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Link Analysis Ranking

 Link Analysis Ranking (LAR) algorithm: 
 Given a (directed) graph G, determine the importance of the 

nodes in the graph using the information of the edges (links) 
between the nodes.

 Inuition: 
 A link from node p to node q denotes endorsement. Node p 

considers node q an authority on a subject
 mine the graph of recommendations, assign an authority value 

to every page
 Applications: 

 Assess the importance of Web pages using link information.
 Recommendation systems



   

Why theoretical analysis of Link 
Analysis Ranking?

 Plethora of LAR algorithms: we need a 
formal way to compare and analyze them

 Need to define properties that are useful
 stability of the algorithm

 Axiomatic characterization of LAR 
algorithms
 extension of social choice theory to 

recommendation systems



   

Link Analysis Ranking algorithm

 A LAR algorithm is a function that maps a 
graph to a real vector

 Gn : class of graphs of size n
 LAR vector w: the output A(G) of an 

algorithm A on a graph G
 wi : the authority weight of node i

A:Gn  → Rn



   

Popular LAR algorithms

 InDegree algorithm
 wi = in-degree(i)

 PageRank algorithm [BP98]
 perform a random walk on G with random resets (with 

probability 1-a)
 w = stationary distribution of the random walk

 HITS algorithm [K98]
 compute the left (hub) and right (authority) singular 

vectors of the adjacency matrix W
 w = right singular vector



   

Properties of Interest

 Stability
 small changes in the graph should cause small 

changes in the output of the algorithm
 Similarity

 the output of two algorithms are close

 Axiomatic characterizations

Under what conditions (for which classes of graphs) 
is an algorithm stable, or are two algorithms similar?



   

Distance between LAR vectors

 Geometric distance: how close are the 
numerical weights of vectors w1, w2?

 Assumption: Weights are normalized 
under norm L2

 normalization makes a difference
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Distance between LAR vectors

 Rank distance: how close are the ordinal 
rankings induced by the vectors w1, w2?
 Kendal’ s τ distance

( )
 pairsdistinct  ofnumber  total
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Stability: graph distance

 Definition: Link distance between graphs 
G=(P,E) and G’ =(P,E’ ) 

  

( ) |E'E||E'E|G'G,d ∩−∪=


G G’
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Stability

 Ck(G) : set of graphs G’  such that dℓ(G,G’ ) k≤

 Definition: Algorithm A is stable if for any fixed k

 Definition: Algorithm A is rank stable if for any 
fixed k

( ) (1)ο)A(G'A(G),dmaxmax r(G)CG'G k

=
∈

( ) o(1))A(G'A(G),dmaxmax 2
(G)CG'GG kn

=
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Stability: Results

 InDegree is (rank) stable on Gn [BRRT05]
 HITS, PageRank, are (rank) unstable on 

Gn 



   

Perturbations of PageRank

 Perturbations to unimportant nodes have 
small effect on the PageRank values 
[NZJ01][BGS03]

 Lee and Borodin 2003: PageRank is 
stable
 HITS remains unstable
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Instability of PageRank

 PageRank is unstable

 PageRank is rank unstable [Lempel Moran 
2003]

 Open question: Can we derive conditions for the 
stability of PageRank in the general case?

O(n)



   

Singular Value Decomposition

 r : rank of matrix A

 σ1  ≥σ2  …  ≥ ≥σr : singular values (square roots of eig-vals AAT, 
ATA)

                     
                    : left singular vectors (eig-vectors of AAT)
                    
                     : right singular vectors (eig-vectors of ATA)
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Singular Value Decomposition

 Linear trend v in matrix A:
 the tendency of the row 

vectors of A to align with 
vector v

 strength of the linear trend: 
Av

 SVD discovers the linear 
trends in the data

 uivi
T : the i-th strongest 

linear trend
 σi : the strength of the i-th 

strongest linear trend

σ1

σ2 v1

v2

  HITS ranks according to the strongest linear trend vi in 
the authority space



   

Instability of HITS
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Stability of HITS

 Theorem: HITS is stable if                
σ1(W)– σ2(W)=ω(1)

