Probability \& Mathematical Needs

N Amanquah
Ashesi University

Acknowledgements:
S Antoine
Laboratoire d'Analyse, Topologie et Probabilités
Université Aix-Marseille 1

Pascal Bootcamp 2010

- The big picture:
- Machine learning ...
- data mining -use historical data to improve decisions
- apps that cannot be programmed easily eg speech recognition
- self customizing program
- Learning =improving experience at some task
- How prior knowledge can help in learning
- Some methods:
- Classification, clustering
- Illustrate with linear regression(least squares)

Outline

(9) Linear Algebra

- Vector spaces
- Orthogonality, dot product, norm
- Matrices
- Determinant
- Matrix decompositions (SVD, Choleski, LU, QR)
(2) Probabilities
- Vocabulary, usual laws (discrete, continuous)
- Conditional probabilities
- Bayes rule, maximum likelihood, maximum a posteriori
- Entropy, Kullback-Leibler divergence, perpexity
- Bounds
(3) Optimization
- Minimima, maxima, saddle points
- Convex fonctions
- Primal and dual problems, Lagrange multipliers

Vector spaces

Example $\left(\mathbb{R}^{n}\right)$

$$
\begin{gathered}
\mathbb{R}^{n}=\left\{x=\left(x_{1}, \cdots, x_{n}\right)^{T}: x_{i} \in \mathbb{R} \forall i\right\} \\
-x, y \in \mathbb{R}^{n} \Rightarrow x+y=\left(x_{1}+y_{1}, \cdots, x_{n}+y_{n}\right)^{T} \in \mathbb{R}^{n} \\
-x \in \mathbb{R}^{n}, \lambda \in \mathbb{R} \Rightarrow \lambda x=\left(\lambda x_{1}, \cdots, \lambda x_{n}\right)^{T} \in \mathbb{R}^{n} \\
-\mathbb{R}^{n}=\left\{x: \exists\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{R}^{n} \text { s.t. } x=\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n}\right\} \\
\quad \text { where } e_{i}=(0, \cdots, 0,1,0, \cdots, 0) .
\end{gathered}
$$

Example (Solutions of homogeneous differential equations)

$$
\mathcal{S}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \forall t, f^{\prime \prime}(t)+f(t)=0\right\}
$$

- $f \in \mathcal{S} \Rightarrow-f \in \mathcal{S}$
- $f, g \in \mathcal{S} \Rightarrow f+g \in \mathcal{S}$
- $f \in \mathcal{S}, \lambda \in \mathbb{R} \Rightarrow \lambda f \in \mathcal{S}$
- $\mathcal{S}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \exists\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}\right.$ s.t. $\left.f=\lambda_{1} \cos +\lambda_{2} \sin \right\}$

Vector spaces

Example ($\left.L^{2}(\mathbb{R})\right)$

$$
L^{2}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \int_{\mathbb{R}}|f(x)|^{2} d x<\infty\right\}
$$

- $f \in L^{2}(\mathbb{R}) \Rightarrow-f \in L^{2}(\mathbb{R})$
- $f, g \in L^{2}(\mathbb{R}) \Rightarrow f+g \in L^{2}(\mathbb{R})$
- $f \in L^{2}(\mathbb{R}), \lambda \in \mathbb{R} \Rightarrow \lambda f \in L^{2}(\mathbb{R})$
- $L^{2}(\mathbb{R})$ is not the span of any finite number of its elements.
- Dot product : $f, g \in L^{2}(\mathbb{R}),\langle f, g\rangle=\int_{\mathbb{R}} f(x) g(x) d x$
- Norm : $\|f\|_{L^{2}(\mathbb{R})}=\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{\frac{1}{2}}$
- Closeness

Vector spaces

Example $\left(L^{2}(\mathbb{R})\right)$

$$
L^{2}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \int_{\mathbb{R}}|f(x)|^{2} d x<\infty\right\}
$$

- $f \in L^{2}(\mathbb{R}) \Rightarrow-f \in L^{2}(\mathbb{R})$
- $f, g \in L^{2}(\mathbb{R}) \Rightarrow f+g \in L^{2}(\mathbb{R})$
- $f \in L^{2}(\mathbb{R}), \lambda \in \mathbb{R} \Rightarrow \lambda f \in L^{2}(\mathbb{R})$
- $L^{2}(\mathbb{R})$ is not the span of any finite number of its elements.
- Dot product : $f, g \in L^{2}(\mathbb{R}),\langle f, g\rangle=\int_{\mathbb{R}} f(x) g(x) d x$
- Norm : $\|f\|_{L^{2}(\mathbb{R})}=\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{\frac{1}{2}}$
- Closeness :

$$
\forall n, f_{n} \in L^{2}(\mathbb{R}) \text { and }\left\|f_{n}-f\right\|_{L^{2}(\mathbb{R})} \underset{n \rightarrow \infty}{\rightarrow} 0 \text { implies } f \in L^{2}(\mathbb{R})
$$

Vector spaces

Definition (Vector space)

A set \mathcal{S} is called a real vector space if it is endowed with

- an "addition" which is :
- stable : $x, y \in \mathcal{S} \Rightarrow x+y \in \mathcal{S}$,
- commutative and associative,
- with an nul element $0 \in \mathcal{S}$ s.t. $\forall x \in \mathcal{S}, 0+x=x$,
- for which all elements are invertible $x \in \mathcal{S} \Rightarrow-x \in \mathcal{S}$.
- the multiplication by a scalar in \mathbb{R} which is :
- stable : $x \in \mathcal{S}, \lambda \in \mathbb{R} \Rightarrow \lambda x \in \mathcal{S}$.
- associative and distributive over '+'.

Vector spaces may be decomposed into subspaces:

Definition (Subspace)

A subset F of a vector space \mathcal{S} is a called a subspace of \mathcal{S} if the previous properties are preserved in F.

Vector subspaces, family of vectors, dimension

- Supplementary subspaces :
- F, G subspaces, $F \cap G=\{0\}, \mathcal{S}=F+G$.
- Any $x \in \mathcal{S}$ has a unique decomposition $x=x_{F}+x_{G}$.
- Subspaces may be generated from a family of vectors:
- $y \in \operatorname{Span}\left\{x_{1}, \cdots, x_{n}\right\}$ iff $\exists \lambda_{1} \cdots \lambda_{n} \in \mathbb{R}$ s.t. $y=\sum_{i=1}^{n} \lambda_{i} x_{i}$.
- The family $\left\{x_{i}\right\}_{i=1 . . n}$ is linearly independent iff the decomposition $y=\sum_{i=1}^{n} \lambda_{i} x_{i}$ is unique.
- Conversely if $F=\operatorname{Span}\left\{\left\{x_{i}\right\}_{i=1 . . n}\right\}$ then the family $\left\{x_{i}\right\}_{i=1 . . n}$ is said to generate F.
- The dimension of a (sub)space F is the cardinal of its largest linearly independent family.
- Ex: $\operatorname{dim}\left(\mathbb{R}^{d}\right)=d, \operatorname{dim}\left(\mathcal{S}_{\text {diff. eq. }}\right)=2, \operatorname{dim}\left(L^{2}(\mathbb{R})\right)=+\infty$.
- A hyperplane is a subspace of which the supplementaries have dimension 1.
- If $\operatorname{dim}(\mathcal{S})=n$, an hyperplane is any subspace of dimension $n-1$. Ex: lines in \mathbb{R}^{2}, planes in \mathbb{R}^{3}.

Bases

- The family $\left\{x_{i}\right\}_{i=1 . . n}$ is a basis of \mathcal{S} iff it is generative and linearly independent. Here n may be ∞ !
- The cardinal of any basis is exactly the dimension of \mathcal{S} (finite or not).
- For $y \in \mathcal{S}$ there is a unique decomposition $y=\sum_{i=1 . . n} \lambda_{i} x_{i}$.

Example

- $\ln \mathbb{R}^{d}$:
- $\left\{e_{i}\right\}_{i=1 . . d}$, where $e_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ is a basis.
- $y=\left(y_{1}, \cdots, y_{d}\right)^{T}=\sum_{i=1 . . d} y_{i} e_{i}$.
- $\ln L^{2}([0,2 \pi]):$
- $\{\cos (m t), \sin (m t)\}_{m \in \mathbb{N}}$ is a basis.
- $f \in L^{2}([0,2 \pi]), f(t)=\sum_{m \in \mathbb{N}}\left(a_{m} \cos (m t)+b_{m} \cos (m t)\right)$.

Orthogonality, dot product, norm

$\ln \mathbb{R}^{d}$:

- The dot product is defined as :

$$
\langle x, y\rangle_{\mathbb{R}^{d}}=\sum_{i=1}^{d} x_{i} y_{i}
$$

- It is linked to the Euclidian norm :

$$
\begin{gathered}
\|x\|=\sqrt{\langle x, x\rangle_{\mathbb{R}^{d}}}=\sqrt{\sum_{i=1}^{d}\left|x_{i}\right|^{2}} \\
\langle x, y\rangle_{\mathbb{R}^{d}}=\|x\|\|y\| \cos (\theta)
\end{gathered}
$$

- Any subspace has a unique orthogonal supplementary

Orthogonality, dot product, norm

Definition (norm, dot product, Hilbert space)

\mathcal{S} a vector space.

