Graph fibrations, graph isomorphism, and PageRank

Paolo BoldiVioletta LonatiMassimo SantiniSebastiano Vigna

Dipartimento di Scienze dell'Informazione Università degli Studi di Milano

(日) (日) (日)

Things related to PageRank

What do we speak of when we speak of PageRank?

- graphs
- (perturbed) Markov chains
- invariant distributions
- ... and the other "usual suspects".

In this talk, some "unusual suspects" appear (for the first time on the screen)

- overing projections
- graph fibrations
- graph isomorphisms

Covering projections in algebraic topology

 In algebraic topology, a *covering projection* is a continuous map that behaves *locally* like a homeomorphism:

Very roughly: it's a sort of local isomorphism.

Covering projections in modern mathematics

- Every **graph** can be turned into a **topological space** by considering its geometric realization.
- This allows one to apply the definition of covering projections to graphs as well: in the case of graphs, the definition can actually be restated in purely combinatorial (and simple) form.
- In particular, covering projections became widely used in topological graph theory.

From covering projections to fibrations

- Covering projections turn out to be too strong for many applications when *directed graphs* are involved.
- A weaker topological property, that of being a *fibration*, has been reformulated by Grothendieck for categories, and can be used naturally on graphs (seen as generators of categories).
- Grothendieck's notion of fibration boils down to a very simple one when applied to a graph.
- In fact, the community working on symbolic dynamics had independently defined fibrations and used them to classify shift systems and Markov chains up to measure-theoretic isomorphism [Ashley, Marcus & Tuncel, 1997].

・ロト ・回ト ・ヨト ・ヨト

My own personal relation with fibrations

- I first came in contact with fibrations when trying to solve (with Sebastiano Vigna) a problem in distributed computing:
 - given an anonymous (no ID's) message-passing asynchronous network...
 - ... under which conditions can the processors elect a leader.
- It turned out that this question can be answered completely using graph fibrations.
- We continued to use graph fibrations to solve various problems of distributed computability.
- Eventually, we collected all results on graph fibrations in a paper:

Paolo Boldi and Sebastiano Vigna. *Fibrations of graphs*. Discrete Math., 243:21-66, 2002

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A graph is a graph is a graph...

- In this case, generality makes things simpler.
- The word graph in this talk will always be used to mean
 - a set of nodes N_G (usually: finite)
 - a set of arcs A_G (usually: finite)
 - two maps $s_G: A_G \rightarrow N_G$ (source) and $t_G: A_G \rightarrow N_G$ (target)
 - a map $c_G : A_G \rightarrow C$ that assigns a colour to each arc.
- Loops are allowed; parallel arcs are allowed.
- When no parallel arcs exist, we say that the graph is *separated*.

A (1) > A (2) > A (2) >

Graph morphisms

- Given two graphs G and H, a morphism f : G → H maps nodes to nodes and arcs to arcs in such a way that sources, targets and colours are preserved.
- Formally:

$$\begin{array}{lll} s_H(f(a)) &=& f(s_G(a)) \\ t_H(f(a)) &=& f(t_G(a)) \\ c_H(f(a)) &=& c_G(a) \end{array}$$

for all arcs $a \in A_G$

Graph fibration

- A morphism f : G → H is a fibration if every arc of H can be uniquely lifted, up to the choice of its target.
- Formally: for every arc a ∈ A_H and every node y ∈ N_G such that f(y) = t(a), there is a unique arc ã^y ∈ A_G such that f(ã^y) = a and t(ã^y) = y.

• • = • • = •

Graph fibration

- A morphism f : G → H is a fibration if every arc of H can be uniquely lifted, up to the choice of its target.
- Formally: for every arc a ∈ A_H and every node y ∈ N_G such that f(y) = t(a), there is a unique arc ã^y ∈ A_G such that f(ã^y) = a and t(ã^y) = y.

• • = • • = •

A graph fibration is...

- A graph fibration is a local in-isomorphism.
- More explicitly: it is 1-1 on local in-neighborhoods

(4回) (4回) (日)

A graph fibration is...

- A graph fibration is a local in-isomorphism.
- Nothing is required for out-neighborhoods!

(1日) (1日) (日)

A basic ingredient: universal total graph

• Let G be a graph and x a node of G

Basic property of universal total graphs

- Let G be a graph and x a node of G
- Let $f: G \to B$ be a fibration
- Then \widetilde{G}^x and $\widetilde{B}^{f(x)}$ are isomorphic.
- Hence, in particular: two nodes of *G* that are identified by some fibration must have isomorphic universal total graphs.

