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Things related to PageRank

What do we speak of when we speak of PageRank?

graphs

(perturbed) Markov chains

invariant distributions

. . . and the other “usual suspects”.

In this talk, some “unusual suspects” appear (for the first time on
the screen)

covering projections

graph fibrations

graph isomorphisms

Boldi, Lonati, Santini, Vigna Fibrations and PageRank



Covering projections in algebraic topology

In algebraic topology, a covering projection is a continuous
map that behaves locally like a homeomorphism:

Very roughly: it’s a sort of local isomorphism.
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Covering projections in modern mathematics

Every graph can be turned into a topological space by
considering its geometric realization.

This allows one to apply the definition of covering projections
to graphs as well: in the case of graphs, the definition can
actually be restated in purely combinatorial (and simple) form.

In particular, covering projections became widely used in
topological graph theory.
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From covering projections to fibrations

Covering projections turn out to be too strong for many
applications when directed graphs are involved.

A weaker topological property, that of being a fibration, has
been reformulated by Grothendieck for categories, and can be
used naturally on graphs (seen as generators of categories).

Grothendieck’s notion of fibration boils down to a very simple
one when applied to a graph.

In fact, the community working on symbolic dynamics had
independently defined fibrations and used them to classify
shift systems and Markov chains up to measure-theoretic
isomorphism [Ashley, Marcus & Tuncel, 1997].
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My own personal relation with fibrations

I first came in contact with fibrations when trying to solve
(with Sebastiano Vigna) a problem in distributed computing:

given an anonymous (no ID’s) message-passing asynchronous
network. . .
. . . under which conditions can the processors elect a leader.

It turned out that this question can be answered completely
using graph fibrations.

We continued to use graph fibrations to solve various
problems of distributed computability.

Eventually, we collected all results on graph fibrations in a
paper:

Paolo Boldi and Sebastiano Vigna. Fibrations of graphs.
Discrete Math., 243:21-66, 2002
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A graph is a graph is a graph. . .

In this case, generality makes things simpler.

The word graph in this talk will always be used to mean

a set of nodes NG (usually: finite)
a set of arcs AG (usually: finite)
two maps sG : AG → NG (source) and tG : AG → NG (target)
a map cG : AG → C that assigns a colour to each arc.

Loops are allowed; parallel arcs are allowed.

When no parallel arcs exist, we say that the graph is
separated.
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Graph morphisms

Given two graphs G and H, a morphism f : G → H maps
nodes to nodes and arcs to arcs in such a way that sources,
targets and colours are preserved.

Formally:

sH(f (a)) = f (sG (a))

tH(f (a)) = f (tG (a))

cH(f (a)) = cG (a)

for all arcs a ∈ AG

0 1

2

A

B

Boldi, Lonati, Santini, Vigna Fibrations and PageRank



Graph fibration

A morphism f : G → H is a fibration if every arc of H can be
uniquely lifted, up to the choice of its target.

Formally: for every arc a ∈ AH and every node y ∈ NG such
that f (y) = t(a), there is a unique arc ãy ∈ AG such that
f (ãy ) = a and t(ãy ) = y .
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A graph fibration is. . .

A graph fibration is a local in-isomorphism.

More explicitly: it is 1-1 on local in-neighborhoods
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A graph fibration is. . .

A graph fibration is a local in-isomorphism.

Nothing is required for out-neighborhoods!
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A basic ingredient: universal total graph

Let G be a graph and x a node of G
0

1

2 3

The (usually infinite) tree of all paths ending in x is called the
universal total graph of G at x , denoted by G̃ x .
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Basic property of universal total graphs

Let G be a graph and x a node of G

Let f : G → B be a fibration

Then G̃ x and B̃ f (x) are isomorphic.

Hence, in particular: two nodes of G that are identified by
some fibration must have isomorphic universal total graphs.
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Minimum base

The converse is also true: if two nodes of G have the same
universal total graph, then they are identified by some
fibration.

More precisely, let x ∼G y whenever G̃ x and G̃ y are
isomorphic.

There is a graph Ĝ , whose nodes are the ∼G -equivalence
classes, such that G is fibred over Ĝ .

Ĝ is called the minimum base of G .
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Markov chains and graphs

A graph can be identified with the (transition matrix of a)
Markov chain, provided that:

colors are non-negative real numbers (interpreted as transition
probabilities)
for every node, the sum of the colors on outgoing arcs is 1:

∀x ∈ NG .
∑

a:sG (a)=x

cG (a) = 1.

Such graphs are called stochastic.

The correspondence between stochastic graphs and
row-stochastic matrices is 1-to-1 for separated graphs.
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Markov chains with restart

Let P be the transition matrix of a Markov chain; an analytic
perturbation of P [Schweitzer 1968] is

P(ε) ::= P + εP1 + ε2P2 + . . .

for small enough ε.

We are going to consider a special case, where
P2 = P3 = · · · = 0 and P1 has a special form: given a
distribution v on the states:

R(P, v, α) = αP + (1 − α)1vT .