- $\|\|:. \mathcal{S} \rightarrow \mathbb{R}^{+}$is a norm iff

1. $\|x\|=0 \Leftrightarrow x=0$
2. $\lambda \in \mathbb{R}, x \in \mathcal{S},\|\lambda x\|=|\lambda|\|x\|$
3. $x, y \in \mathcal{S},\|x+y\| \leq\|x\|+\|y\|$

- a dot product is a bilinear symmetric application of \mathcal{S}^{2} to \mathbb{R}.
- then $x \rightarrow \sqrt{\langle x, x\rangle}$ is a norm.
- x and y are orthogonal when $\langle x, y\rangle=0$.
- F has a unique orthogonal supplementary F^{\perp}.
- For any x, the unique decomposition $x=x_{F}+x_{F \perp}$ also verifies: $\|x\|^{2}=\left\|x_{F}\right\|^{2}+\left\|x_{F \perp}\right\|^{2}$.
- a Hilbert space \mathcal{H} is a vector space endowed with a dot product $\langle., .\rangle_{\mathcal{H}}$, that is closed for the induced norm.

Orthonormal bases

- A basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1 . . n}$ is orthonormal of \mathcal{H} iff $\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle_{\mathcal{H}}=\delta_{\{i=j\}}$.
- $y \in \mathcal{H}$, the unique decomposition $y=\sum_{i=1 . . n} \lambda_{i} x_{i}$ verifies :

$$
\begin{aligned}
& \text { 1. } \lambda_{i}=\left\langle y, e_{i}\right\rangle_{\mathcal{H}} \\
& \text { 2. }\|y\|_{\mathcal{H}}^{2}=\sum_{i}\left|\lambda_{i}\right|^{2}
\end{aligned}
$$

Example

- $\ln \mathbb{R}^{d}$:
- $\left\{e_{i}=(0, \cdots, 0,1,0, \cdots, 0)\right\}_{i=1 . . d}$ is a an orthonormal basis.
- $y=\left(y_{1}, \cdots, y_{d}\right)^{T}=\sum_{i=1 . . d} y_{i} e_{i}$ and $\|y\|=\sqrt{\sum_{i=1 . . d} y_{i}^{2}}$.
- $\ln L^{2}([0,2 \pi]):$
- $\{\cos (m t), \sin (m t)\}_{m \in \mathbb{N}}$ is an orthonormal basis.
- $f \in L^{2}([0,2 \pi]), f(t)=\sum_{m \in \mathbb{N}}\left(a_{m} \cos (m t)+b_{m} \cos (m t)\right)$
where $a_{m}=\int_{0}^{2 \pi} f(t) \cos (m t) d t, b_{m}=\int_{0}^{2 \pi} f(t) \sin (m t) d t$.
- $\|f\|_{L^{2}}^{2}=\int_{0}^{2 \pi}|f(t)|^{2} d t=\sum_{m \in \mathbb{N}}\left(\left|a_{m}\right|^{2}+\left|b_{m}\right|^{2}\right)$.

Hyperplanes

H a hyperplane then $\operatorname{dim} F^{\perp}=1$ hence there is a vector $u \in \mathcal{H}$ such that :

$$
F^{\perp}=\operatorname{Span}\{u\}=\mathbb{R} u \quad \text { and } \quad\|u\|_{\mathcal{H}}=1 .
$$

- Equation of $H: H=\left\{x \in \mathcal{H}:\langle x, u\rangle_{\mathcal{H}}=0\right\}$.
- The distance from x to H is : $d(x, H)=\left|\langle x, u\rangle_{\mathcal{H}}\right|$.
- The projection of x on H is : $P_{H}(x)=x-\langle x, u\rangle_{\mathcal{H}} u$.

Hyperplanes

H a hyperplane then $\operatorname{dim} F^{\perp}=1$ hence there is a vector $u \in \mathcal{H}$ such that:

$$
F^{\perp}=\operatorname{Span}\{u\}=\mathbb{R} u \quad \text { and } \quad\|u\|_{\mathcal{H}}=1 .
$$

- Equation of $H: H=\left\{x \in \mathcal{H}:\langle x, u\rangle_{\mathcal{H}}=0\right\}$.

$$
H=\left\{x=\left(x_{1}, x_{2}\right)^{T}: x_{1} u_{1}+x_{2} u_{2}=0\right\}
$$

- The distance from x to H is : $d(x, H)=\left|\langle x, u\rangle_{\mathcal{H}}\right|$.

$$
d(x, H)=\left|x_{1} u_{1}+x_{2} u_{2}\right|
$$

- The projection of x on H is : $P_{H}(x)=x-\langle x, u\rangle_{\mathcal{H}} u$.

$$
P_{H}(x)=x-\left(x_{1} u_{1}+x_{2} u_{2}\right) u
$$

Matrices

- Let $H_{1}=\mathbb{R} u_{1}{ }^{\perp}, H_{2}=\mathbb{R} u_{2}{ }^{\perp}, \cdots, H_{m}=\mathbb{R} u_{m}{ }^{\perp}$ be m hyperplanes of \mathbb{R}^{d} and $F=\bigcap_{i=1}^{m} H_{i}$.
- The equation of F is a system of m linear equations with d unknowns:

$$
\left\{\begin{array}{cccc}
u_{1}^{1} x_{1}+u_{1}^{2} x_{2}+ & \cdots & u_{1}^{d} x_{d}=0 \\
u_{2}^{1} x_{1}+u_{2}^{2} x_{2}+ & \cdots & u_{2}^{d} x_{d}=0 \\
\vdots & \ddots & \vdots & \vdots \\
u_{m}^{1} x_{1}+u_{m}^{2} x_{2}+ & \cdots & u_{m}^{d} x_{d} & =0
\end{array}\right.
$$

which is equivalent to the matrix-vector equation :

$$
U x=0 \Leftrightarrow\left(\begin{array}{cccc}
u_{1}^{1} & u_{1}^{2} & \cdots & u_{1}^{d} \\
u_{2}^{1} & u_{2}^{2} & \cdots & u_{2}^{d} \\
\vdots & \vdots & \ddots & \vdots \\
u_{m}^{1} & u_{m}^{2} & \cdots & u_{m}^{d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Matrices

- Let $H_{1}=\mathbb{R} u_{1}{ }^{\perp}, H_{2}=\mathbb{R} u_{2}{ }^{\perp}, \cdots, H_{m}=\mathbb{R} u_{m}{ }^{\perp}$ be m
- The equation of F is a system of m linear equations with d unknowns :

$$
\left\{\begin{array}{cccc}
u_{1}^{1} x_{1}+u_{1}^{2} x_{2}+ & \cdots & u_{1}^{d} x_{d} & =b_{1} \\
u_{2}^{1} x_{1}+u_{2}^{2} x_{2}+ & \cdots & u_{2}^{d} x_{d} & =b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
u_{m}^{1} x_{1}+u_{m}^{2} x_{2}+ & \cdots & u_{m}^{d} x_{d} & =b_{m}
\end{array}\right.
$$

which is equivalent to the matrix-vector equation :

$$
U x=b \Leftrightarrow\left(\begin{array}{cccc}
u_{1}^{1} & u_{1}^{2} & \cdots & u_{1}^{d} \\
u_{2}^{1} & u_{2}^{2} & \cdots & u_{2}^{d} \\
\vdots & \vdots & \ddots & \vdots \\
u_{m}^{1} & u_{m}^{2} & \cdots & u_{m}^{d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Matrices

- A matrix in $\mathbb{R}^{m \times d}$ is a an array made of m row-vectors of \mathbb{R}^{d} or equiv. d column vectors of \mathbb{R}^{m} (e.g. U).
- The matrix-vector product $U x$ may be seen as :

1. Using column vectors $U^{j}=\left(u_{1}^{j}, u_{2}^{j}, \cdots, u_{m}^{j}\right)^{T}$:

$$
U x=\sum_{j=1}^{d} x_{j} U^{j}, \quad \text { where } U^{j} \in \mathbb{R}^{m}
$$

2. Using row vectors $U_{i}=\left(u_{i}^{1}, u_{i}^{2}, \cdots, u_{i}^{d}\right)$:

$$
U x=\left(\begin{array}{c}
\left\langle U_{1}^{T}, x\right\rangle_{\mathbb{R}^{d}} \\
\left\langle U_{2}^{T}, x\right\rangle_{\mathbb{R}^{d}} \\
\vdots \\
\left\langle U_{m}^{T}, x\right\rangle_{\mathbb{R}^{d}}
\end{array}\right) \in \mathbb{R}^{m}
$$

Note : U is a representation of a linear operator : $x \in \mathbb{R}^{d} \rightarrow U x \in \mathbb{R}^{m}$.

