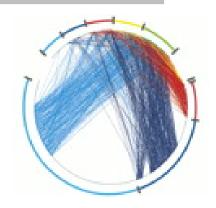
Theoretical analysis of Link Analysis Ranking

Panayiotis Tsaparas University of Helsinki HIIT-BRU



Link Analysis Ranking

- Link Analysis Ranking (LAR) algorithm:
 - Given a (directed) graph G, determine the importance of the nodes in the graph using the information of the edges (links) between the nodes.
- Inuition:
 - A link from node p to node q denotes endorsement. Node p considers node q an authority on a subject
 - mine the graph of recommendations, assign an authority value to every page
- Applications:
 - Assess the importance of Web pages using link information.
 - Recommendation systems

Why theoretical analysis of Link Analysis Ranking?

- Plethora of LAR algorithms: we need a formal way to compare and analyze them
- Need to define properties that are useful
 - stability of the algorithm
- Axiomatic characterization of LAR algorithms
 - extension of social choice theory to recommendation systems

A LAR algorithm is a function that maps a graph to a real vector

 $A:G_n \rightarrow \mathbf{R}^n$

- G_n : class of graphs of size n
- LAR vector w: the output A(G) of an algorithm A on a graph G
 - w_i : the authority weight of node i

- InDegree algorithm
 - w_i = in-degree(i)
- PageRank algorithm [BP98]
 - perform a random walk on G with random resets (with probability 1-a)
 - w = stationary distribution of the random walk
- HITS algorithm [K98]
 - compute the left (hub) and right (authority) singular vectors of the adjacency matrix W
 - w = right singular vector

- Stability
 - small changes in the graph should cause small changes in the output of the algorithm
- Similarity
 - the output of two algorithms are close

Under what conditions (for which classes of graphs) is an algorithm stable, or are two algorithms similar?

Axiomatic characterizations

Geometric distance: how close are the numerical weights of vectors w₁, w₂?

$$d_2(w_1, w_2) = \sqrt{\sum |w_1[i] - w_2[i]|^2}$$

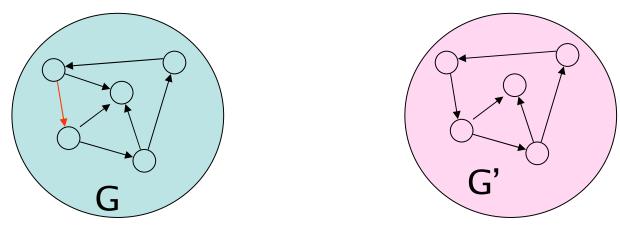
- Assumption: Weights are normalized under norm L₂
 - normalization makes a difference

- Rank distance: how close are the ordinal rankings induced by the vectors w₁, w₂?
 - Kendal's τ distance

$$d_r(w_1, w_2) = \frac{pairs ranked in a different order}{total number of distinct pairs}$$

Definition: Link distance between graphs G=(P,E) and G'=(P,E')

$\mathsf{d}_{\ell}(\mathsf{G},\mathsf{G}') = \mathsf{E} \cup \mathsf{E}' - \mathsf{E}'$



 $\mathsf{d}_\ell(\mathsf{G},\mathsf{G}')=2$

• $C_k(G)$: set of graphs G' such that $d_{\ell}(G,G') \le k$

- Definition: Algorithm A is stable if for any fixed k $\max_{G \in G_n} \max_{G' \in C_k(G)} d_2(A(G), A(G')) = o(1)$
- Definition: Algorithm A is rank stable if for any fixed k

$$\max_{G} \max_{G' \in C_k(G)} d_r(A(G), A(G')) = o(1)$$

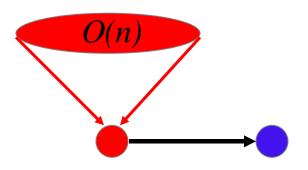
- InDegree is (rank) stable on G_n [BRRT05]
- HITS, PageRank, are (rank) unstable on G_n

 Perturbations to unimportant nodes have small effect on the PageRank values [NZJ01][BGS03]

$$d_1(A(G), A(G')) \le \frac{2\alpha}{1-2\alpha} \sum_{i \in P} A(G)[i]$$

- Lee and Borodin 2003: PageRank is stable
 - HITS remains unstable

PageRank is unstable



- PageRank is rank unstable [Lempel Moran 2003]
- Open question: Can we derive conditions for the stability of PageRank in the general case?

