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Introduction

 Linear time series analysis techniques can be useful in analyzing data that is 
actually generated by nonlinear stochastic processes (i.e. in the real world).

 Linear time series analysis can be conducted in the time domain (e.g. 
autoregressive models) or in the frequency domain (e.g. discrete Fourier 
transform, coherency among spectra) – theoretically both approaches are 
equivalent but numerically they are not. Causal estimation in time domain 
(AR): Granger 1973, Kaminski Blinowska 1991, Schreiber 2000, Rosenblum
& Pikovsky 2001. Frequency domain method: Phase Slope Index (Nolte et al. 
2008, Nolte et al. 2009) . Connection: partially directed coherence (Baccala
& Sameshima 1998, 2001).

 Separating correlation from causation is hard, even if the data is time-labeled. 
There can be correlations among non-interacting time-series variables.
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Outline

 Overview of different types of data generating processes (DGPs), which are 
stochastic generative models of time series

 Highlight causality assessment challenges in neuroscience and economics.

 AR estimation challenges for covariate innovations processes (needed for GC).

 PSI - Phase Slope Index 

 PSI and AR results for bi-variate simulations available on Causality 
Workbench.

 Structural causality estimation in multivariate time series.
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DGP: Data Generating Process

Data Generating Process

y(t)y(t-1)y(t-2)

o DGPs are abstractions of  real-world 
dynamic processes which generate data: 
not necessarily are they regressive, 
recursive or stochastic, but are more 
powerful when they are.

oThey can be inferred from data directly 
or by bottom-up modeling of  the 
underlying physical /social processes  (in 
neuroscience, economics very hard)

DGP Symbolic representation
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y(t)

u(t)

y(t-1)y(t-2)

Stochastic DGP

Data Generating Process DGP Symbolic representation

o If  the DGP is stochastic and noise in 
an input it is generally called innovations 
process and it is independently 
distributed if                           it is 
independently distributed.

o If, also                        then the system 
is stationary.
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y(t)

u(t)

y(t-1)y(t-2)

DGP equivalence

Equivalence: DGP Symbolic representation

2 DGPs are output equivalent if, for all t :

DGPs are stochastically equivalent if, for all t :

y1(t)

u1 (t)

z

Canonical representation (non-unique)
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DGP variations

Potential DGP ‘upgrades’ DGP Symbolic representation

o covariate or mixed innovations

o endogenous/exogenous inputs

o cointegration

u1 (t)

u2 (t)

*
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DGP variations

Data Generating Process DGP Symbolic representation

o covariate or mixed innovations

o endogenous/exogenous inputs

some inputs are stochastic but observable, or       
non-stochastic, or excluded from potential effects

o co-integration

y1(t)

u1 (t)

z

d(t)

z (t)
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DGP variations

Potential DGP ‘upgrades’ DGP Symbolic representation

o covariate or mixed innovations

o endogenous/exogenous inputs

some inputs are stochastic but observable, or       
simply non-stochastic

o co-integration

Some states are simple dynamic transformations of  
i.i.d processes -this can be taken into account

y1(t)

u1 (t)

z

d(t)

z (t)

z
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Structural / G - Causality

G - Causality DGP Symbolic representation

z

zz

y1(t)

u1(t)

y2 (t)

u2(t)

y2 (t)

u2,0 (t)
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Structural / G - Causality

G-causality DGP Symbolic representation

o G-causality is inferred by comparing conditional 
entropy in competing structural models z

z

z

z

y1(t)

u1 (t)

u2 (t)

y2 (t)

1 2    12

1  2    12

Mini-Symposium on Time Series Causality



Popescu NIPS 2009 12

Structural / G - Causality

Covariate innovations? DGP Symbolic representation

o In many instances it is reasonable to 
assume that the innovations process is 
covariate. For example: yearly weather 
variability and historical shocks on 
aggregate indicators.

o Also possible is that other 
unobservable factors actually provide 
root causes for correlations among 
innovations processes.

z

z

y1(t)

u1 (t)

y2 (t)

u2 (t)
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Structural / G - Causality

Mixed outputs: EEG DGP Symbolic representation

o In some instances it is the physical process of  
observation that separates us from the time-series 
of  interest. For example cortical sources and 
scalp based sensors (the mixing problem).

z

x2 (t)

z

x1(t)

y2 (t)

y1(t)
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Structural / G - Causality

Stochastic equivalence DGP Symbolic representation

o It is also possible that there is both a non-
diagonal observation matrix and covariate noise 
but these situations correspond to stochastically 
equivalent DGPs and cannot be disambiguated 
without further assumptions

z

z
y2 (t)

y1(t)

Covariate innovations

Mixed output

R is a rotation matrix

S is a diagonal (scaling) matrix

*
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Structural / G - Causality

Stochastic equivalence DGP Symbolic representation

o It is also possible that there is both a non-
diagonal observation matrix and covariate noise 
but these situations correspond to stochastically 
equivalent DGPs and cannot be disambiguated 
without further assumptions

z

z
y2 (t)

y1(t)

Covariate innovations

Mixed output

R is a rotation matrix

S is a diagonal (scaling) matrix

*
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Structural / G - Causality

Noise covariance estimation DGP Symbolic representation

o Instantaneous mixing / innovations covariance 
can be used to establish „source‟ causality 
(Moneta 2008), (to follow!)

o If  a triangular structure is imposed on the 
instantaneous „mixing‟ matrix of  a linear SVAR 
the estimate of  the equivalent noise covariance is 
unbiased (Popescu, 2008)

z

z y2 (t)

y1(t)
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Structural / G - Causality

Data Generating Process DGP Symbolic representation
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Phase slope index

z

z

z

z

Basic principle: mixing does not affect the imaginary part of  the 
complex coherency of  a multivariate time series (Nolte 2004)
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Phase slope index

Let us consider the case of  a dynamically interacting system with 
correlated noise observations

z

z
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Phase slope index

Let us consider the case of  a dynamically interacting system with 
correlated noise observations.  Relative influence of  covariate noise?

z

z
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Phase slope index
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PSI: benchmark data

z

z

z

z

z

z

sign()abs(1-)
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Causality workbench: 1000 simulations of linear/nonlinear systems
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G-Causality Results
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M=1 M=2

M=3 M=4

•10th order 

AR models 

used

• M is the 
polynomial 

degree of 

the 

nonlinear 

coupling 
term
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PSI Results
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Conclusions

 PSI does offer some advantages of Granger causality or model based method 
determination.

 PSI and related extensions can give statistical estimates of causality, 
dependence and non-causality and is conservative.

 Model based methods are limited by limitations in modeling technique: too 
few parameters may miss interactions, too many will over-fit, covariate 
innovations and AR coefficients are difficult to co-estimate.

 Future developments require DAG/ acyclic causal graph inference in 
multivariate time series.

 Complex non-stationarities not yet addressed.
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