Matrices

- Notation :

$$
A=\in \mathbb{R}^{m \times d}=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, d} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, d} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, d}
\end{array}\right)=\left(a_{i, j}\right)_{\substack{i=1 \cdots m \\
j=1 \cdots d}}
$$

- Operations on matrices:
- $\mathbb{R}^{m \times d}$ is a real vector space with $A+B=\left(a_{i, j}+b_{i, j}\right)_{\substack{i=1 \cdots m \\ j=1 \cdots d}}$
- Matrix product : $A \in \mathbb{R}^{m \times p}, B \in \mathbb{R}^{p \times d}$, then :

$$
A B \in \mathbb{R}^{m \times d} \quad \text { s.t. } \quad(A B)_{i, j}=\sum_{k=1}^{p} a_{i, k} b_{k, j}
$$

Note : $A B \neq B A$!

- Matrix transposition : $A \in \mathbb{R}^{m \times d}$, then :

$$
A^{T} \in \mathbb{R}^{d \times m}=\left(a_{j, i}\right)_{\substack{j=1 \cdots d \\ i=1 \cdots m}}
$$

Square matrices $(\mathrm{m}=\mathrm{d})$

- Matrix product is stable in $\mathbb{R}^{d \times d}$, so some are invertible!
- Remarquable matrices
- Diagonal matrices.

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right)
$$

- Upper and Lower triangular matrices:

$$
U=\left(\begin{array}{cccc}
u_{1,1} & u_{1,2} & \cdots & u_{1, d} \\
0 & u_{2,2} & \cdots & u_{2, d} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{d, d}
\end{array}\right) \quad L=\left(\begin{array}{cccc}
l_{1,1} & 0 & \cdots & 0 \\
l_{2,1} & l_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{d, 1} & l_{d, 2} & \cdots & l_{d, d}
\end{array}\right)
$$

- Symmetric matrices : $A=A^{T}$.
- Unitary matrices : $A A^{T}=A^{T} A=I$ (matrix of an orthonormal basis).

Inverting a matrix

- A is diagonal, lower or upper triangular then :

$$
A \text { invertible } \Leftrightarrow \prod_{i=1}^{d} a_{i, i} \neq 0
$$

- Lower triangular systems

$$
A x=b \Leftrightarrow\left(\begin{array}{cccc}
a_{1,1} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{d, 1} & a_{d, 2} & \cdots & a_{d, d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{d}
\end{array}\right) \text { wh. } \prod_{i=1}^{d} a_{i, i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\left\{\begin{aligned}
& a_{1,1} x_{1}=b_{1} \\
& a_{2,2} x_{2}+a_{2,1} x_{1}=b_{1} \\
& a_{3,3} x_{3}+a_{3,2} x_{2}+a_{3,1} x_{d}=b_{2} \\
& \vdots \\
& \vdots \\
& a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots \cdots+a_{1, d} x_{d}=b_{d}
\end{aligned}\right.
$$

Inverting a matrix

- A is diagonal, lower or upper triangular then :

$$
A \text { invertible } \Leftrightarrow \prod_{i=1}^{d} a_{i, i} \neq 0
$$

- Lower triangular systems

$$
A x=b \Leftrightarrow\left(\begin{array}{cccc}
a_{1,1} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{d, 1} & a_{d, 2} & \cdots & a_{d, d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{d}
\end{array}\right) \text { wh. } \prod_{i=1}^{d} a_{i, i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\left\{\begin{aligned}
& x_{1}=b_{1} / a_{1,1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2}=b_{2} \\
& a_{3,1} x_{1}+a_{3,2} x_{2}+a_{3,3} x_{3}=b_{3} \\
& \vdots \\
& \vdots \\
& a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots \cdots \cdots+a_{1, d} x_{d}=b_{d}
\end{aligned}\right.
$$

Inverting a matrix

- A is diagonal, lower or upper triangular then :

$$
A \text { invertible } \Leftrightarrow \prod_{i=1}^{d} a_{i, i} \neq 0
$$

- Lower triangular systems

$$
A x=b \Leftrightarrow\left(\begin{array}{cccc}
a_{1,1} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{d, 1} & a_{d, 2} & \cdots & a_{d, d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{d}
\end{array}\right) \text { wh. } \prod_{i=1}^{d} a_{i, i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\left\{\begin{aligned}
& x_{1}=b_{1} / a_{1,1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2}= \\
& b_{2} \\
& a_{3,1} x_{1}+a_{3,2} x_{2}+a_{3,3} x_{3}=b_{3} \\
& \vdots \\
& \vdots \\
& a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots \cdots \cdots+a_{1, d} x_{d}=b_{d}
\end{aligned}\right.
$$

Inverting a matrix

- A is diagonal, lower or upper triangular then :

$$
A \text { invertible } \Leftrightarrow \prod_{i=1}^{d} a_{i, i} \neq 0
$$

- Lower triangular systems

$$
A x=b \Leftrightarrow\left(\begin{array}{cccc}
a_{1,1} & 0 & \cdots & 0 \\
a_{2,1} & a_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{d, 1} & a_{d, 2} & \cdots & a_{d, d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{d}
\end{array}\right) \text { wh. } \prod_{i=1}^{d} a_{i, i} \neq 0
$$

are solved recursively from the first to the last equation :

$$
\left\{\begin{aligned}
x_{1}= & b_{1} / a_{1,1} \\
x_{2} & =\left(b_{2}-a_{2,1} b_{1} / a_{1,1}\right) / a_{2,2} \\
a_{3,1} x_{1}+a_{3,2} x_{2}+a_{3,3} x_{3}= & b_{3} \\
\vdots & \vdots \\
& \vdots \\
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots \cdots \cdots+a_{1, d} x_{d} & =b_{d}
\end{aligned}\right.
$$

Matrix determinant

- $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible iff $a d-b c \neq 0$ and $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
- For lower/upper triangular and diagonal matrices :
A is invertible iff $\prod_{i=1}^{d} a_{i, i} \neq 0$.
- In general, $A \in \mathbb{R}^{d \times d}$ is invertible
\Leftrightarrow its d row (resp. column) vectors are linearly independent.

$$
\Leftrightarrow \text { its determinant } \operatorname{det}(A)=\left|\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, d} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, d} \\
\vdots & \vdots & \ddots & \vdots \\
a_{d, 1} & a_{d, 2} & \cdots & a_{d, d}
\end{array}\right| \neq 0
$$

- The determinant is found recursively, developping on any row or column : $\operatorname{det}(A)=\sum_{i=1}^{d} a_{i, j} \operatorname{Cof}(A)_{i, j}$.
- $\operatorname{Cof}(A)_{i, j}=\operatorname{det}\left(\left(a_{k, l}\right)_{k \in\{1 \cdots d\} \backslash\{i\}, l \in\{1 \cdots d\} \backslash\{j\}}\right)$
- if $\operatorname{det}(A) \neq 0$ then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Cof}(A)^{T}$.

Eigenvalues, eigenvectors

A a square matrix.

Definition (Eigenvalues and eigenvectors)

- λ is an eigenvalue of A if there exists a vector $v \in \mathbb{R}^{d}, v \neq 0$ s.t. $A v=\lambda v$.
- Equivalently : λ is an eigenvalue of A if $\operatorname{det}(A-\lambda I)=0$.
- Any v verifying $A v=\lambda v$ is an eigenvector associated to the eigenvalue λ.
- Properties:
- For diagonal matrices, the eigenvalues are the diagonal elements (not for triangular matrices !).
- 0 is an eigenvalue iff A is not invertible.
- A is diagonalizable if there exists a basis of eigenvectors :

$$
A=P D P^{-1} \text { with } D \text { diagonal. }
$$

Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors:

- A symmetric matrix is diagonalizable on an orthonormal basis:

$$
A=P D P^{T} \text { with } D \text { diagonal, } P P^{T}=I
$$

- A symmetric matrix is said
- semi-definite positive if $\langle x, A x\rangle \geq 0, \forall x$. Its eigenvalues are ≥ 0.

Note : a definite positive matrix defines a new norm on \mathbb{R}^{d} via the scalar product $\langle x, x\rangle_{A}=\langle x, A x\rangle$

Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors:

- A symmetric matrix is diagonalizable on an orthonormal basis:

$$
A=P D P^{T} \text { with } D \text { diagonal, } P P^{T}=I
$$

- A symmetric matrix is said
- semi-definite positive if $\langle x, A x\rangle \geq 0, \forall x$. Its eigenvalues are ≥ 0.

$$
\begin{array}{r}
\text { Any diagonal matrix, } \\
A=B^{T} B \text { for any } B \in \mathbb{R}^{m, d} .
\end{array}
$$

- definite positive if $\langle x, A x\rangle \geq 0, \forall x$ and $\langle x, A x\rangle=0, \Rightarrow x=0$. Its eigenvalues are >0.