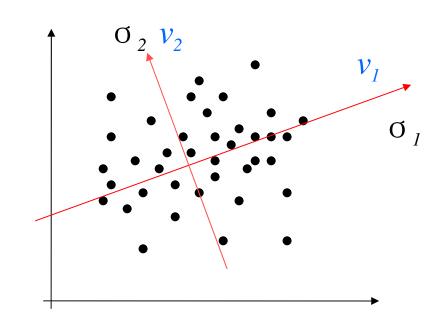
Singular Value Decomposition $\begin{bmatrix} \alpha & 1 \end{bmatrix} \begin{bmatrix} v_1 \end{bmatrix}$

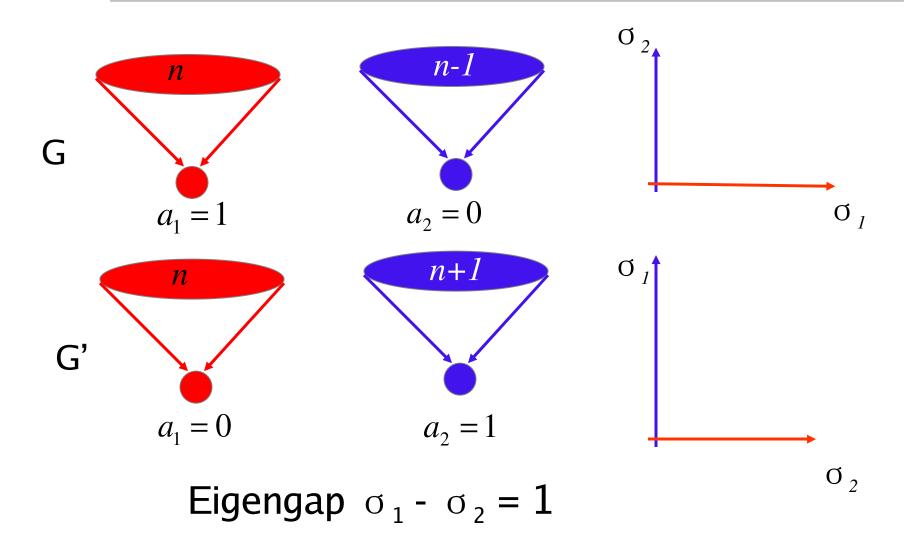
$$A = \bigcup \sum V^{\mathsf{T}} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_2 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_1 & \mathbf$$

- r : rank of matrix A
- o₁≥ o₂≥ ... ≥ o_r : singular values (square roots of eig-vals AA^T, A^TA) u₁, u₂, ..., u_r : left singular vectors (eig-vectors of AA^T) V₁, V₂, ..., V_r : right singular vectors (eig-vectors of A^TA) $A = o_1 u_1 v_1^T + o_2 u_2 v_2^T + ... + o_r u_r v_r^T$

Singular Value Decomposition

- Linear trend v in matrix A:
 - the tendency of the row vectors of A to align with vector v
 - strength of the linear trend: Av
- SVD discovers the linear trends in the data
- u_iv_i^T : the i-th strongest linear trend
- o_i: the strength of the i-th strongest linear trend
- HITS ranks according to the strongest linear trend v_i in the authority space





• Theorem: HITS is stable if $\sigma_1(W) - \sigma_2(W) = \omega(1)$

- The two strongest linear trends are well separated
- [Ng, Zheng, Jordan 2001]: HITS is stable if $d_1^2 - d_2^2 = \omega \left(\sqrt{d_{out}} \right)$

- Definition: Two algorithms A_1 , A_2 are similar if $\max_{G \in G_n} d_2(A_1(G), A_2(G)) = o(1)$
- Definition: Two algorithms A_1 , A_2 are rank similar if $\max_{G \in G_n} d_r(A_1(G), A_2(G)) = o(1)$
- Definition: Two algorithms A_1 , A_2 are rank equivalent if $\max_{G \in G_n} d_r(A_1(G), A_2(G)) = 0$

- No pairwise combination of InDegree, HITS, PageRank algorithms is similar, or rank similar on the class of all possible graphs G_n
- Can we get better results if we restrict ourselves to smaller classes of graphs?
 - We focus on simialrity of HITS and InDeggree algorithms [DLT05]

- Latent authority and hub vectors a, h
 - h_i = probability of node i being a good hub
 - a_i = probability of node j being a good authority
- Generate a link i→j with probability_ia_j W[i, j] = $\begin{cases} 1 & \text{with probability } h_i a_j \\ 0 & \text{with probability } 1 - h_i a_j \end{cases}$
 - Azar, Fiat, Karlin, McSherry, Saia 2001, Michail, Papadimitriou 2002, Chung, Lu, Vu 2002
- The class of product graphs G^p_n
 - (a.k.a. "graphs with given expected degree sequences")

