume flow. Since the decision variables xij must 
be integer, any feasible solution to these constraints traces out a path from 
node 1 to node 6. The objective function determines the cost of any such 
path. 

Notice that if we eliminate the first constraint from this problem, then 
the problem becomes an unconstrained shortest path problem that can be 
solved by our available algorithm. Suppose, for example, that we dualize 
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the first (the complicating) constraint by moving it to the objective function 
multiplied by a Lagrange multiplier u. The objective function then becomes: 

⎛ ⎞ 

⎠minimumxij cij xij + u ⎝4 − xij 
i,j i,j 

and collecting the terms, the modified problem becomes: 

∗L (u) = minxij (1 − u)x12 + (1  − u)x13 + (1  − u)x23


+(1 − u)x24 + (3  − u)x34 + (2  − u)x35


+(1 − u)x54 + (1  − u)x46 + (3  − u)x56 + 4u


s.t. 

x12 +x13 = 1  

x12 −x23 −x24 = 0  

x13 +x23 −x34 −x35 = 0  

x24 +x34 +x54 −x46 = 0  

x35 −x54 −x56 = 0  

x46 +x56 = 1  

xij ∈ {0, 1} for all xij . 

∗Let L (u) denote the optimal objective function value of this problem, 
for any given multiplier u. 

Notice that for a fixed value of u, 4u is a constant and the problem 
becomes a shortest path problem with modified arc costs given by 

= cij − u .cij 
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Note that for a fixed value of u, this problem can be solved by our 
available algorithm for the shortest path problem. Also notice that for any 

∗ ∗fixed value of u, L (u) is a lower bound on the optimal objective value z to 
the constrained shortest path problem defined by the original formulation. 
To obtain the best lower bounds, we need to solve the Lagrangian dual 
problem: 

∗ ∗D :  v = maximumu L (u) 

< 
s.t. u > 0 

To relate this problem to the earlier material on duality, let the decision 
set X be given by the set of feasible paths, namely the solutions of: 

x12 +x13 = 1  

x12 −x23 −x24 = 0  

x13 +x23 −x34 −x35 = 0  

x24 +x34 +x54 −x46 = 0  

x35 −x54 −x56 = 0  

x46 +x56 = 1  

xij ∈ {0, 1} for all xij . 

Of course, this set will be a finite (discrete) set. That is, P is the set of 
paths connecting node 1 to node 6. Suppose that we plot the cost z and the 
number of arcs r used in each of these paths, see Figure 4. 
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Figure 4: Resources and costs. 

We obtain the seven dots in this figure corresponding to the seven paths 
listed in Table 1. Now, because our original problem was formulated as a 
minimization problem, the geometric dual is obtained by finding the line 
that lies on or below these dots and that has the largest intercept with 
the feasibility line. Note from Figure 4 that the optimal value of the dual is 
∗ v = 4.5, whereas the optimal value of the original primal problem is z ∗ = 5.  

In this example, because the cost-resource set is not convex (it is simply the 
seven dots), we encounter a duality gap. In general, integer optimization 
models will usually have such duality gaps, but they are typically not very 
large in practice. Nevertheless, the dual bounding information provided by 
∗ ∗ v ≤ z can be used in branch and bound procedures to devise efficient 

algorithms for solving integer optimization models. 

It might be useful to re-cap. The original constrained shortest path 
problem might be very difficult to solve directly (at least when there are 
hundreds of thousands of nodes and arcs). Duality theory permits us to 
relax (eliminate) the complicating constraint and to solve a much easier 
Lagrangian shortest path problem with modified arc costs cij 

� 
= cij − u. 

∗Solving for any u generates a lower bound L (u) on the  value  z ∗ to the 
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∗original problem. Finding the best lower bound maxu L (u) requires that 
we develop an efficient procedure for solving for the optimal u. Duality 
theory permits us to replace a single and difficult problem (in this instance, a 
constrained shortest-path problem) with a sequence of much easier problems 
(in this instance, a number of unconstrained shortest path problems), one 
for each value of u encountered in our search procedure. Practice on a 
wide variety of problem applications has shown that the dual problem and 
subsequent branch and bound procedures can be extremely effective in many 
applications. 