Note : a definite positive matrix defines a new norm on \mathbb{R}^{d} via the scalar product $\langle x, x\rangle_{A}=\langle x, A x\rangle$

Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors:

- A symmetric matrix is diagonalizable on an orthonormal basis:

$$
A=P D P^{T} \text { with } D \text { diagonal, } P P^{T}=I
$$

- A symmetric matrix is said
- semi-definite positive if $\langle x, A x\rangle \geq 0, \forall x$. Its eigenvalues are ≥ 0.

$$
\begin{array}{r}
\text { Any diagonal matrix, } \\
A=B^{T} B \text { for any } B \in \mathbb{R}^{m, d} .
\end{array}
$$

- definite positive if $\langle x, A x\rangle \geq 0, \forall x$ and $\langle x, A x\rangle=0, \Rightarrow x=0$. Its eigenvalues are >0.

Note : a definite positive matrix defines a new norm on \mathbb{R}^{d} via the scalar product $\langle x, x\rangle_{A}=\langle x, A x\rangle$

Singular value decomposition

Symmetric matrices and eigenvalues/eigenvectors:

- A symmetric matrix is diagonalizable on an orthonormal basis:

$$
A=P D P^{T} \text { with } D \text { diagonal, } P P^{T}=I
$$

- A symmetric matrix is said
- semi-definite positive if $\langle x, A x\rangle \geq 0, \forall x$. Its eigenvalues are ≥ 0.

Any diagonal matrix,

$$
A=B^{T} B \text { for any } B \in \mathbb{R}^{m, d} .
$$

- definite positive if $\langle x, A x\rangle \geq 0, \forall x$ and $\langle x, A x\rangle=0, \Rightarrow x=0$. Its eigenvalues are >0.

> Any diagonal matrix without zeros, $A=B^{\top} B$ for any $B \in \mathbb{R}^{m, d}$ when A is invertible.

Note : a definite positive matrix defines a new norm on \mathbb{R}^{d} via the scalar product $\langle x, x\rangle_{A}=\langle x, A x\rangle$

Singular value decomposition

Fix $B \in \mathbb{R}^{m \times d}$, note that :

- $B^{T} B \in \mathbb{R}^{d \times d}$ and $B B^{T} \in \mathbb{R}^{m \times m}$ are symmetric semi-definite positive :
- $B^{T} B=V \Delta_{1} V^{T}$ with Δ_{1} diagonal, $V V^{T}=l$ in $\mathbb{R}^{d \times d}$.
- $B B^{T}=U \Delta_{2} U^{T}$ with Δ_{2} diagonal, $U U^{T}=I$ in $\mathbb{R}^{m \times m}$.
- One can show :
- Δ_{1} and Δ_{2} have the same non-zero values $\lambda_{1}^{2}, \cdots, \lambda_{k}^{2}$.
- $B=U D V^{T}$ with

$$
D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{k}\right)=\left(\begin{array}{cccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \cdots \cdots 0 \\
0 & \lambda_{2} & \cdots & 0 & 0 \cdots \cdots 0 \\
\vdots & \vdots & \ddots & \vdots & 0 \cdots \cdots 0 \\
0 & 0 & \cdots & \lambda_{k} & 0 \cdots \cdots 0 \\
0 & 0 & \cdots & 0 & 0 \cdots \cdots 0
\end{array}\right) \in \mathbb{R}^{m, d}
$$

- $B^{T}=V D U^{T}$ with $D=\operatorname{diag}\left(l_{1}, \cdots, \lambda_{k}\right)=\in \mathbb{R}^{d, m}$.

Singular value decomposition

Fix $B \in \mathbb{R}^{m \times d}$, note that :

- $B^{T} B \in \mathbb{R}^{d \times d}$ and $B B^{T} \in \mathbb{R}^{m \times m}$ are symmetric semi-definite positive :
- $B^{T} B=V \Delta_{1} V^{T}$ with Δ_{1} diagonal, $V V^{T}=l$ in $\mathbb{R}^{d \times d}$.
- $B B^{T}=U \Delta_{2} U^{T}$ with Δ_{2} diagonal, $U U^{T}=I$ in $\mathbb{R}^{m \times m}$.
- One can show :
- Δ_{1} and Δ_{2} have the same non-zero values $\lambda_{1}^{2}, \cdots, \lambda_{k}^{2}$.
- $B=U D V^{\top}$ with

$$
\begin{aligned}
D= & \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{k}\right)=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \cdots \cdots 0 \\
0 & \lambda_{2} & \cdots & 0 & 0 \cdots \cdots 0 \\
\vdots & \vdots & \ddots & \vdots & 0 \cdots \cdots 0 \\
0 & 0 & \cdots & \lambda_{k} & 0 \cdots \cdots 0 \\
0 & 0 & \cdots & 0 & 0 \cdots \cdots 0
\end{array}\right) \in \mathbb{R}^{m, d} . \\
& \text { - } B^{T}=V D U^{T} \text { with } D=\operatorname{diag}\left(l_{1}, \cdots, \lambda_{k}\right)=\in \mathbb{R}^{d, m} .
\end{aligned}
$$

- $B=U D V^{\top}$ is its singular value decomposition and $\lambda_{1}, \cdots, \lambda_{k}$ its singular values.

Other decompositions

- LU factorization
- for a diagonally dominant matrix $A\left(\left|a_{i, i}\right| \geq \sum j \neq i\left|a_{i, j}\right|\right)$
- $A=L U, L$ is lower triangular, U is upper triangular with 1 on the diagonal.
- $A x=B$ solved in two steps : $L z=b$ and $U x=z$!
- Choleski decomposition
- for symmetric semi-definite positive matrices
- $A=U^{T} U$ with U upper triangular
- again easy to solve $A x=b$ in two steps.
- QR decomposition
- for any matrix $A \in \mathbb{R}^{m \times d}$
- $A=Q R$ with Q unitary in $\mathbb{R}^{m \times m}$ and R upper triangular.

Framework

- Random Space
- Ω is the set of random events.
- \mathcal{A} is the set of "measurable" collections of events.
- $\mathbb{P}: \mathcal{A} \rightarrow[0,1]$ is the probability.
- Properties of \mathbb{P}
- $0 \leq \mathbb{P} \leq 1$,
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$,
- $A, B \in \mathcal{A}, A \cup B=\emptyset \Rightarrow \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$ (chain rule).
- Equivalently : $A, B \in \mathcal{A}, \mathbb{P}(A \cup B)+\mathbb{P}(A \cap B)=\mathbb{P}(A)+\mathbb{P}(B)$.
- Random events are observed only through measurable quantities called Random variables.

Framework

- Random Space
- Ω is the set of random events.

$$
\Omega=\{\text { heads,tails }\}
$$

- \mathcal{A} is the set of "measurable" collections of events.

$$
\mathcal{A}=\{\emptyset,\{\text { heads }\},\{\text { tails }\},\{\text { heads, tails }\}\}
$$

- $\mathbb{P}: \mathcal{A} \rightarrow[0,1]$ is the probability.

$$
\begin{array}{r}
\mathbb{P}(\emptyset)=0, \quad \mathbb{P}(\{\text { heads }\})=p, \\
\mathbb{P}(\{\text { tails }\})=1-p, \quad \mathbb{P}(\{\text { heads, tails }\})=1
\end{array}
$$

- Properties of \mathbb{P}
- $0 \leq \mathbb{P} \leq 1$,
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\Omega)=1$,
- $A, B \in \mathcal{A}, A \cup B=\emptyset \Rightarrow \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$ (chain rule).
- Equivalently : $A, B \in \mathcal{A}, \mathbb{P}(A \cup B)+\mathbb{P}(A \cap B)=\mathbb{P}(A)+\mathbb{P}(B)$.
- Random events are observed only through measurable quantities called Random variables.

Random variables

- A Random variable is a measurable function $X:(\Omega, \mathcal{A}) \rightarrow(\mathcal{F}, \mathcal{B}(\mathcal{F}))$
\hookrightarrow the measurability means $F \subset \mathcal{F} \Rightarrow X^{-1}(F) \subset \mathcal{A}$.
- $X(\Omega) \subset \mathcal{F}$ may be
- finite $(\{0,1\})$ or infinite (\mathbb{R}), discrete (\mathbb{N}) or continuous (\mathbb{R})
- have one or several variables $\left(\mathbb{R}^{d}\right)$
- The measurability of X implies that \mathbb{P} may be transported to \mathcal{F} through X :

$$
\mathbb{P}(\{\omega / X(\omega) \in F\})=\mathbb{P}(X \in F) \stackrel{\text { def }}{=} \mathbb{P}_{X}(F)
$$

\mathbb{P} is a probability on (Ω, \mathcal{A})
\mathbb{P}_{X} is a probability on $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$.

