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Augmentative & Alternative
Communication (AAC)

+ Fact: More than 2 million people in the U.S. cannot rely on
natural speech alone for communication

* One solution: AAC software for pictorial communication

* Existing systems transliterate words into icons

Vil + & (o

Jane saw  orchids and treefrogs in  the rainforest

+ Users must be trained to recognize specialized symbols
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Goal: Convert from text to image modalities
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Goal: Convert from text to image modalities
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Text-to-Picture Synthesis

Goal: Convert from text to image modalities
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Main 'I'TP Components

* Keyphrase extraction

+ TextRank with picturability

* Semantic role labeling

* Image selection

* Search result clustering
* Context-sensitive re-ranking
* Layout optimization

* Structured output prediction

* Heuristic objective minimization



Example Machine L.earning Problem #1:
Picture-Driven Keyphrase Extraction

* Given: English text string

The Bayesian statistician ate a banana.

* Do: Extract a set of words to be depicted visually

{statistician, ate, banana}



Example Machine L.earning Problem #1:
Picture-Driven Keyphrase Extraction

* Given: English text string

The Bayesian statistician ate a banana.

* Do: Extract a set of words to be depicted visually

{statistician, ate, banana}

Approach in Zhu et al, AAAI 07:

TextRank: Teleporting random walk (like PageRank) on
a word co-occurrence graph [Mihalcea & Tarau 04]

Picturability: Bias teleporting to easy-to-visualize words



Word Picturability Training Data
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Annotation instructions: Imagine you're playing Pictionary...

Label y=1 if you can draw or find a good image of the word.

Label y=0 if you don't think this word has a picture.
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Word Picturability Training Data
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Annotation instructions: Imagine you're playing Pictionary...

Label y=1 if you can draw or find a good image of the word.
Label y=0 if you don't think this word has a picture.
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_A_ B C D __F
I

Writ 0 0 0 0
yolks | | | | |
zebras g I I I I
zigzag BN 0 I 0 I

Five annotators
independently
judged 500

words each
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Predicting Word Picturability

* How can we automatically predict which words are easy
to draw or visualize? Use the Web!

* Logistic regression model based on Web statistics:
* Features: log-ratios of various search result counts

* For fast prediction, used single feature chosen by CV:

r = log(Google image hits /| Google page hits)
1
1 4+ exp(—2.78x — 15.4)

+ Final model: Pr(y = 1|x) =



Predicting Word Picturability

* How can we automatically predict which words are easy
to draw or visualize? Use the Web!

The Bayesian statistician ate a banana.
Bayesian 17K image hits, 10.4M page hits: Pr(y = 1|z) = 0.09
banana 356K image hits, 49.4M page hits: Pr(y = 1|z) = 0.84
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1
1 4+ exp(—2.78x — 15.4)

+ Final model: Pr(y = 1|z) =
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Example Machine l.earning Problem #2.:
Semantically Enhanced Layout

* Given: Set of images representing keywords

* Do: Arrange images to help elicit desired interpretation



Example Machine l.earning Problem #2.:
Semantically Enhanced Layout

Given: Set of images representing keywords

Do: Arrange images to help elicit desired interpretation

Approach in Goldberg et al., CoNLL 08:

ABC Template: Three “semantic” boxes and action arrow

ﬁ
A: “who” o C: “to what”
(~subject) B: “did what / (~object)
how / when”
(~verb, adv)

Structured output prediction:
Fill template by tagging words in input sequence.



Collecting ABC Pictures

* Used Web-based tool to create over 500 ABC pictures

The boy kicked the soccer ball into o {:;g:

the goal. R ‘

| A R
boy ls ) LA HY

Ty PREV 123456789 10 11 NEXT

Also try: billy anthony joey boy's jimmy

Fleiss’k = 0.71
for 48 layouts
by 3 people

* Great crowdsourcing / human computing potential



L.ayout Prediction using CRFs

+ Given: Text sequence X (e.g., words, chunks)
Features: semantic role labels, POS, WordNet supersenses, ...

* Do: Predict layout-position sequence y, y: € {A, B, C, O}

The girl ARGO, DT, NN, n.person A
rides the bus | Verb,ARGI,VBZ, DT, NN, v.transport, n.vehicle | B
to TO o
school ARGM-LOC, NN, n.building C

B

in the morning ARGM-TMP, IN, DT, NN, n.time
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L.ayout Prediction using CRFs

+ Given: Text sequence X (e.g., words, chunks)
Features: semantic role labels, POS, WordNet supersenses, ...

* Do: Predict layout-position sequence y, y: € {A, B, C, O}

The girl ARGO, DT, NN, n.person A Conditional
rides the bus | Verb,ARGI,VBZ, DT, NN, v.transport, n.vehicle = B Random Field (CRF)
s Pr(y|x) o

x| K
school exp (Z Z e Sl (Yt Ye—1, X, t))
: : t=1 k=1
in the morning

Selected model order
and feature functions

via CV on 500+
training examples




The Future

* Text extraction:
* Picture-driven keyphrase extraction
* Image selection:
* Prototypical image selection
* Context-based image search
* Image sense disambiguation
* Layout prediction:
+ Higher-order, template-free layout prediction

* Visual semantic role labeling with verb cartoons
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