Interpretation: at each step, with probability α we proceed as
in P, with probability 1 − α we “restart” from a state chosen
according to v; for this reason, R(P, v, α) is called a Markov
chain with restart.
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PageRank as a special case

Standard PageRank can be seen as a special case of a Markov
chain with restart:

R(P, v, α) = αP + (1 − α)1vT .

where:

P is the random-walk transition matrix defined on the graph:
the probability to go from node i to node j in one step is

{
0 if there is no arc i → j

1/d+(i) if there is an arc i → j and i has d+(i) outgoing arcs.

dangling nodes must be eliminated beforehand!
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PageRank: an example
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Figure: The corresponding Markov chain
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Markov chains with restart are unichain

Theorem

For every transition matrix P and every preference vector v:

R(P, v, α) is unichain: all its essential (a.k.a. recurrent)
states form a unique component;

the essential states of R(P, v, α) are aperiodic.

As a consequence:

Corollary

R(P, v, α) has a unique invariant distribution r(P, v, α).
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Invariant distribution and limit behaviours

Some results about the invariant distribution r(P, v, α) of the
Markov chain with restart R(P, v, α):

Theorem

r(P, v, α) = (1 − α)vT (I − αP)−1

limit behaviour when α = 0: r(P, v, 0) = vT

limit behaviour when α → 1: limα→1− r(P, v, α) = vTP∗

where P∗ is the Cesàro limit

P∗ = lim
n→∞

1

n

n−1∑

k=0

Pk .
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Power series associated to a graph

Given an R+-coloured graph G , let G ∗(−, i) be the set of
paths of G ending in i ; for every path π, let c(π) be the
product of the arc labels of π.

For a distribution v, define the following power series vector
s(G , v, α)

si (G , v, α) = (1 − α)
∞∑

t=0

αt


 ∑

π∈G∗(−,i),|π|=t

vs(π)c(π)


 .

For a distribution v, define the following power series vector
s(G , v, α)

si (G , v, α) = (1 − α)
∞∑

t=0

αt


 ∑

π∈G∗(−,i),|π|=t

vs(π)c(π)


 .
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The invariant distribution of a Markov chain with restart
coincides with s(G , v, α); i.e., if G is stochastic, then

s(G , v, α) = r(G , v, α).
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Power series and fibrations

Theorem

Let f : G → B be a colour-preserving fibration and a distribution v

on the nodes of B. Then:

s(G , vf , α) = s(B, v, α)f

. . . where −f means “copy along each fibre of f ”.
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An example
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Figure: s(G , vf , α) = s(B , v, α)
f
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Consequences

Implications of
s(G , vf , α) = s(B, v, α)f .

Nodes of G that are fibration equivalent have the same
PageRank (for all α) provided that the preference vector is
fibrewise constant.

Instead of computing r(G , vf , α) = s(G , vf , α) one can
compute s(B, v, α). This is advantageous! (B can be much
smaller!).

Be careful: B may not be stochastic, and v may not sum up
to 1.

Solution for the latter problems in the full paper.
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Markovian spectrally distinguishable graphs

[Gori et al., 2005] proposed a polynomial isomorphism
algorithm for the class of Markovian spectrally distinguishable
graphs.

A graph with n nodes is Markovian spectrally distinguishable
iff there are n values α0, . . . , αn−1 such that the PageRank
vectors for these values form an invertible matrix.

Since two nodes that are fibration equivalent have the same
PageRank (for all α’s), we have that:

a Markovian spectrally distinguishable graph is fibration prime.

(that is: it has no non-trivial fibrations)

The converse is not true:
0 1

2 3
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Graph fibrations and graph isomorphism

Graph isomorphism for fibration-prime graphs is polynomial.

Hence, in particular, deciding isomorphism between Markovian
spectrally distinguishable graphs can be done in polynomial
time with a completely combinatorial algorithm (no PageRank
computation required).

Many practical algorithms for graph isomorphism exploit this
fact.

More precisely: they exploit the fact that nodes exchanged by
an automorphism must have the same universal total graph.

For example, McKay’s famous nauty algorithm computes the
minimum base, and then reasons on each fibre separately.

But, how hard is it to compute the minimum base?
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Computing the minimum base

The Cardon-Crochemore algorithm [Cardon and Crochemore,
1982] can be adapted to compute the minimum base (more
precisely: to decide the ∼G relation) can be implemented with
space occupancy O(m + n) and time O(m log m log n).

Of course, this algorithm gives a necessary condition for
Markovian distinguishability: if there are non-trivial
equivalences, the graph is not Markovian spectrally
distinguishable.

For large graphs, O(m + n) may be too much space: a
different algorithm requires O(n) space but with time
O(mn log m log n).
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Experimental results

We computed ∼G on some real Web graphs:

Dataset Number of nodes Number of fibres Avg. fibre size

WebBase 118,142,155 41,705,767 2.83
.it 41,291,594 15,245,587 2.71
.uk 39,459,925 14,154,663 2.79
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Fibre cardinalities

Fibre cardinalities (in log/log scale):
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Conclusions (and applications?)

Computing ∼G gives a sufficient condition for two nodes to
have the same PageRank (for all α).

No approximation! The algorithm is purely symbolic
(combinatorial).

PageRank can be computed on the minimum base — which is
usually smaller.

(But: computing the minimum base requires some time. . . )
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