To conclude this discussion, note from Figure 4 that the optimal value for 
u in the dual problem is u = 1.5. Also note that if we subtract u = 1.5 from  
the cost of every arc in the network, then the shortest path (with respect 
to the modified costs) has cost −1.5. Both paths 1-2-4-6 and 1-2-3-5-4-6 
are shortest paths for this modified problem. Adding 4u = 4  × 1.5 = 6  
to the modified shortest path cost of −1.5 gives a value of 6 − 1.5 = 4.5 

∗which equals v . Note that if we permitted the flow in the original problem 
to be split among multiple paths (i.e., formulate the problem as a linear 
optimization problem instead of as an integer optimization problem), then 
the optimal solution would send one half of the flow on both paths 1-2-4-6 
and 1-2-3-5-4-6 and incur a cost of: 

1 1 × 3 +  × 6 = 4.5 .
2 2 

In general, the value of the dual problem is always identical to the value of 

the original (primal) problem if we permit convex combinations of primal 
solutions. This equivalence between convexification and dualization is easy 
to see geometrically. 

13 Conic Duality 

13.1 Cones and Conic Convex Optimization 

We say that K ⊂ IRn is a convex cone if: 
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x, y ∈ K and α, β ≥ 0 ⇒ αx + βy ∈ K .  

Some examples of convex cones that are useful to us are: 

• IRn := {x ∈ IRn | xj ≥ 0, j  = 1, . . . , n}+ 

n	 n 2• Q = x ∈ IRn | x1 ≥ j=2 xj 

• IRn 

• {0}n ∈ IRn 

• Sk×k = {X ∈ Sk×k | vT Xv  ≥ 0 for all v ∈ IRn}+ 

• K = K1 ×K2 ×· · ·×Kl where Kj is a closed convex cone, j = 1, . . . , l  

We consider the following convex optimization problem in conic form: 

∗	 TCP : z = minimumx c x 

s.t.	 Ax = b 

x ∈ K ,  

where K is a closed convex cone. 

13.2 Dual Cones and the Conic Dual Problem 

∗Let K denote the dual cone of the closed convex cone K ⊂ IRn, defined by: 

∗	 TK := {y ∈ IRn | y x ≥ 0 for all x ∈ K} . 

Proposition 13.1 If K is a nonempty closed convex cone, then K∗ is a 
nonempty closed convex cone. 
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∗ ∗ ∗Proof: Notice that 0 ∈ K , which shows that K �
∗ 1 ∗ 

= ∅. If  y1, y2 ∈ K , then 
for every x ∈ K and every α, β ≥ 0 we have (αy1 + βy2)T x ≥ 0, which shows 
that K is a convex cone. Suppose that y , y2 , . . .  ∈ K and limj→∞ y

j = ȳ. 
∗ yT x ≥ 0, whereby ¯Then for every x ∈ K we have (yj )T x ≥ 0 and  so  ̄ y ∈ K , 

which shows that K∗ is closed. 

∗)∗Proposition 13.2 If K is a nonempty closed convex cone, then (K = K. 

Proof: We have 

K ∗ := {y ∈ IRn | y T x ≥ 0 for all x ∈ K} 

and 
T(K ∗)∗ := {z ∈ IRn | z y ≥ 0 for all y ∈ K ∗ } . 

∗For every x ∈ K we have xT y ≥ 0 for all y ∈ K , which shows that 
∗)∗ ∗)∗ ∗)∗ K ⊂ (K . Suppose that K �= (K . Then there exists z̄ ∈ (K for 

¯ ∈ K. Since  z /which z / ¯ ∈ K and K is a closed convex set, there exists a 
hyperplane that separates z̄ from K. Thus there exists y �= 0 and α for 

T ¯which y z <  α  and yT x > α  for all x ∈ K. But since K is a cone this 
∗ T ¯means that α = 0,  and  so  y ∈ K . However, y z <  α  = 0, which implies 

∗)∗that ¯ ∈ (Kz / ∗)∗, which is a contradiction. Therefore (K = K. 

