

Devdatt Dubhashi
Dept. Of Computer Science and Engg.
Chalmers and Gothenburg University

The Wisdom of Crowds

A NEW YORK THEEL BUNDLESS RESIDERED.

"to extracting and thought providing to the Figure State It.

Radiolo United: . . The Minhou of Create stages for and either ... The States of Create stages for and either ... The States of Clade.

OF CROWDS

JAMES SUROWIECKI

WITH A NEW ACCURAGE BY THE ACCURA

- Why the Many are smarter than the Few
- Crowds better than experts
- Discovery
- Coordination
- Cooperation

Francis Galton visits a Country Fair (1906)

- Crowd guesses what the Ox would weigh
- Crowd's average guess: 1,197 lb
- Correct weight: 1,198 lb!

Wisdom of Crowds on the Web

- Exponentially growing
- Also quite accurate: a recent comparsion with Encyclopaedia Britannica

Wisdom of Crowds on the Web: Google

- Link analysis
- Basic idea is that more people linking to a page is more votes for it
- Subtle re-inforced version of the "wisdom of crowds"

Mining the Internet

- Collaborative Filtering
- Simultaneous categorization of people and products based on mathematical models.

- People and music they buy often shows a distinct biclustering
- Mathematical
 Mixture models try
 to capture this
 structure

Collaborative filtering

cluster 1

.....

cluster2

Items

Mixture model

 $\forall u : \text{preference } p(u,c) \left(\sum_{c} p(u,c) = 1 \right)$ $\forall a : \text{weight } w(a,c) \left(\sum_{a} w(a,c) = 1 \right)$ $\text{Pr}(u \text{ selects } a) = \sum_{c} p(u,c)w(a,c)$

number of users: n

number of items: m

number of clusters: C

Biclustering Genes

Disease exps

Genes

Bi-clustering algorithms

- Exploit clusterting structure simultaneously on both sides.
- "Biclustering is a relatively young area ... it has great potential to make significant contributions to biology and other fields." [Tanay, Sharan and Shamir, 2006]

Collaborative Filtering in Mixture Models

- Kleinberg and Sandler (2004) gave the first rigorous analysis and guarantees on algorithms for the mixture model
- Uses LP and spectral methods
- We wanted to explore light-weight practical methods.

A Porfolio of Iterative Biclustering Algorithms

- Start with an initial soft clustering on one side.
- (HITS) Iteratively use the current clustering on one side to refine the clustering on the other side
- Parameters: no. of iterations, update weighting.

Tests on generated data

Planted partition Model

- Disjoint model
- · Intermediate model
- Completely mixed model
- Generated:
 - 1000 users
 - 300 items
 - 10 clusters
 - sample size: 10, 15, 20
- 20 Θ∈ [0,1]

Results for the disjoint model

		Samp	le 10	Sample 20	
Θ	Method	F10	F20	F10	F20
	1	4.7	14.9	•	16.1
0	2	4.2	14.5		15.8
	3	4.0	14.3	5.9	15.8
4	4.3	14.6	6.1	15.9	
	1	8.7	19.0	8.7	19.4
0.4	2	3.7	13.9	6.2	16.1
0.4	3	3.7	14.0	6.2	16.2
	4	3.7	14.0	6.2	16.1

Results for the intermediate model

		Samp	•		Sample 20	
Θ	Method	F10	F20	F10	F20	
	1	4.1	14.2	F10 4.3 3.2 0.1	14.9	
0	2	2.7	12.1		13.2	
U	3	0.0	0.9		0.6	
	4	2.8	12.4	3.4	13.6	
	1	1.1	2.2	1.2	2.3	
0.4	2	1.9	13.1	F10 4.3 3.2 0.1 3.4 1.2 0.8 0.0	12.1	
0.4 D	3	0.0	0.2	0.0	0.3	
	4	2.1	13.3	0.8	12.2	

Results for the completely mixed model

		Sample 10 Sample 2		le 20	
Θ	Method	F10	F20	F10	F20
	1	1.1	6.4	F10 1.5 1.3 0.0 1.3 1.7	7.6
0	2	0.7	5.6		7.1
	3	0.0	0.2		0.1
	4	0.7	5.7	1.3	7.1
	1	1.7	4.7	1.7	4.7
0.4	2	1.8	7.5	1.8	7.4
D .4	3	0.0 0.1 0.0	0.1		
	4	1.8	7.6		7.4

• http://origo.hu

Selected:

- 1000 users
- 8321 items
- avg. sample size 50
- without iteration $\Theta = 0$

Method	F10	F20	F30
1	8.13	13.77	18.49
2	3.71	8.13	11.15
3	0.42	1.35	3.18
4	3.50	7.73	10.71

More Applications: Query Recommendations

- Baeza-Yates, Hurtado and Mendoza (2004) suggest a method to make query recommendations based on clustering previous queries.
- Explictly treat it as a bi-clustering problem.

Applications: Physical and Logical Sessions

- Segment a physical session into distinct logical sessions based on the user behaviour.
- Exploit bi-clustering structure to uncover the hidden logical sessions.

Wisdom of Crowds for Next Generation Exploratory Search

- Paradigm change from query driven search to user-centric information delivery
- Leveraging wisdom of crowds is key
- Biclustering/Multi-clustering is a promising approach.

We've come a Long Way

- "Men go mad in herds, while they only recover their senses slowly one by one." [Charles McKay, *Madness of Crowds*, 1841.]
- "Madness is the exxception in individuals, but the rule in groups" [Nietzsche]
- "I do not believe in the collective wisdom of individual ignorance" [Carlyle]