Minimum base

- The converse is also true: if two nodes of *G* have the same universal total graph, then they are identified by some fibration.
- More precisely, let $x \sim_G y$ whenever \widetilde{G}^x and \widetilde{G}^y are isomorphic.
- There is a graph \widehat{G} , whose nodes are the \sim_G -equivalence classes, such that G is fibred over \widehat{G} .
- \widehat{G} is called the *minimum base* of *G*.

A (1) > A (2) > A

Markov chains and graphs

- A graph can be identified with the (transition matrix of a) Markov chain, provided that:
 - colors are non-negative real numbers (interpreted as transition probabilities)
 - for every node, the sum of the colors on outgoing arcs is 1:

$$\forall x \in N_G. \sum_{a: s_G(a)=x} c_G(a) = 1.$$

- Such graphs are called *stochastic*.
- The correspondence between stochastic graphs and row-stochastic matrices is 1-to-1 for separated graphs.

A (1) > A (2) > A (2)

Markov chains with restart

• Let *P* be the transition matrix of a Markov chain; an *analytic perturbation* of *P* [Schweitzer 1968] is

$$P(\varepsilon) ::= P + \varepsilon P_1 + \varepsilon^2 P_2 + \dots$$

for small enough ε .

We are going to consider a special case, where
 P₂ = P₃ = ··· = 0 and P₁ has a special form: given a distribution v on the states:

$$\mathscr{R}(P,\mathbf{v},\alpha) = \alpha P + (1-\alpha)\mathbf{1}\mathbf{v}^{\mathsf{T}}.$$

• Interpretation: at each step, with probability α we proceed as in P, with probability $1 - \alpha$ we "restart" from a state chosen according to \mathbf{v} ; for this reason, $\mathscr{R}(P, \mathbf{v}, \alpha)$ is called a *Markov chain with restart*.

A (1) > A (2) > A (2)

PageRank as a special case

Standard PageRank can be seen as a special case of a Markov chain with restart:

$$\mathscr{R}(P,\mathbf{v},\alpha) = \alpha P + (1-\alpha)\mathbf{1}\mathbf{v}^{T}.$$

where:

• *P* is the random-walk transition matrix defined on the graph: the probability to go from node *i* to node *j* in one step is

$$\begin{cases} 0 & \text{if there is no arc } i \to j \\ 1/d^+(i) & \text{if there is an arc } i \to j \text{ and } i \text{ has } d^+(i) \text{ outgoing arcs.} \end{cases}$$

A (1) > A (2) > A (2)

• dangling nodes must be eliminated beforehand!

PageRank: an example

Figure: The corresponding Markov chain

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Markov chains with restart are unichain

Theorem

For every transition matrix P and *every* preference vector \mathbf{v} :

- *R*(P, v, α) is unichain: all its essential (a.k.a. recurrent) states form a unique component;
- the essential states of $\mathscr{R}(P, \mathbf{v}, \alpha)$ are aperiodic.

As a consequence:

Corollary

 $\mathscr{R}(P, \mathbf{v}, \alpha)$ has a unique invariant distribution $\mathbf{r}(P, \mathbf{v}, \alpha)$.

・ロト ・日下・ ・ヨト ・ヨト

Invariant distribution and limit behaviours

Some results about the invariant distribution $\mathbf{r}(P, \mathbf{v}, \alpha)$ of the Markov chain with restart $\mathscr{R}(P, \mathbf{v}, \alpha)$:

Theorem

۲

$$\mathbf{r}(P,\mathbf{v},\alpha) = (1-\alpha)\mathbf{v}^T(I-\alpha P)^{-1}$$

- limit behaviour when $\alpha = 0$: $\mathbf{r}(P, \mathbf{v}, 0) = \mathbf{v}^T$
- limit behaviour when α → 1: lim_{α→1⁻} r(P, v, α) = v^TP^{*} where P^{*} is the Cesàro limit

$$P^* = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} P^k.$$

A (B) > A (B) > A (B) >

Power series associated to a graph

- Given an R⁺-coloured graph G, let G*(-, i) be the set of paths of G ending in i; for every path π, let c(π) be the product of the arc labels of π.
- For a distribution v, define the following power series vector s(G, v, α)

$$s_i(G, \mathbf{v}, \alpha) = (1 - \alpha) \sum_{t=0}^{\infty} \alpha^t \left(\sum_{\pi \in G^*(-,i), |\pi|=t} v_{s(\pi)} c(\pi) \right).$$