Random variables

- A Random variable is a measurable function $X:(\Omega, \mathcal{A}) \rightarrow(\mathcal{F}, \mathcal{B}(\mathcal{F}))$
\hookrightarrow the measurability means $F \subset \mathcal{F} \Rightarrow X^{-1}(F) \subset \mathcal{A}$.
- $X(\Omega) \subset \mathcal{F}$ may be
- finite $(\{0,1\})$ or infinite (\mathbb{R}), discrete (\mathbb{N}) or continuous (\mathbb{R}) discrete/continuous random variables
- have one or several variables $\left(\mathbb{R}^{d}\right)$
random variables/ random vectors.
- The measurability of X implies that \mathbb{P} may be transported to \mathcal{F} through X :

$$
\mathbb{P}(\{\omega / X(\omega) \in F\})=\mathbb{P}(X \in F) \stackrel{\text { def }}{=} \mathbb{P}_{X}(F)
$$

\mathbb{P} is a probability on (Ω, \mathcal{A})
\mathbb{P}_{X} is a probability on $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$.

Discrete random variables

Examples

- A single coin toss is a Bernoulli variable with parameter p
- $X:(\Omega, \mathcal{A}) \rightarrow\left(\{0,1\}, 2^{\{0,1\}}\right)$,
- $\mathbb{P}(X=1)=p$, (hence $\mathbb{P}(X=0)=p)$.
- Notation : $X \sim B(p)$.
- The sum of n independent coin tosses is a multinomial with parameter n, p
- $Y:(\Omega, \mathcal{A}) \rightarrow\left(\{0,1, \cdots, n\}, 2^{\{0,1, \cdots, n\}}\right)$,
- $Y=X_{1}+X_{2}+\cdots+X_{n}$ where the X_{i} are independent copies $\equiv B(p)$.
- $\mathbb{P}(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0 \cdots n$.
- Notation : $Y \sim \operatorname{Bin}(n, p)$.

Discrete random variables

- \mathcal{F} is discrete $\mathcal{F}=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}, N$ finite or not.
- $X:(\Omega, \mathcal{A}) \rightarrow\left(\mathcal{F}, 2^{\mathcal{F}}\right)$,
- Notation : $\mathbb{P}\left(X=x_{i}\right)=p_{i} . \quad$ Note that $p_{i} \geq 0$ and $\sum_{i=1}^{N} p_{i}=1$.
- The mean value or expectation of X is :

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega) \\
& \mathbb{E}[X]=\sum_{i=1}^{N} x_{i} \mathbb{P}_{X}\left(x_{i}\right)
\end{aligned}
$$

Here, $\mathbb{E}[X]=\sum_{i=1}^{N} x_{i} p_{i}$

- The variance of X is its deviation from its mean :

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-E[X])^{2}\right] \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Here, $\operatorname{Var}[X]=\sum_{i=1}^{N} x_{i}^{2} p_{i}-\left(\sum_{i=1}^{N} x_{i} p_{i}\right)^{2}$.

Discrete random variables

- \mathcal{F} is discrete $\mathcal{F}=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}, N$ finite or not.
- $X:(\Omega, \mathcal{A}) \rightarrow\left(\mathcal{F}, 2^{\mathcal{F}}\right)$,
- Notation : $\mathbb{P}\left(X=x_{i}\right)=p_{i} . \quad$ Note that $p_{i} \geq 0$ and $\sum_{i=1}^{N} p_{i}=1$.
- The mean value or expectation of X is :

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega) \\
& \mathbb{E}[X]=\sum_{i=1}^{N} x_{i} \mathbb{P}_{X}\left(x_{i}\right)
\end{aligned}
$$

Here, $\mathbb{E}[X]=\sum_{i=1}^{N} x_{i} p_{i}$

- The variance of X is its deviation from its mean :

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-E[X])^{2}\right] \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Here, $\operatorname{Var}[X]=\sum_{i=1}^{N} x_{i}^{2} p_{i}-\left(\sum_{i=1}^{N} x_{i} p_{i}\right)^{2}$.

Discrete random variables

- \mathcal{F} is discrete $\mathcal{F}=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}, N$ finite or not.
- $X:(\Omega, \mathcal{A}) \rightarrow\left(\mathcal{F}, 2^{\mathcal{F}}\right)$,
- Notation : $\mathbb{P}\left(X=x_{i}\right)=p_{i} . \quad$ Note that $p_{i} \geq 0$ and $\sum_{i=1}^{N} p_{i}=1$.
- The mean value or expectation of X is :

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega) \\
& \mathbb{E}[X]=\sum_{i=1}^{N} x_{i} \mathbb{P}_{X}\left(x_{i}\right)
\end{aligned}
$$

Here, $\mathbb{E}[X]=\sum_{i=1}^{N} x_{i} p_{i}$

- The variance of X is its deviation from its mean :

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-E[X])^{2}\right] \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Here, $\operatorname{Var}[X]=\sum_{i=1}^{N} x_{i}^{2} p_{i}-\left(\sum_{i=1}^{N} x_{i} p_{i}\right)^{2}$.

Discrete random variables

- More generally for any measurable function $f: \mathcal{F} \rightarrow \mathbb{R}^{d}$, the expectation of $f(X)$ is :

$$
\begin{aligned}
\mathbb{E}[f(X)] & =\sum_{\omega \in \Omega} f(x) \mathbb{P}(X(\omega)=x) \\
\mathbb{E}[f(X)] & =\sum_{i=1}^{N} f\left(x_{i}\right) \mathbb{P}_{X}\left(x_{i}\right)
\end{aligned}
$$

Here, $\quad \mathbb{E}[f(X)]=\sum_{i=1}^{N} f\left(x_{i}\right) p_{i}$

Bernoulli variables

- $X \sim B(p)$, hence

$$
\mathcal{F}=\{0,1\}, p_{1}=p, p_{0}=1-p
$$

- The expectation of X is :

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=1}^{N} x_{i} p_{i} \\
\mathbb{E}[X] & =0 *(1-p)+1 * p \\
\mathbb{E}[X] & =p
\end{aligned}
$$

- The variance of X is :

$$
\begin{aligned}
\operatorname{Var}[X] & =\sum_{i=1}^{N} x_{i}^{2} p_{i}-\left(\sum_{i=1}^{N} x_{i} p_{i}\right)^{2} \\
\operatorname{Var}[X] & =0^{2}(1-p)+1^{2} * p-p^{2} \\
\operatorname{Var}[X] & =p(1-p) .
\end{aligned}
$$

- The expectation of $f(X)$ is :

$$
\begin{aligned}
\mathbb{E}[f(X)] & =\sum_{i=1}^{N} f\left(x_{i}\right) p_{i} \\
\mathbb{E}[f(X)] & =f(0) *(1-p)+f(1) * p
\end{aligned}
$$

Discrete random vectors

- X has d coordinates, each of which is a discrete variable.

$$
X=\left(X_{1}, \cdots, X_{d}\right)^{T}:(\Omega, \mathcal{A}) \rightarrow\left(\mathcal{F}=\mathcal{F}_{1} \times \cdots \times \mathcal{F}_{d}, 2^{\mathcal{F}}\right)
$$

- $\mathbb{P}\left(X=x_{i}\right)=p_{i} \leftrightarrow \mathbb{P}\left(X=\left(x^{1}, \cdots, x^{d}\right)\right)$, where $x^{i} \in \mathcal{F}_{i}$.
- The expectation of X is the vector of the expectation of each coordinate :

$$
\mathbb{E}[X]=\left(\mathbb{E}\left[X_{1}\right], \cdots, \underset{\substack{\uparrow \\ \text { row i }}}{\left.\mathbb{E}\left[X_{i}\right], \cdots \mathbb{E}\left[X_{d}\right]\right)^{T}}\right.
$$

- The variance is replaced by the covariance matrix :
- $\operatorname{Cov}(X)$ is a $d \times d$-matrix.
- $\operatorname{Cov}(X)_{i, i}=\operatorname{Var}\left(X_{i}\right)$.
- If $i \neq j, \operatorname{Cov}(X)_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]$.

Discrete random vectors

Example

- $X=\left(X_{1}, X_{2}\right)$ with
- $X_{1} \sim B\left(p_{1}\right)$,
- $X_{1} \sim B\left(p_{2}\right)$,
- X_{1} and X_{2} are decorrelated i.e. $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.
- The expectation of X is :

$$
\mathbb{E}[X]=\binom{\mathbb{E}\left[X_{1}\right]}{\mathbb{E}\left[X_{2}\right]}=\binom{p_{1}}{p_{2}}
$$

- The covariance matrix of X is :

$$
\operatorname{Cov}[X]=\left(\begin{array}{cc}
\operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Var}\left[X_{2}\right]
\end{array}\right)=\left(\begin{array}{cc}
p_{1}\left(1-p_{1}\right) & 0 \\
0 & p_{2}\left(1-p_{2}\right)
\end{array}\right)
$$

Note : independence \Rightarrow decorrelation but the inverse is false!

