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What’s Common?

I Relevance in Web IR
I ranking, similarity, personalization
I spam hunting [BCsSU AIRWeb 2005]
I LSI, HITS

I Infeasible even to store: n × n matrices
I Web Pages: n in order of ten billions
I Experiments: Stanford WebBase n = 80M

I Randomized approximation
I Typical solution: sampling
I Our new results based on sketching and random projections
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Personalized PageRank – Preliminaries and Sampling

Definition: random surfer with teleportation distr. r

PPRr (u) = c · r(u) + (1− c)
∑
vu∈E

PPRr (v)

Linearity: single page teleportation suffices

PPRr (u) =
∑
v

r(u) · PPRv (u)

Path summation:

PPR
[k]
u (v) =

∑
k≥0

c ·(1−c)k
∑

v0=u,v1,...,vk=v

1

(d+(v0) · · · d+(vk−1))

Sampling: random paths as above [Fogaras–Rácz, WAW 2004]
I First algorithm with no restriction on u
I Relative approx (1± ε); out of bounds prob δ
I Uses O(ε−2 log 1/δ log n) space
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Personalized PageRank – Rounding and Sketching

Example
v1 v2 v4 v6v3

u

w

v5

Power iteration propagates large variance downwards
Dynamic programming [Jeh–Widom WWW 2003] averages the
error upward

PPRu = cχu + (1− c) ·
∑

v :(uv)∈E

PPRv/d+(u).

Problem: small world, nonzeroes quickly grow in u’s neighborhood
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New results – Rounding and Sketching

Sloppy Attendant: round change down to nearest εuro

I Requires space 1/ε · log n to store a sparse PPRu

vector
I Matching communication complexity lower

bound for a top list query database

Drunken Surfer: mix up memories by random hash of pages

I Use log 1/δ surfers and use minimum vote:
Count-Min Sketch

I Dynamic programming over sketches by their
linearity

I Space 1/ε log 1/δ per page optimal for value
queries
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SimRank – Preliminaries and Sampling

“Two pages are similar if pointed to by similar pages” [Jeh–Widom
KDD 2002]:

Sim(k)(u1, u2) =

(1− c) ·
P

Sim(k−1)
(v1,v2)

d−(u1)·d−(u2)
if u1 6= u2

1 if u1 = u2.
(1)

Path pair summation (incl. sampling [Fogaras–Rácz WWW 2005])
over

u = w0,w1, . . . ,wk ′−1,wk ′ = v2

u = w ′
0,w

′
1, . . . ,w

′
k ′−1,w

′
k ′ = v1
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SimRank – Reduction to Personalized PageRank

Version 0 reduction: count path pairs from v1 and v2 that may
meet several times

Sim
(0)
v1,v2 =

∑
k>0

(1− c)k
∑
u

RP
[k]
v1 (u)RP

[k]
v2 (u)

Self-similarity SimRank of at least t + 1 meeting points

SSim(t+1)(v) =
∑
u

∑
k>0

(1− c)kRP
[k]
v (u)RP

[k]
v (u) · SSim(t)(u)

Obtain SimRank by inclusion-exclusion of self-similarities
Converges for 1− c < 1/2, technicalities to carry through
approximation
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SimRank Example

v1

v2

u1u2u3

∑
k>0

1

3k

∑
u

RP
[k]
v1 (u)RP

[k]
v2 (u) =

1

4
· 1

3

(
1 +

1

3
+

1

32
+ . . .

)
=

1

12
· 3

2

SSim(0)(ui ) =
1

3
+

1

32
+ . . . =

1

2
SSim(1)(ui ) =

1

4

SSim(ui ) = 1− 1

2
+

1

4
− 1

8
+ . . . =

2

3
X
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Singular Value Decomposition

I Fundamental tool in data mining (e.g. clustering) and web IR
(e.g. HITS, LSI)

I Task: Given A ∈ Rm×n find rank-k matrix Ak such that
‖A− Ak‖F is minimal, where ‖X‖2

F =
∑

ij x2
ij

I Solution: Singular Value Decomposition, slow as e.g.
O(min{mn2, nm2})

I Several results based on sampling of the form
‖A− Âk‖F ≤ ‖A− Ak‖F + εt ‖A‖F

I ‖A‖F might be a significantly larger than ‖A− Ak‖F !
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Fast Relative Error SVD via Random Projections

I Three recent independent results [HP06, DV06, Sar06] on
‖A− Âk‖F ≤ (1 + ε) ‖A− Ak‖F

I [DV06, Sar06] both project input to r -dim subspace, and run
SVD on projection. Total time O(Mr + (n + m)r2) with M
non-zeroes

Ours [DV06]
Fewer passes: 2 O(k log k)

Faster in k: r = k
ε + k log k r = k

ε + k2 log k
Subspace: random linear non-uniform random

combination of rows sample of rows

I Heavily builds on
[AMS99, Ach03, DMM06b, DMM06a, DRVW06]
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The Core Idea – Approximate Matrix Products

~~

I Reduce C = A · B to smaller Â · B̂
I C = sum of dyads, each product of the ith column of A and

and the ith row of B =⇒
I Sample a few (large) dyads to reduce the number of terms in

the sum
I Sampling probabilities need to depend on the data
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The Core Idea – Approximate Matrix Products Cont’d

~~

I Cij = dot product of the ith row of A and the jth column of
B =⇒

I Use low-distortion embeddings and compute the dot products
of shorter vectors

I Embeddings are data independent
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Conclusion

I Space-optimal summaries for fully personalized PageRank, and
for SimRank with decay factor < 1/2

I Fast O(1)-pass relative error SVD algorithm

I At the heart of it: low space approximation of large vectors in
the ‖. . .‖∞ and ‖. . .‖2 norms
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Thank you!

I http://www.ilab.sztaki.hu/websearch

I Your questions?
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