Here are the dual cones associated with the above examples: 

( )∗ • IRn = IRn 
+ + 

n• (Qn)∗ = Q

n• (IRn)∗ = {0}
• ({0}n)∗ = IRn 

( )∗

= Sn×n
• Sk×k 

+ + 

∗ ∗ ∗ • (K1 × K2 × · · · × Kl)
∗ = K1 × K2 × · · · × Kl 

We form the Lagrangian: 
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TL(x, u) :=  c x + u T (b − Ax) . 

We define the dual function by: 

∗ TL (u) := min  L(x, u) = min  c x + u T (b − Ax) . 
x∈K x∈K 

Then notice that 

∗L (u) =  minx∈K cT x + uT (b − Ax) 

= uT b + minx∈K (cT − uT A)x 

⎧ ∗ ⎪ bT u if c − AT u ∈ K⎨ 
= ⎪ ∗⎩ −∞ if c − AT u /∈ K . 

From this we write down the dual problem: 

∗CD : v = maximumu,s bT u 

s.t. AT u + s = c 

∗ s ∈ K . 

Proposition 13.3 (Weak Duality) If x is feasible for CP and (u, s) is 
∗ ∗feasible for CD, then cT x ≥ bT u. Consequently, z ≤ v .


Proof: If x is feasible for CP and (u, s) is feasible for CD, then cT x − bT u =

∗ uT Ax + sT x − bT u = sT x ≥ 0 because x ∈ K and s ∈ K . 

Remark 1 The conic dual of CD is CP. 
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13.3 Slater Points and Strong Duality 

A Slater point for CP is a point x0 that satisfies: 

Ax0 = b and x 0 ∈ intK .  

Theorem 2 (Strong Duality Theorem) If CP has a Slater point, then 
∗ ∗ v = z and the dual attains its optimum. 

Proof: Define the following set: 

∗ S := (w, λ, α) | there exists x for which Ax = b − w, x + λ ∈ K, c T x < z  + α , 

and notice that S is a nonempty convex set. Also notice that (w, λ, α) =  
(0, 0, 0) /∈ S, and so there is a hyperplane separating (0, 0, 0) from S. This 
means that there exists (u, s, θ) �= 0 for which 

T u w + s T λ + θα ≥ 0 for all (w, λ, α) ∈ S .  

This is the same as 

T ∗ u T (b − Ax) +  s T (v − x) +  θ(c x − z + δ) ≥ 0 for all x, v ∈ K, δ > 0 . 

Rearranging terms we have 

T u T b + (θc − AT u − s)T x + s v + θ(δ − z ∗) ≥ 0 for all x, v ∈ K, δ > 0 . 

This then implies that θ ≥ 0, AT u+ s = θc and s ∈ K∗. If  θ >  0 then we can 
assume (by rescaling if necessary) that θ = 1, whereby we see that (u, s) is  

∗feasible for the dual problem and in also from the above that bT u − z ≥ −δ 
∗ ∗for all δ >  0. This in turn implies that v ≥ bT u ≥ z , which by weak 

∗ ∗duality, shows that z = v and that (u, s) is an optimal solution of the dual 
problem. 

T 0If instead θ = 0 then we have AT u + s = 0. Therefore 0 ≤ s x = 
−uT Ax0 = −uT b ≤ 0, and so sT x0 = 0. Then since x0 ∈ intK and there 
exists ε >  0 for which x0 − εs ∈ K, we  have  0  ≤ sT (x0 − εs) =  −εsT s 
which implies that s = 0. But then u = 0 since we can assume without 
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loss of generality that A has full row rank, and then (u, s, θ) = 0, which is a 
contradiction. Thus θ >  0 and the proof is complete. 

A Slater point for CD is a point (u0, s0) that satisfies: 

0	 ∗ AT u 0 + s = c and s 0 ∈ intK . 

∗ ∗Corollary 3 If CD has a Slater point, then v = z and the primal attains 
its optimum. 

∗Corollary 4 If CP and CD each have a Slater point, then v = z ∗ and the 
primal and dual problems attain their optima. 

14 Duality Theory Exercises 

1. Consider the problem 
√

(P) minx f (x) =  − x 

s.t. g(x) =  x ≤ 0 

x ∈ X = [0, ∞) . 

Formulate the dual of this problem. 