Continuous random variables

Real random variables

- $X:(\Omega, \mathcal{A}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- $\mathbb{P}\left(X=x_{i}\right)=p_{i} \leftrightarrow \mathbb{P}(X \in[a, b])=P_{X}([a, b])$. Note : $P_{X} \geq 0$ and $\int_{\mathbb{R}} d P_{X}(x)=1$.
- The expectations and variances are defined as previsouly :

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{\Omega} X(\omega) d \mathbb{P}(\omega) \\
\mathbb{E}[X] & =\int_{\mathbb{R}} x d \mathbb{P}_{X}(x) \\
\mathbb{E}[f(X)] & =\int_{\Omega} f(X(\omega)) d \mathbb{P}(\omega) \\
\mathbb{E}[f(X)] & =\int_{\mathbb{R}} f(x) d \mathbb{P}_{X}(x) \\
\mathbb{E}[\operatorname{Var}(X)] & =\mathbb{E}\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

- If $d \mathbb{P}_{X}(x)=f_{X}(x) d x$ then f_{X} is the probability density function of X (pdf).

Continuous random variables

Uniform distribution on $[a, b]$

- $X \sim \mathcal{U}_{[a, b]}$
- $\mathbb{E}[f(X)]=\int_{\mathbb{R}} f(x) d P_{X}(x)=\frac{1}{b-a} \int_{[a, b]} f(x) d x$
- pdf : $f_{X}(x)=\frac{1}{b-a} \delta_{[a, b]}(x)$

Gaussian distribution

of mean m and variance σ^{2} :

- $X \sim \mathcal{N}_{m, \sigma^{2}}$
- $\mathbb{E}[f(X)]=\int_{\mathbb{R}} f(x) d P_{X}(x)=\int_{\mathbb{R}} f(x) * \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{(x-m)^{2}}{2 \sigma^{2}(x)} d x$
- pdf : $f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{(x-m)^{2}}{2 \sigma^{2}(x)}$

Continuous random variables

All we have seen previously extends to continuous random vectors such as :

Gaussian vector of mean m and covariance matrix Σ^{2} :

- $X=\left(X_{1}, \cdots, X_{d}\right) \sim \mathcal{N}_{\mathbf{m}, \Sigma^{2}}$
- pdf: $f_{X}(x)=\frac{1}{(2 \pi \operatorname{det}(\Sigma))^{d / 2}} \exp \left\{-\frac{(x-m)^{\top} \Sigma^{-1}(x-m)}{2}\right\}$

$$
\begin{aligned}
\mathbb{E}[f(X)] & =\int_{\mathbb{R}^{d}} f\left(x_{1}, \cdots, x_{d}\right) d P_{X}\left(x_{1}, \cdots, x_{d}\right) \\
& =\int_{\mathbb{R}^{d}} f(x) * \frac{1}{(2 \pi \operatorname{det}(\Sigma))^{d / 2}} \exp \left\{-\frac{(x-\mathbf{m})^{\top} \Sigma^{-1}(x-\mathbf{m})}{2}\right\} d x
\end{aligned}
$$

Joint probabilities

Two simultaneaous coin tosses :

- Each coin is fair $\mathbb{P}($ heads $)=\frac{1}{2}$
- All the possible outcomes of both draws (\{ heads, heads $\},\{$ heads, tails $\},\{$ tails, heads $\},\{$ tails, tails $\}$) are equiprobable with $\mathbb{P}(\{$ heads, heads $\})=\frac{1}{4}$.
- Consider $Z=\left(X_{1}, X_{2}\right), X_{i}$ the random variable for tossing coin i. This means that :

$$
\mathbb{P}(Z \in A \times B)=\mathbb{P}\left(X_{1} \in A\right) \mathbb{P}\left(X_{2} \in B\right)
$$

or in other words :

$$
P_{\left(X_{1}, X_{2}\right)}=P_{X_{1}} P_{X_{2}}
$$

X_{1} and X_{2} are independent.

Joint probabilities

But this is not always the case :
Example

X/Y	Sick (S)	Sane (A)	Total
Positive test (P)	90	100	190
Negative test (N)	10	900	910
Total	100	1000	1100

- $\mathbb{P}(X=$ positive $)=190 / 1100$
- $\mathbb{P}(Y=$ sick $)=100 / 1100$
- Clearly
$\mathbb{P}((X, Y)=($ positive, sick $))=90 / 1100$
$\mathbb{P}(X=$ positive $) \mathbb{P}(Y=$ sick $)=100 * 190 / 1100^{2}$

Joint probabilities

But this is not always the case :
Example

X / Y	Sick (S)	Sane (A)	Total
Positive test (P)	90	100	190
Negative test (N)	10	900	910
Total	100	1000	1100

- $\mathbb{P}(X=$ positive $)=190 / 1100$
- $\mathbb{P}(Y=$ sick $)=100 / 1100$
- Clearly :

$$
\begin{gathered}
\mathbb{P}((X, Y)=(\text { positive }, \text { sick }))=90 / 1100 \\
\neq \\
\mathbb{P}(X=\text { positive }) \mathbb{P}(Y=\text { sick })=100 * 190 / 1100^{2}
\end{gathered}
$$

Independence

Definition (Independence)

X and Y are independent random variables $(X \Perp Y)$ if and only if their joint probability $\mathbb{P}_{X, Y}$ is the product of their marginal probabilities : $\mathbb{P}_{X, Y}=\mathbb{P}_{X} \mathbb{P}_{Y}$. Also, $X_{1}, . . X_{n}$ are independent iff $\mathbb{P}_{X_{1}, \cdots, X_{n}}=\prod_{i=1}^{n} P_{X_{i}}$.

- Equivalently :
- $\forall A, B \mathbb{P}((X, Y) \in A \times B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)$
- $\forall f, g \mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X)] \mathbb{E}[g(Y)]$
- If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
- For Gaussian variables only : $\operatorname{Cov}(X, Y)=0 \Leftrightarrow X \Perp Y$.
\square If X and Y are indepedent, knowing X does not give any information on Y, what if they are not independent?

Independence

Definition (Independence)

X and Y are independent random variables $(X \Perp Y)$ if and only if their joint probability $\mathbb{P}_{X, Y}$ is the product of their marginal probabilities : $\mathbb{P}_{X, Y}=\mathbb{P}_{X} \mathbb{P}_{Y}$.
Also, $X_{1}, . . X_{n}$ are independent iff $\mathbb{P}_{X_{1}, \cdots, X_{n}}=\prod_{i=1}^{n} P_{X_{i}}$.

- Equivalently :
- $\forall A, B \mathbb{P}((X, Y) \in A \times B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)$
- $\forall f, g \mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X)] \mathbb{E}[g(Y)]$
- If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
- For Gaussian variables only : $\operatorname{Cov}(X, Y)=0 \Leftrightarrow X \Perp Y$.

If X and Y are indepedent, knowing X does not give any information on Y, what if they are not independent?

Conditional probabilities

Example

X/Y	Sick (S)	Fit (F)	Total
Positive test (P)	90	100	190
Negative test (N)	10	900	910
Total	100	1000	1100

- Amongst all people
 $\mathbb{P}(Y=$ sick $)=100 / 1100$,
 $\mathbb{P}(Y=$ fit $)=1000 / 1100$

- Amongst people with a positive test $\mathbb{P}(Y=$ sick $\mid X=$ positive $)=90 / 190$, $\mathbb{P}(Y=$ fit $\mid X=$ positive $)=100 / 190$,
- Amongst people with a negative test
\square
$\mathbb{P}(Y=$ fit $\mid X=$ negative $)=900 / 910$,

Conditional probabilities

Example

X/Y	Sick (S)	Fit (F)	Total
Positive test (P)	90	100	190
Negative test (N)	10	900	910
Total	100	1000	1100

- Amongst all people :

$$
\begin{aligned}
& \mathbb{P}(Y=\text { sick })=100 / 1100, \\
& \mathbb{P}(Y=\text { fit })=1000 / 1100
\end{aligned}
$$

- Amongst people with a positive test :

$$
\begin{aligned}
& \mathbb{P}(Y=\text { sick } \mid X=\text { positive })=90 / 190 \\
& \mathbb{P}(Y=\text { fit } \mid X=\text { positive })=100 / 190
\end{aligned}
$$

- Amongst people with a negative test :

$$
\begin{aligned}
& \mathbb{P}(Y=\text { sick } \mid X=\text { negative })=10 / 910 \\
& \mathbb{P}(Y=\text { fit } \mid X=\text { negative })=900 / 910
\end{aligned}
$$

Conditional probabilities

Example

X/Y	Sick (S)	Fit (F)	Total
Positive test (P)	90	100	190
Negative test (N)	10	900	910
Total	100	1000	1100

- Amongst people with a positive test :

$$
\begin{aligned}
& \mathbb{P}(Y=\operatorname{sick} \mid X=\text { positive })=90 / 190 \\
& \mathbb{P}(Y=\text { fit } \mid X=\text { positive })=100 / 190
\end{aligned}
$$

- Note :
$\mathbb{P}(Y=$ sick $\mid X=$ negative $) \mathbb{P}(X=$ negative $)=\mathbb{P}((Y, X)=$ (sick, negative)),

Definition (Conditional probabilities)

$\mathbb{P}(A$ and $B)=\mathbb{P}(A \mid B) \mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)$

Conditional probabilities

More generally :

Definition

The conditional probability $\mathbb{P}_{X \mid Y}$ is the probability s.t. :

$$
\forall f, \mathbb{E}[f(X, Y)]=\int f(X, Y) d P_{X, Y}=\int d P_{Y} \int f(X, Y) d P_{X \mid Y}
$$

- For discrete random variables :

$$
\mathbb{P}((X, Y)=(x, y))=\mathbb{P}(Y=y \mid X=x) \mathbb{P}(X=x)
$$

- If (X, Y) and Y have pdf $p_{(X, Y)}$ and p_{Y}, then $P_{X \mid Y}$ is a the correspoding pdf : $p_{X \mid Y}=\frac{p_{(X, Y)}}{p_{Y}}$
- $\mathbb{E}[X \mid Y]$ is the conditional esperance of X given Y is a random variable. It is the projection of X on the set of rndom variables of the form $g(Y)$.

