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Augmentative & Alternative 
Communication (AAC)
✤ Fact: More than 2 million people in the U.S. cannot rely on 

natural speech alone for communication

✤ One solution: AAC software for pictorial communication

✤ Existing systems transliterate words into icons 

✤ Users must be trained to recognize specialized symbols

Jane      saw       orchids   and   treefrogs     in        the      rainforest
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Main TTP Components

✤ Keyphrase extraction
✤ TextRank with picturability
✤ Semantic role labeling

✤ Image selection
✤ Search result clustering
✤ Context-sensitive re-ranking

✤ Layout optimization
✤ Structured output prediction
✤ Heuristic objective minimization

A B C D E F G
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Example Machine Learning Problem #1:

Picture-Driven Keyphrase Extraction

✤ Given: English text string

✤ Do: Extract a set of words to be depicted visually
The Bayesian statistician ate a banana.

{statistician, ate, banana}

  Approach in Zhu et al, AAAI 07:
TextRank: Teleporting random walk (like PageRank) on 
                   a word co-occurrence graph [Mihalcea & Tarau 04]

Picturability: Bias teleporting to easy-to-visualize words
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Word Picturability Training Data

Five annotators 
independently 

judged 500 
words each

Annotation instructions: Imagine you're playing Pictionary...
Label y=1 if you can draw or find a good image of the word.
Label y=0 if you don't think this word has a picture.

AnnotatorAnnotatorAnnotator
A B C D E
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yolks

zebras
zigzag
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1 1 1 1 1

1 1 1 1 1

1 0 1 0 1
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Predicting Word Picturability

✤ How can we automatically predict which words are easy 
to draw or visualize?

✤ Logistic regression model based on Web statistics:

✤ Features: log-ratios of various search result counts
✤ For fast prediction, used single feature chosen by CV:

✤ Final model:

Use the Web!

x = log(Google image hits / Google page hits)

Pr(y = 1|x) =
1

1 + exp(−2.78x− 15.4)

The Bayesian statistician ate a banana.

banana   356K image hits, 49.4M page hits : Pr(y = 1|x) = 0.84

Bayesian  17K image hits, 10.4M page hits : Pr(y = 1|x) = 0.09
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Example Machine Learning Problem #2: 

Semantically Enhanced Layout

✤ Given: Set of images representing keywords
✤ Do: Arrange images to help elicit desired interpretation

  Approach in Goldberg et al., CoNLL 08:
ABC Template: Three “semantic” boxes and action arrow

Structured output prediction: 
Fill template by tagging words in input sequence.

A: “who”
(~subject) B: “did what / 

how / when”
(~verb, adv)

C: “to what”
(~object)



Collecting ABC Pictures

✤ Used Web-based tool to create over 500 ABC pictures

✤ Great crowdsourcing / human computing potential

Fleiss‘    = 0.71 
for 48 layouts 
by 3 people

κ



Layout Prediction using CRFs

✤ Given:
 Text sequence     (e.g., words, chunks)

 
 Features: semantic role labels, POS, WordNet supersenses, ...

✤ Do: Predict layout-position sequence     

x

y, yt ∈ {A, B, C, O}

The girl ARG0, DT, NN, n.person A

rides the bus Verb, ARG1, VBZ, DT, NN, v.transport, n.vehicle B

to TO O

school ARGM-LOC, NN, n.building C

in the morning ARGM-TMP, IN, DT, NN, n.time B
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✤ Given:
 Text sequence     (e.g., words, chunks)

 
 Features: semantic role labels, POS, WordNet supersenses, ...

✤ Do: Predict layout-position sequence     

x

y, yt ∈ {A, B, C, O}
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Conditional 
Random Field (CRF)

Pr(y|x) ∝ exp




|x|∑

t=1

K∑

k=1

λkfk(yt, yt−1,x, t)





Pr(y|x) ∝ exp




|x|∑

t=1

K∑

k=1

λkfk(yt, yt−1,x, t)





Selected model order 
and feature functions 

via CV on 500+ 
training examples



The Future

✤ Text extraction:
✤ Picture-driven keyphrase extraction

✤ Image selection:
✤ Prototypical image selection
✤ Context-based image search
✤ Image sense disambiguation

✤ Layout prediction:
✤ Higher-order, template-free layout prediction
✤ Visual semantic role labeling with verb cartoons
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