2. Consider the problem 

T(P) minx c x 

s.t. b − Ax ≤ 0 

x ≥ 0 . 

a.	 Formulate a dual based on g(x) =  b − Ax, X = {x ∈ IRn : x ≥ 
0}. 
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b. Formulate a dual based on g(x) = (ḡ(x), g̃(x)) = (b − Ax,−x) 
and X = IRn . 

3. Consider the two equivalent problems 

1 T(P 1) minx ‖x‖ (P 2) minx x x2 
b − Ax ≤ 0 b − Ax ≤ 0 
x ∈ IRn x ∈ IRn . 

Derive the dual problems (D1) and  (D2) of (P 1) and  (P 2). What is 
the relation between (D1) and  (D2)? 

4. Let P be given as a function of the parameter y: 

Py 
∗z (y) = min  −x1 + 5x2 − 7x3 

s.t. x1 − 3x2 + x3 − y ≤ 0, 
x ∈ X = {x ∈ IR3 : xj = 0 or 1, j  = 1, 2, 3}. 

∗Construct the dual Dy for all y ∈ [0, 8]. Graph the function z (y) in  
(y, z) space. For what values of y is there a duality gap? 

5. Consider the problem 

(P) minx c
T x + 1 xT Qx2 

s.t. b − Ax ≤ 0 . 

where Q is symmetric and positive semidefinite. 

a. What is the dual? 

b. Show that the dual of the dual is the primal. 

6. Consider the program 

(P ) minx f(x) 

s.t.	 gi(x) ≤ 0 , i  = 1, . . . , m  

x ∈ X ,  
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where f (·) and  gi(·) are convex functions and the set X is a convex 
set. Consider the matrix below: 

Property of D 
v ∗ finite v ∗ finite v ∗ finite v ∗ finite 

Property of P attained not attained attained not attained v ∗ = +∞ v ∗ = −∞ 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ v = z v = z v < z  v < z  

z ∗ finite 
P stable 

1 5 9 13 17 21 

z ∗ finite 
P not stable 

2 6 10 14 18 22 

z ∗ = −∞ 3 7 11 15 19 23 
z ∗ = +∞ 

(infeasible) 
4 8 12 16 20 24 

Prove by citing relevant theorems from the notes, etc., that the following 
cases cannot occur: 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, and 21. 

x, ¯7. Let X ⊂ IRn , Y ⊂ IRm , f (x, y) : (X × Y ) → IR. A saddlepoint (¯ y) of  
f (x, y) is a point (¯ y) ∈ X × Y such that x, ¯

f (¯ x, ¯x, y) ≤ f (¯ y) ≤ f (x, ȳ), 

for any x ∈ X and y ∈ Y . Prove the equivalence of the following three 
results: 

(a) There exists a saddlepoint (¯ y) of  f (x, y).x, ¯
x ∈ X, ȳ ∈ Y for which maxy∈Y f (¯(b) There exists ¯	 x, y) = minx∈x f (x, ȳ) .  

(c) minx∈X (maxy∈Y f (x, y)) = maxy∈Y (minx∈X f (x, y)). 

8. Consider the logarithmic barrier problem: 
n 

T ∑ 
P (θ) : minimizex c x − θ ln(xj ) 

j=1 

s.t.	 Ax = b 
x >  0 . 

Compute a dual of P (θ) by dualizing on the constraints “Ax = b.” What is 
the relationship between this dual and the dual of the original linear program 
(without the logarithmic barrier function)? 
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9. Consider the program 
n 

P (γ) : minimizex − 
∑ 

ln(xj ) 
j=1 

s.t.	 Ax = b 
Tc x = γ 

x >  0 . 

TCompute a dual of P (γ) by dualizing on the constraints Ax = b and c x = γ. 
What is the relationship between the optimality conditions of P (θ) in the  
previous exercise and P (γ)? 

Consider the program 
n 

P (δ) : minimizex − ln(xj ) − ln(δ − cT x) 
j=1 

s.t.	 Ax = b 
cT x < δ  
x >  0 . 

Compute a dual of P (δ) by dualizing on the constraints Ax = b. What is the 
relationship between the optimality conditions of P (δ) and  P (θ) and  P (γ) of  
the previous two exercises? 

