Toward Text-to-Picture Synthesis

Andrew B. Goldberg, Jake Rosin, Xiaojin Zhu, Charles Dyer

Department of Computer Sciences University of Wisconsin-Madison

NIPS Mini-Symposium: Assistive Machine Learning For People With Disabilities

December 10, 2009

- * Fact: More than 2 million people in the U.S. cannot rely on natural speech alone for communication
- * One solution: AAC software for pictorial communication
- * Existing systems transliterate words into icons

- * Fact: More than 2 million people in the U.S. cannot rely on natural speech alone for communication
- * One solution: AAC software for pictorial communication
- * Existing systems transliterate words into icons

- * Fact: More than 2 million people in the U.S. cannot rely on natural speech alone for communication
- * One solution: AAC software for pictorial communication
- * Existing systems transliterate words into icons

- * Fact: More than 2 million people in the U.S. cannot rely on natural speech alone for communication
- * One solution: AAC software for pictorial communication
- * Existing systems transliterate words into icons

* Users must be trained to recognize specialized symbols

Goal: Convert from text to image modalities

WordsEye (wordseye.com, Coyne & Sproat, SIGGRAPH 01)

CarSim (Johansson et al, IJCAI 05)

- Keyphrase extraction
 - TextRank with picturability
 - Semantic role labeling

<u>A B C D E F G</u>

Keyphrase extraction

- TextRank with picturability
- Semantic role labeling
- Image selection
 - Search result clustering
 - Context-sensitive re-ranking

Keyphrase extraction

- TextRank with picturability
- Semantic role labeling
- Image selection
 - Search result clustering
 - Context-sensitive re-ranking
- Layout optimization
 - <u>Structured output prediction</u>
 - Heuristic objective minimization

Example Machine Learning Problem #1: **Picture-Driven Keyphrase Extraction**

Given: English text string

The Bayesian statistician ate a banana.

Do: Extract a set of words to be depicted visually

{statistician, ate, banana}

Example Machine Learning Problem #1: **Picture-Driven Keyphrase Extraction**

Given: English text string

 The Bayesian statistician ate a banana.

 Do: Extract a set of words to be depicted visually

 {statistician, ate, banana}

Approach in **Zhu et al**, **AAAI 07**:

TextRank: Teleporting random walk (like PageRank) on a word co-occurrence graph [Mihalcea & Tarau 04]
Picturability: Bias teleporting to easy-to-visualize words

Word Picturability Training Data

Annotation instructions: Imagine you're playing Pictionary... Label **y=1** if you can draw or find a good image of the word. Label **y=0** if you don't think this word has a picture.

Word Picturability Training Data

Annotation instructions: Imagine you're playing Pictionary... Label **y=1** if you can draw or find a good image of the word. Label **y=0** if you don't think this word has a picture.

		Annotator				
	A	В	С	D	Е	
writ	0		0	0	0	
yolks					Ι	
zebras	Ι	I	I		Ι	
zigzag		0		0	I	

Five annotators independently judged 500 words each

 How can we automatically predict which words are easy to draw or visualize?

* How can we automatically predict which words are easy to draw or visualize? Use the Web!

- * How can we automatically predict which words are easy to draw or visualize? Use the Web!
- * Logistic regression model based on Web statistics:
 - * Features: log-ratios of various search result counts
 - * For fast prediction, used single feature chosen by CV: $x = \log(Google \ image \ hits \ / \ Google \ page \ hits)$

* Final model: $\Pr(y = 1|x) = \frac{1}{1 + \exp(-2.78x - 15.4)}$

* How can we automatically predict which words are easy to draw or visualize? Use the Web!

The Bayesian statistician ate a banana.

Bayesian 17K image hits, 10.4M page hits : Pr(y = 1|x) = 0.09banana 356K image hits, 49.4M page hits : Pr(y = 1|x) = 0.84

* Final model: $\Pr(y = 1|x) = \frac{1}{1 + \exp(-2.78x - 15.4)}$

Example Machine Learning Problem #2: Semantically Enhanced Layout

- * Given: Set of images representing keywords
- * Do: Arrange images to help elicit desired interpretation

Example Machine Learning Problem #2: Semantically Enhanced Layout

- * Given: Set of images representing keywords
- * Do: Arrange images to help elicit desired interpretation

Approach in **Goldberg et al., CoNLL 08**:

ABC Template: Three "semantic" boxes and action arrow

Structured output prediction: Fill template by tagging words in input sequence.

Collecting ABC Pictures

Used Web-based tool to create over 500 ABC pictures

Great crowdsourcing / human computing potential

Layout Prediction using CRFs

- Given: Text sequence x (e.g., words, chunks)
 Features: semantic role labels, POS, WordNet supersenses, ...
- * Do: Predict layout-position sequence $\mathbf{y}, y_t \in \{A, B, C, O\}$

The girl	ARG0, DT, NN, n.person		
rides the bus	Verb, ARGI, VBZ, DT, NN, v.transport, n.vehicle	В	
to	ТО	ο	
school	ARGM-LOC, NN, n.building	С	
in the morning	ARGM-TMP, IN, DT, NN, n.time	В	

Layout Prediction using CRFs

- Given: Text sequence x (e.g., words, chunks)
 Features: semantic role labels, POS, WordNet supersenses, ...
- * Do: Predict layout-position sequence $\mathbf{y}, y_t \in \{A, B, C, O\}$

Layout Prediction using CRFs

- Given: Text sequence x (e.g., words, chunks)
 Features: semantic role labels, POS, WordNet supersenses, ...
- * Do: Predict layout-position sequence $\mathbf{y}, y_t \in \{A, B, C, O\}$

The girl rides the bus	ARG0, DT, NN, n.person	A	Conditional
	Verb, ARGI, VBZ, DT, NN, v.transport, n.vehicle	B	Random Field (CRF)
to school in the morning	$\begin{array}{c} & \longrightarrow \\ A \\ B \end{array}$	С	$Pr(\mathbf{y} \mathbf{x}) \propto \\ exp\left(\sum_{t=1}^{ \mathbf{x} } \sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, \mathbf{x}, t)\right) \\ Selected model order \\ and feature functions \\ via CV on 500+ \\ training examples \\ \end{cases}$

The Future

- Text extraction:
 - Picture-driven keyphrase extraction
- Image selection:
 - Prototypical image selection
 - Context-based image search
 - Image sense disambiguation
- Layout prediction:
 - Higher-order, template-free layout prediction
 - Visual semantic role labeling with verb cartoons

Thank you

and

NSF IIS-0711887 Wisconsin Alumni Research Foundation Yahoo! Key Technical Challenges Grant

Any questions?

Andrew B. Goldberg goldberg@cs.wisc.edu