W = M + R

• M: rank-1 matrix ha^{T}

$$\mathbf{M} = \mathbf{\hat{h}} \mathbf{a}^{\mathsf{T}} = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{bmatrix} \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} h_1 a_1 & h_1 a_2 & \cdots & h_1 a_n \\ h_2 a_1 & h_2 a_2 & \cdots & h_2 a_n \\ \vdots & \vdots & \ddots & \vdots \\ h_n a_1 & h_n a_2 & \cdots & h_n a_n \end{bmatrix}$$

• R: rounding $hat_{i}a_{j}$ with probability $h_{i}a_{j}$ $-h_{i}a_{j}$ with probability $1-h_{i}a_{j}$

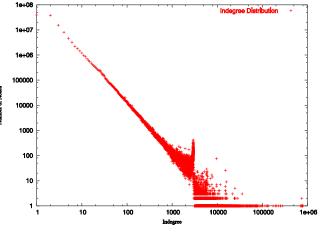
- Idea[AFK+01]: View the product graph W=M+R as a pertubation of the rank-1 matrix M by the matrix R
- HITS and InDegree are identical on rank-1 matrix M
- How do the outputs change after perturbing M by R ?

 Theorem: HITS and InDegree are similar with high probability on the class of product graphs, G_n^p subject to some assumptions

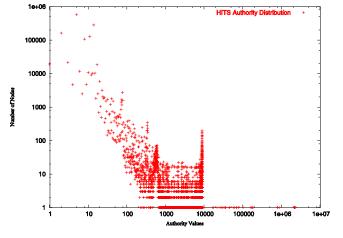
> Assumption 1: $\sigma_1(M) = \|h\|_2 \|a\|_2 = \omega(\sqrt{n})$ Assumption 2: Let $H = \Sigma$ hi then $H\|a\|_2 = \omega(\sqrt{n}\log n)$

• Assumptions 1 and 2 are general enough to include graphs with (expected) degrees that follow power law distribution with $\alpha > 3$

- Dataset: The Stanford WebBase project
- Correlation coefficient between authority and in-degree vector: 0.93



in-degree distribution

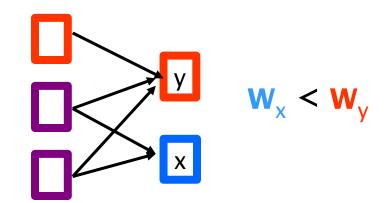


HITS authority values distribution

Correlation coefficient between hub and out-degree vectors: 0.05

Monotonicity: Algorithm A is strictly monotone if for any nodes x and y

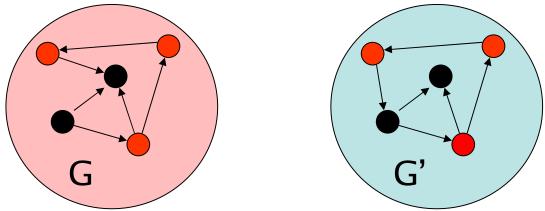
 $\mathsf{B}_{_{\mathsf{N}}}(x) \subset \mathsf{B}_{_{\mathsf{N}}}(y) \Leftrightarrow \mathsf{A}(G)[x] < \mathsf{A}(G)[y]$



• Locality: An algorithm A is strictly rank local if, for every pair of graphs G=(P,E) and G'=(P,E'), and for every pair of nodes x and y, if $B_G(x)=B_{G'}(x)$ and $B_G(y)=B_{G'}(y)$ then

$A(G)[x] < A(G)[y] \Leftrightarrow A(G')[x] < A(G')[y]$

the relative order of the nodes remains the same if their back links are not affected



The InDegree algorithm is strictly rank local

- Label Independence: An algorithm is label independent if a permutation of the labels of the nodes yields the same permutation of the weights
 - the weights assigned by the algorithm do not depend on the labels of the nodes



Axiomatic characterization of the InDegree algorithm

- Theorem: Any algorithm that is strictly rank local, strictly monotone and label independent is rank equivalent to the InDegree algorithm
- All three properties are needed

- An axiomatic characterization of PageRank algorithm
 - "Ranking Systems: The PageRank axioms" Alon Altman, Moshe Tenneholtz, ACM Conference on Electronic Commerce, 2005

- What is the necessary condition for the stability of the HITS algorithm?
 - can the results of [NZJ01] be proven for 0/1 matrices?
- Can we say anything about other LAR algorithms on product graphs?
 - e.g. PageRank
- Can we prove anything when we consider rank distance?
- Can we define other properties?
 - e.g., is spam sensitivity different from stability?

Thank you!