10. Consider the conic form problem CP of convex optimization 

∗	 TCP : z = minimumx c x 

s.t. Ax = b 

x ∈ K ,  

and the associated conic dual problem: 

∗CD : v = maximumu,s bT u 

s.t. AT y + s = c 

∗ s ∈ K , 

where K is a closed convex cone. Show that “the dual of the dual is the 
primal,” that is, that the conic dual of CD is CP. 



46 

11. Prove Corollary 3, which asserts that the existence of Slater point for the 
conic dual problem guarantees strong duality and that the primal attains its 
optimum. 

12. Consider the following “minimax” problems: 

min max φ(x, y) and  max  min φ(x, y) 
x∈X y∈Y y∈Y x∈X 

where X and Y are nonempty compact convex sets in IRn and IRm, respec-
tively, and φ(x, y) is convex in  x for fixed y, and is concave in y for fixed 
x. 

(a) Show that minx∈X maxy∈Y φ(x, y) ≥ maxy∈Y minx∈X φ(x, y) in  
the absence of any convexity/concavity assumptions on X, Y , and/or 
φ(·, ·). 

(b) Show that f(x) := maxy∈Y φ(x, y) is a convex function in x and that 
g(y) := minx∈X φ(x, y) is a concave function in y. 

(c) Use a separating hyperplane theorem to prove: 

min max φ(x, y) = max  min φ(x, y) . 
x∈X y∈Y y∈Y x∈X 

13. Let X and Y be nonempty sets in IRn, and  let  f(·), g(·) : IRn → IR. Consider 
∗ ∗the following conjugate functions f (·) and  g (·) defined as follows: 

∗ tf (u) :=  inf  
x∈X

{f(x) − u x} , 

and 
∗ t g (u) :=  sup  {f(x) − u x} . 

x∈X

∗ ∗(a) Construct a geometric interpretation of f (·) and  g (·). 
∗ ∗(b) Show that f (·) is a concave function on X := {u | f∗(u) > −∞}, and  

∗ ∗ g (·) is a convex function on Y := {u | g ∗(u) < +∞}. 
(c) Prove the following weak duality theorem between the conjugate primal 

problem inf{f(x) − g(x) | x ∈ X ∩ Y } and the conjugate dual problem 
∗ ∗ ∗ ∗sup{f (u) − g (u) | u ∈ X ∩ Y }: 

∗ ∗inf{f(x) − g(x) | x ∈ X ∩ Y } ≥  sup{f ∗(u) − g (u) | u ∈ X ∗ ∩ Y } . 

(d) Now suppose that f(·) is a convex function, g(·) is a concave function, 
intX ∩ intY �= ∅, and  inf{f(x) − g(x) | x ∈ X ∩ Y } is finite. Show 

∗ ∗that equality in part (13c) holds true and that sup{f (u) − g (u) | u ∈ 
∗ ∗ ∗X ∩ Y } is attained for some u = u . 
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(e) Consider a standard inequality constrained nonlinear optimization prob-
lem using the following notation: 

OP : minimumx f̄(x) 

s.t.	 ḡ1(x) ≤ 0, 
. . . 

ḡm(x) ≤ 0, 

¯ x ∈ X .  

By suitable choices of f(·), g(·),X, and  Y , formulate this problem as 
an instance of the conjugate primal problem inf{f(x) − g(x) | x ∈ 
X ∩ Y }. What is the form of the resulting conjugate dual problem 

∗	 ∗ ∗ ∗sup{f	 (u) − g (u) | u ∈ X ∩ Y }? 

14. Consider the following problem: 

∗ z = min  x1 + x2 
2 2s.t.	 x1 + x2 = 4, 

−2x1 − x2 ≤ 4 . 

(a) Formulate the Lagrange dual of this problem by incorporating both 
constraints into the objective function via multipliers u1, u2. 

∗(b) Compute the gradient of L (u) at the  point  ̄u = (1, 2). 

(c) Starting from ū = (1, 2), perform one iteration of the steepest ascent 
method for the dual problem. In particular, solve the following problem 

∗where d ̄= ∇L (ū): 

maxα L (¯∗ u + αd̄) 
¯s.t.	 u + αd ̄ ≥ 0 , 
α ≥ 0 . 
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