 The two strongest linear trends are well 
separated

 [Ng, Zheng, Jordan 2001]: HITS is stable if 

( )out
2
2

2
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Similarity

 Definition: Two algorithms A1, A2 are similar if 

 Definition: Two algorithms A1, A2 are rank similar if 

 Definition: Two algorithms A1, A2 are rank equivalent if

( ) o(1)(G)A(G),Admax 21rGG n

=
∈

( ) ( )1ο(G)A(G),Admax 212GG n

=
∈

( ) 0(G)A(G),Admax 21rGG n

=
∈



   

Similarity: Results

 No pairwise combination of InDegree, 
HITS, PageRank algorithms is similar, or 
rank similar on the class of all possible 
graphs Gn 

 Can we get better results if we restrict 
ourselves to smaller classes of graphs?
 We focus on simialrity of HITS and InDeggree 

algorithms [DLT05]



   

Product Graphs

 Latent authority and hub vectors
 hi = probability of node i being a good hub
 aj = probability of node j being a good authority

 Generate a link i j with probability → hiaj

 Azar, Fiat, Karlin, McSherry, Saia 2001, Michail, Papadimitriou 
2002,Chung, Lu, Vu 2002

 The class of product graphs Gn
p

 (a.k.a. “ graphs with given expected degree sequences” )
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Product Graphs

 M: rank-1 matrix

 R: rounding matrix
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Product Graphs

 Idea[AFK+01]: View the product graph 
W=M+R as a pertubation of the rank-1 
matrix M by the matrix R

 HITS and InDegree are identical on rank-1 
matrix M

 How do the outputs change after 
perturbing M by R ?



   

HITS and InDegree on Product 
Graphs

 Theorem: HITS and InDegree are similar with 
high probability on the class of product graphs, 
Gn

p  subject to some assumptions

 Assumptions 1 and 2 are general enough to 
include graphs with (expected) degrees that 
follow power law distribution with  > 3α  

Assumption 1: 

Assumption 2: Let H = ∑hi then  ( )lognnωaH
2

=


( ) ( )nωahMσ
22

1 ==




   

Experiments with real web 
graphs

 Dataset: The Stanford WebBase project 
 Correlation coefficient between authority and in-degree 

vector: 0.93

 Correlation coefficient between hub and out-degree 
vectors: 0.05

indegree distribution HITS authority values distribution



   

Monotonicity

 Monotonicity: Algorithm A is strictly 
monotone if for any nodes x and y

A(G)[y]A(G)[x](y)B(x)B NN <⇔⊂

y

x

wx < wy



   

 Locality: An algorithm A is strictly rank local if, for every 
pair of graphs G=(P,E) and G’ =(P,E’ ), and for every pair of 
nodes x and y, if BG(x)=BG’ (x) and BG(y)=BG’ (y) then

 the relative order of the nodes remains the same if their back links 
are not affected

 
 The InDegree algorithm is strictly rank local

Locality

[ ] [ ] [ ] [ ]y)A(G'x)A(G'yA(G)xA(G) <⇔<

G’G



   

Label Independence

 Label Independence: An algorithm is label 
independent if a permutation of the labels 
of the nodes yields the same permutation 
of the weights
 the weights assigned by the algorithm do not 

depend on the labels of the nodes



   

Axiomatic characterization of the 
InDegree algorithm

 Theorem: Any algorithm that is strictly rank 
local, strictly monotone and label 
independent is rank equivalent to the 
InDegree algorithm

 All three properties are needed



   

Other work

 An axiomatic characterization of 
PageRank algorithm
 “ Ranking Systems: The PageRank axioms”     

Alon Altman, Moshe Tenneholtz, ACM 
Conference on Electronic Commerce, 2005



   

Open questions

 What is the necessary condition for the stability 
of the HITS algorithm?
 can the results of [NZJ01] be proven for 0/1 matrices?

 Can we say anything about other LAR 
algorithms on product graphs?
 e.g. PageRank

 Can we prove anything when we consider rank 
distance?

 Can we define other properties?
 e.g., is spam sensitivity different from stability?



   

Thank you!