Bayes rule, maximum likelihood, maximum a posteriori

Framework:

- Y is a random variable, Y is observed
- Θ is a random variable, Θ is the parameter.
- Goal : given observed data Y, find the best guess for Θ.

Probabilities

- The conditional probability of the observations : $\mathbb{P}_{Y \mid \Theta}$.
- The prior : \mathbb{P}_{Θ}.
- The posterior : $\mathbb{P}_{\Theta \mid \gamma}$.

Bayes rule

$$
\mathbb{P}_{\Theta \mid Y}(\Theta, y)=\frac{\mathbb{P}_{Y \mid \Theta}(y, \theta) \mathbb{P}_{\Theta}(\theta)}{\int P_{Y \mid \Theta}\left(\theta^{\prime}, y\right) \mathbb{P}_{\Theta}\left(\theta^{\prime}\right) d \theta}
$$

Estimator

- Maximum likelihood : $\theta_{M L}=\operatorname{argmax}_{\theta} \mathbb{P}_{Y \mid \Theta}(y, \theta)$.
- Maximum a posteriori : $\theta_{M A P}=\operatorname{argmax}_{\theta} \mathbb{P}_{\Theta \mid Y}(\theta, y)$.
- Bayes mean square estimator : $\theta_{M}=\mathbb{E}[\Theta \mid Y]$.

Information theory

- Entropy measures the amount of disorder of X :
- $H(X)=-\int P_{X}(x) \log \left(P_{X}(x)\right) d x$. Note: $H(X) \geq 0$.
- For discrete random variables:
- $X \sim \mathcal{U}$ maximizes the entropy $H=\log (N)$.
- $X \sim \delta x_{i}$ minimizes the entropy $H=\frac{1}{N} \log (N)$.
- The Kullback-Leibler divergence compares the laws of X and Y :
- $D(X \| Y)=\int P_{X}(x) \log \left(\frac{P_{X}(x)}{P_{Y}(x)}\right) d x$. Note $: D(X \| Y) \neq D(Y \| X)$.
- $D(X \| Y) \geq 0 \quad$ and $\quad\left[D(X \| Y)=0 \Leftrightarrow P_{X}=P_{Y}\right]$.
- The mutual information measures the amount of shared information between X and Y :
- $I(X, Y)=D\left(P_{(X, Y)} \| P_{X} P_{Y}\right) . \quad$ Note $: I(X, Y)=I(Y, X)$.
- $I(X, Y) \geq 0 \quad$ and $\quad[I(X, Y)=0 \Leftrightarrow X \Perp Y]$.
- The perplexity is a measure of complexity of a distribution :
- $P(X)=2^{H(X)}$.
- this is a common way of evaluating language models.

Approximations and confidence intervals

- Statistical learning (classification) :
- Goal : from i.i.d ${ }^{1}$ samples $\left(x_{i}, y_{i}\right)_{i=1 \ldots n}$, find a hypothesis f that minimizes the risk : $\mathbb{E}[\operatorname{loss}(f(X), Y)]$
- $\mathbb{E}[\operatorname{loss}(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right)$
- Some tools to do so are
- Markov inequality : $\mathbb{P}(X>\epsilon) \leq \frac{\mathbb{E}}{\epsilon}(X]$
- Chebicheff inequality : $\mathbb{P}(|X-\mathbb{E}[X]| \geq \epsilon) \leq \frac{\operatorname{Var}[X]}{\epsilon^{2}}$ Apply this to $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, with X_{i} i.i.d X, one gets

(S_{n} is the empirical risk, $\mathbb{E}[X]$ the true one.)
${ }^{1}$ independent identically distributed

Approximations and confidence intervals

- Statistical learning (classification) :
- Goal : from i.i.d ${ }^{1}$ samples $\left(x_{i}, y_{i}\right)_{i=1 \ldots n}$, find a hypothesis f that minimizes the risk : $\mathbb{E}[\operatorname{loss}(f(X), Y)]$
- $\mathbb{E}[\operatorname{loss}(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right)$
\hookrightarrow need to control how far is the empirical loss to the true one.
- Some tools to do so are
- Markov inequality : $\mathbb{P}(X>\epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$
- Chebicheff inequality : $\mathbb{P}(|X-\mathbb{E}[X]| \geq \epsilon) \leq \frac{\operatorname{Var}[X]}{c^{2}}$

Apply this to $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, with X_{i} i.i.d X, one gets

(S_{n} is the empirical risk, $\mathbb{E}[X]$ the true one.)

- Chernoff-Hoeffding bound \square
${ }^{1}$ independent identically distributed

Approximations and confidence intervals

- Statistical learning (classification) :
- Goal : from i.i.d ${ }^{1}$ samples $\left(x_{i}, y_{i}\right)_{i=1 \ldots n}$, find a hypothesis f that minimizes the risk : $\mathbb{E}[\operatorname{loss}(f(X), Y)]$
- $\mathbb{E}[\operatorname{loss}(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right)$
\hookrightarrow need to control how far is the empirical loss to the true one.
- Some tools to do so are :
- Markov inequality : $\mathbb{P}(X>\epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$
- Chebicheff inequality : $\mathbb{P}(|X-\mathbb{E}[X]| \geq \epsilon) \leq \frac{\operatorname{Var}[X]}{\epsilon^{2}}$

Apply this to $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, with X_{i} i.i.d X, one gets :

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}
$$

(S_{n} is the empirical risk, $\mathbb{E}[X]$ the true one.)

- Chernoff-Hoeffding bound : $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq e^{-2 n \epsilon^{2}}$
${ }^{1}$ independent identically distributed

Approximations and confidence intervals

- Statistical learning (classification) :
- Goal : from i.i.d ${ }^{1}$ samples $\left(x_{i}, y_{i}\right)_{i=1 \ldots n}$, find a hypothesis f that minimizes the risk : $\mathbb{E}[\operatorname{loss}(f(X), Y)]$
- $\mathbb{E}[\operatorname{loss}(f(x), Y)]$ is not known, only its empirical version is accessible : $\frac{1}{n} \sum \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right)$
\hookrightarrow need to control how far is the empirical loss to the true one.
- Some tools to do so are :
- Markov inequality : $\mathbb{P}(X>\epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}$
- Chebicheff inequality : $\mathbb{P}(|X-\mathbb{E}[X]| \geq \epsilon) \leq \frac{\operatorname{Var}[X]}{\epsilon^{2}}$

Apply this to $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, with X_{i} i.i.d X, one gets :

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}
$$

(S_{n} is the empirical risk, $\mathbb{E}[X]$ the true one.)

- Chernoff-Hoeffding bound : $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq e^{-2 n \epsilon^{2}}$
${ }^{1}$ independent identically distributed

Approximations and confidence intervals

- Proof of Markov inequality

$$
\begin{aligned}
\mathbb{E}[X] & =\int x d \mathbb{P}_{x}(x)=\int_{x \geq \epsilon} x d \mathbb{P}_{x}(x)+\int_{x<\epsilon} x d \mathbb{P}_{x}(x) \\
\mathbb{E}[X] & \leq \int_{x \geq \epsilon} x d \mathbb{P}_{x}(x) \leq \epsilon \int_{x \geq \epsilon} d \mathbb{P}_{x}(x) \\
\mathbb{E}[X] & \leq \epsilon \mathbb{P}(X \geq \epsilon)
\end{aligned}
$$

- From bounds to confidence intervals

Chebicheff inequality: $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}$

- $\frac{\operatorname{Var}[X]}{n \epsilon^{2}} \leq \delta$ implies $: \mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \delta$ or

If $n \geq \frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$ then with probability at least $1-\delta,\left|S_{n}-\mathbb{E}[X]\right| \leq \epsilon$.