 For a distribution v, define the following power series vector s(G, v, α)

$$s_i(G, \mathbf{v}, \alpha) = (1 - \alpha) \sum_{t=0}^{\infty} \alpha^t \left(\sum_{\pi \in G^*(-,i), |\pi| = t} v_{s(\pi)} c(\pi) \right)$$

 The invariant distribution of a Markov chain with restart coincides with s(G, v, α); i.e., if G is stochastic, then

$$\mathbf{s}(G,\mathbf{v},\alpha)=\mathbf{r}(G,\mathbf{v},\alpha).$$

<回> < 回> < 回> < 回>

Power series and fibrations

Theorem

Let $f : G \rightarrow B$ be a colour-preserving fibration and a distribution **v** on the nodes of *B*. Then:

$$\mathbf{s}(G, \mathbf{v}^f, \alpha) = \mathbf{s}(B, \mathbf{v}, \alpha)^f$$

... where $-^{f}$ means "copy along each fibre of f".

<回> < E> < E>

An example

Figure: $\mathbf{s}(G, \mathbf{v}^{f}, \alpha) = \mathbf{s}(B, \mathbf{v}, \alpha)^{f}$

◆□ > ◆□ > ◆豆 > ◆豆 > ●

æ

Consequences

Implications of

$$\mathbf{s}(G, \mathbf{v}^f, \alpha) = \mathbf{s}(B, \mathbf{v}, \alpha)^f.$$

- Nodes of G that are fibration equivalent have the same PageRank (for all α) provided that the preference vector is fibrewise constant.
- Instead of computing r(G, v^f, α) = s(G, v^f, α) one can compute s(B, v, α). This is advantageous! (B can be much smaller!).
- Be careful: *B* may not be stochastic, and **v** may not sum up to 1.
- Solution for the latter problems in the full paper.

(4回) (4回) (日)

Markovian spectrally distinguishable graphs

- [Gori et al., 2005] proposed a polynomial isomorphism algorithm for the class of *Markovian spectrally distinguishable* graphs.
- A graph with n nodes is Markovian spectrally distinguishable iff there are n values α₀,..., α_{n-1} such that the PageRank vectors for these values form an invertible matrix.
- Since two nodes that are fibration equivalent have the same PageRank (for all α 's), we have that:
 - a Markovian spectrally distinguishable graph is fibration prime.

(that is: it has no non-trivial fibrations)

• The converse is not true:

A (1) > A (2) > A (2) >

Graph fibrations and graph isomorphism

- Graph isomorphism for fibration-prime graphs is polynomial.
- Hence, in particular, deciding isomorphism between Markovian spectrally distinguishable graphs can be done in polynomial time *with a completely combinatorial algorithm* (no PageRank computation required).
- Many practical algorithms for graph isomorphism exploit this fact.
- More precisely: they exploit the fact that nodes exchanged by an automorphism must have the same universal total graph.
- For example, McKay's famous nauty algorithm computes the minimum base, and then reasons on each fibre separately.
- But, how hard is it to compute the minimum base?

イロト イヨト イヨト イヨト

Computing the minimum base

- The Cardon-Crochemore algorithm [Cardon and Crochemore, 1982] can be adapted to compute the minimum base (more precisely: to decide the \sim_G relation) can be implemented with space occupancy O(m + n) and time $O(m \log m \log n)$.
- Of course, this algorithm gives a necessary condition for Markovian distinguishability: if there are non-trivial equivalences, the graph is not Markovian spectrally distinguishable.
- For large graphs, O(m + n) may be too much space: a different algorithm requires O(n) space but with time O(mn log m log n).

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Experimental results

We computed \sim_G on some real Web graphs:

Dataset	Number of nodes	Number of fibres	Avg. fibre size
WebBase	118,142,155	41,705,767	2.83
.it	41,291,594	15,245,587	2.71
.uk	39,459,925	14,154,663	2.79

Fibre cardinalities

Fibre cardinalities (in log/log scale):

WebBase

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Fibre cardinalities

Fibre cardinalities (in log/log scale):

.it

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Fibre cardinalities

Fibre cardinalities (in log/log scale):

.uk

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Conclusions (and applications?)

- Computing ~_G gives a sufficient condition for two nodes to have the same PageRank (for all α).
- No approximation! The algorithm is purely symbolic (combinatorial).
- PageRank can be computed on the minimum base which is usually smaller.
- (But: computing the minimum base requires some time...)

<回> < 回> < 回> < 回>