- Then if $n=\frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$, we obtain

For all n, with probability at least $1-\delta,\left|S_{n}-\mathbb{E}[X]\right| \leq \sqrt{\operatorname{Var}[X]}$

$$
\mathbb{E}[\operatorname{loss}(f(X), Y)] \in \mathbb{E}_{\text {emp }}^{n \delta}[\operatorname{loss}(f(X), Y)]+\left[-\sqrt{\frac{\operatorname{Var}[X]}{n \delta}}, \sqrt{\frac{\operatorname{Var}[X]}{n \delta}}\right]
$$

Approximations and confidence intervals

- Proof of Markov inequality

$$
\begin{aligned}
& \mathbb{E}[X]=\int x d \mathbb{P}_{X}(x)=\int_{x \geq \epsilon} x d \mathbb{P}_{x}(x)+\int_{x<\epsilon} x d \mathbb{P}_{x}(x) \\
& \mathbb{E}[X] \leq \int_{x \geq \epsilon} x d \mathbb{P}_{X}(x) \leq \epsilon \int_{x \geq \epsilon} d \mathbb{P}_{x}(x) \\
& \mathbb{E}[X] \leq \epsilon \mathbb{P}(X \geq \epsilon)
\end{aligned}
$$

- From bounds to confidence intervals

Chebicheff inequality: $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}$

- $\frac{\operatorname{Var}[X]}{n \epsilon^{2}} \leq \delta$ implies : $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \delta$ or If $n \geq \frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$ then with probability at least $1-\delta,\left|S_{n}-\mathbb{E}[X]\right| \leq \epsilon$. - Then if $n=\frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$, we obtain

Approximations and confidence intervals

- Proof of Markov inequality

$$
\begin{aligned}
& \mathbb{E}[X]=\int x d \mathbb{P}_{X}(x)=\int_{x \geq \epsilon} x d \mathbb{P}_{x}(x)+\int_{x<\epsilon} x d \mathbb{P}_{x}(x) \\
& \mathbb{E}[X] \leq \int_{x \geq \epsilon} x d \mathbb{P}_{X}(x) \leq \epsilon \int_{x \geq \epsilon} d \mathbb{P}_{x}(x) \\
& \mathbb{E}[X] \leq \epsilon \mathbb{P}(X \geq \epsilon)
\end{aligned}
$$

- From bounds to confidence intervals

Chebicheff inequality: $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}$

- $\frac{\operatorname{Var}[X]}{n \epsilon^{2}} \leq \delta$ implies : $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \delta$ or

If $n \geq \frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$ then with probability at least $1-\delta,\left|S_{n}-\mathbb{E}[X]\right| \leq \epsilon$.

- Then if $n=\frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$, we obtain :

Approximations and confidence intervals

- Proof of Markov inequality

$$
\begin{aligned}
& \mathbb{E}[X]=\int x d \mathbb{P}_{X}(x)=\int_{x \geq \epsilon} x d \mathbb{P}_{x}(x)+\int_{x<\epsilon} x d \mathbb{P}_{x}(x) \\
& \mathbb{E}[X] \leq \int_{x \geq \epsilon} x d \mathbb{P}_{X}(x) \leq \epsilon \int_{x \geq \epsilon} d \mathbb{P}_{X}(x) \\
& \mathbb{E}[X] \leq \epsilon \mathbb{P}(X \geq \epsilon)
\end{aligned}
$$

- From bounds to confidence intervals

Chebicheff inequality : $\mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}[X]}{n \epsilon^{2}}$

- $\frac{\operatorname{Var}[X]}{n \epsilon^{2}} \leq \delta$ implies $: \mathbb{P}\left(\left|S_{n}-\mathbb{E}[X]\right| \geq \epsilon\right) \leq \delta$ or If $n \geq \frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$ then with probability at least $1-\delta,\left|S_{n}-\mathbb{E}[X]\right| \leq \epsilon$.
- Then if $n=\frac{\operatorname{Var}[X]}{\delta \epsilon^{2}}$, we obtain:

For all n, with probability at least $1-\delta,\left|S_{n}-\mathbb{E}[X]\right| \leq \sqrt{\frac{\operatorname{Var}[X]}{n \delta}}$.

$$
\mathbb{E}[\operatorname{loss}(f(X), Y)] \in \mathbb{E}_{e m p}[\operatorname{loss}(f(X), Y)]+\left[-\sqrt{\frac{\operatorname{Var}[X]}{n \delta}}, \sqrt{\frac{\operatorname{Var}[X X}{n \delta}}\right]
$$

Minimizing a function

Goal : find the global minimimum/minimizer of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Potentials problems / partial solutions :

- Existence of a global minimum?
$\hookrightarrow f$ is continuous and coercive $(f(x) \rightarrow \infty$ when $\|x\| \rightarrow \infty)$.
- Characterization of the minimizers ?
$\hookrightarrow f$ is C^{1}. If x^{*} is a local minimizer then its gradient $\nabla f(x)=0_{\mathbb{R}^{d}}$.
$\hookrightarrow f$ is $C^{2} \cdot x^{*}$ is a local minimizer iff its gradient $\nabla f(x)=0_{\mathbb{R}^{d}}$ and its hessian $\nabla^{2} f(x)$ is a non-negative matrix.
- Characterization of the global minimizers ?

Zeroing the gradient is not sufficient (maxima, saddle points,...)!

Minimizing a function

Goal : find the global minimimum/minimizer of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ for $x \in Q$.

- Constrained minimization $\left(Q \neq \mathbb{R}^{d}\right)$: characterization of the minimizers?
\hookrightarrow minimizers may be on the border of $Q: \nabla f\left(x^{*}\right) \neq 0$!
- Gradient descents :
- Algorithms of the form : $x^{t+1}=x^{t}-\gamma_{t} \nabla f\left(x^{t}\right)$
- Ex: Gauss-Newton, conjuguate gradient descent,...
- Convergence?
- What if f is not differentiable?

Convex fonctions

Definition (convex functions)

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex iff $\forall \lambda \in[0,1], \forall x, y \in \mathbb{R}^{d}$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

- Other characterizations
- If $f \in C^{2}, f$ convex iff its $\nabla^{2} f$ is non-negative.
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, fconvex iff f^{\prime} is non-decreasing iff $f^{\prime \prime} \geq 0$
- f lies over all its tangents.
- Ex. : affine fonctions, square loss, exp,...
- Properties
- no maxima, no saddle points and non local minima!
- $\nabla f(x)=0 \Rightarrow x$ is a global minimizer.

Convex functions are easier to minimize!

Convex fonctions

Definition (convex functions)

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex iff $\forall \lambda \in[0,1], \forall x, y \in \mathbb{R}^{d}$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is stricly convex iff $\forall \lambda \in[0,1], \forall x, y \in \mathbb{R}^{d}$, s.t $x \neq y$ $($ resp. $f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y))$

- Other characterizations
- If $f \in C^{2}, f$ convex iff its $\nabla^{2} f$ is non-negative.
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, fconvex iff f^{\prime} is non-decreasing iff $f^{\prime \prime} \geq 0$
- f lies over all its tangents.
- Ex. : affine fonctions, square loss, exp,...
- Properties
- no maxima, no saddle points and non local minima!
- $\nabla f(x)=0 \Rightarrow x$ is a global minimizer.

Convex functions are easier to minimize!

A convex and constrained problem in classification

Problem

- Inputs : $\left\{x_{i}, y_{i}\right\}_{i=1 . . n}, x_{i} \in \mathbb{R}^{d}, y_{i} \in\{0,1\}$.
- Goal : (P) $\operatorname{Min} J(w, b)=\frac{1}{2}\|w\|^{2}+\sum_{1}^{n} \max \left(0,1-y_{i}\left(w x_{i}+b\right)\right)$

Resolution:

- Rewrite (P) as :
$\operatorname{Min} J(w, b, \xi)=\frac{1}{2} w^{2}+\sum_{1}^{n} \xi_{i}$ s.t. $y_{i}\left(w x_{i}+b\right) \geq 1-\xi_{i}$ and $\xi_{i} \geq 0$
- Introduce a Lagrange multiplier for each constraint :

$$
\begin{aligned}
& L(w, b, \xi, \alpha, \eta)=\frac{1}{2}\|w\|^{2}+\sum_{1}^{n} \xi_{i}+\sum_{i} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(w x_{i}+b\right)\right)+\sum_{i} \eta_{i} \xi_{i}, \\
& \alpha_{i} \geq 0, \eta_{i}>0 .
\end{aligned}
$$

- The first order conditions $\partial_{w} J=0, \partial_{\xi} J=0, \partial_{b} f=0$ yield :

$$
w=\sum_{i} \alpha_{i} y_{i} x_{i} \quad \sum_{i} \alpha_{i} y_{i}=0 \quad \forall i, 1=\alpha_{i}+\eta_{i}
$$

- Which substituted in (P) gives the dual problem :

Maximize $J(\alpha)=\frac{1}{2}\left\|\sum_{i} \alpha_{i} y_{i} x_{i}\right\|^{2}-\alpha^{\top} \mathbf{1}$ s.t. $0 \leq \alpha \leq 1$

