
Directed Graphical Models

Cédric Archambeau

Xerox Research Centre Europe
cedric.archambeau@xrce.xerox.com

Accra Bootcamp
Ghana, February 2011

mailto:cedric.archambeau@xrce.xerox.com

Overview

1 Elements of Bayesian networks

2 Latent variable models for unsupervised learning

3 Conditional models for supervised learning (regression)

4 Elements of probability theory and statistics

Reference material

D. Koller and N. Friedman (2009): Probabilistic graphical models:
principles and techniques.

C. Bishop (2006): Pattern recognition and machine learning. (Many
figures used in these slides are taken from the book.)

Michael Jordan (1999): Learning in graphical models.

S. Lauritzen (1996): Graphical models.

C. E. Rasmussen and C. K.I. Williams (2006): Gaussian processes
for machine learning.

J. Shawe-Taylor and N. Cristianin (2004)i: Kernel methods for
pattern analysis.

D. J. C. MacKay (2003): Information theory, inference, and learning
algorithms.

The Matrix Cookbook by K. B. Petersen and M. S. Pedersen.

Many interesting tutorials and talks on videolectures!

Statistical machine learning

A mariage between statistics and computer science

Digital data is omnipresent (web, images, sound, sensors, ...)

Data is inherently noisy and unreliable (recording errors, machine
faults, ...)

Modelling strategy: assume the data was generated according to
some (hierarchy of) probability distributions

Amount of data grows exponentially over time, so computational
complexity is major issue!

Graphical models

A marriage between probability theory and graph theory

Graph theoretic aspect provides intuitive representation and is
helpful to analyse, to reason on and to devise new models

Complex sytems are built by combining simpler parts and the
possible relations among them in a probabilistic way

Probability theory is the glue, ensuring whole system is consistent
and can take data into account

Structured in terms of conditional independence assumptions

Graphical models are applied in ...

Bioinformatics

Natural language processing

Document processing

Speech processing

Image processing

Computer vision

Time series analysis

Economics

Physics

Social Sciences

...

Organising document collections (Blei et al., JMLR 2003)

Discovering themes/topics in large text corpora

Simple generative model for text (bag-of-words assumption)

Monitor trends, discover social network, etc.

Image denoising (McAuley et al., ICML 2006)

(Markov random fields, use neighborhood information.)

Printer infrastructure management

S1t1 t2 t3 t4D1U1S1S11StateUserDevice timeS1D2U2S1S21 S1D3U3S1S31 S1D4U4S1S41
unknown location

C3

C2

C1

C0 Q0

Q1

Q2

Q0-FA

Q0-HR

Q1-AD Q1-LAC1-DI

20s

20s

15s

20s

50s

20s

20s

 5s

 5s 5s

 5s 5s

l m p

g

x a a a a b b c c c e e f f f g g h j j j j j l l mmmmmmmm n n n o pp p p r s s s s s s t t

n

d d dm n r r s s

? a a b c c c c c d e e f f g g g g i i j k l l l mmm p s s s s t t w w y

a a a ab b c c c c d d d e eg g gg g h h j j j j j j k l l mmmm n p r r r s s s s s v v v x x

g n

b i s s

cm

d L l p

r

l 1

s s

b

P f l

hP m P

(infrastructure map, user and device locations, printing profiles, device
characteristics, soft failure detection, infractructure optimisation, ...)

Part 1: Elements of Bayesian networks

Conditional independence

Directed graphical models

D-separation and Markov blanket

Learning in Bayesian networks

Basics

xn

N

N

µ

xi

yi

Nodes denote random variables, shaded nodes are observed,
unshaded are unobserved (latent, hidden) random variables

Edges represent conditional dependencies, plates indicate replications

Directed graphs: Bayesian networks or nets, belief networks,
generative models, etc.

Undirected graphs: Markov networks, Markov Random Fields, etc.

Combinations are called chain graphs

Conditional independence

Statistical independence (SI): X ⊥⊥ Y

p(x , y) = p(x)p(y).

Conditional independence (CI): X ⊥⊥ Y |Z

p(x , y |z) = p(x |y , z)p(y |z) = p(x |z)p(y |z),

p(x |y , z) = p(x |z),

p(y |x , z) = p(y |z).

Examples:

My wife’s mood ⊥⊥ my boss’ mood | my mood
My genome ⊥⊥ my grandmother’s genome | my mother’s genome
The color of a pixel ⊥⊥ the color of faraway pixels | the color of
neighboring pixels
...

Probabilistic graphical models

Let {Xn}Nn=1 be a set of random variables.

A probabilistic graphical model is a family of joint probability
distributions p(x1, . . . , xN) for which some CI assumptions hold.

The set of CI assumptions {Xi ⊥⊥ Xj |Xk} induces a structure in
p(x1, . . . , xN), which is made explicit in the graph.

This structure allows us to make computations more tractable and
storage more efficient.

In the case of Bayesian networks this is sometimes called a directed
factorisation (DF) filtering of the joint:

p(x) DF

Bayesian networks (directed graphical models)

a

b

c

A Bayesian network is a set of probability distributions associated to
a directed acyclic graph (DAG).

Node a is a parent of node b if there is a directed link from a to b
(conversely we say that b is a child of a).

A node is independent of its ancestors given its parents.

Random variables can be discrete or continuous.

Factorisation in directed graphical models

CIs lead to a particular factorisation of the joint!

For a graph with N nodes, we decompose the joint in terms of
conditionals on the parents:

p(x1, . . . , xN) =
N∏

n=1

p(xn|pan), pan : parents of xn.

The factorisation is in terms of local conditional distributions.

The joint is correctly normalised.

Is the CI-based factorisation useful?

x1 x2 xM

Consider the special case where M = 3:

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2), ∀m : xm ∈ {1, . . . ,K}.

Factorisation allows us to exploit the distributive law to make
computations more tractable:

without: p(x2) =
∑

x1,x3
p(x1, x2, x3) is O(K 3)

with: p(x2) =
∑

x1
p(x1, x2)

∑
x3

p(x3|x2) is O(2K 2)

Factorisation leads to a more efficient representation:

without: requires KM − 1 parameters
with: requires K − 1 + (M − 1)K (K − 1) parameters

Is there a rule to deduce CIs directly from the DAG?

CIs are usually known by the (human) expert.

CIs are imposed by removing links.

Do we induce other (hidden) CIs?

a ⊥⊥ b? a ⊥⊥ b|f ?

f

e b

a

c

f

e b

a

c

Head-to-tail nodes: statistical independence

a c b

Consider the head-to-tail node c . Are a and b independent?

Let’s check SI: p(a, b)
?
= p(a)p(b):

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a)p(c |a)p(b|c)

= p(a)
∑
c

p(c |a)p(b|c) = p(a)
∑
c

p(b, c |a)

= p(a)p(b|a)

No SI in general.

Head-to-tail nodes: conditional independence

a c b

Assume c is observed. Are a and b conditionally independent?

Let’s check CI: p(a, b|c)
?
= p(a|c)p(b|c):

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(c |a)p(b|c)

p(c)
= p(a|c)p(b|c)

We obtain a ⊥⊥ b|c .

Applying Bayes rule reverts the link!

Tail-to-tail nodes: statistical independence

c

a b

Consider the tail-to-tail node c . Are a and b independent?

Let’s check SI: p(a, b)
?
= p(a)p(b):

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a|c)p(b|c)p(c)

=
∑
c

p(a)p(c |a)p(b|c) = p(a)
∑
c

p(b, c |a)

= p(a)p(b|a)

No SI in general.

Tail-to-tail nodes: conditional independence

c

a b

Assume c is observed. Are a and b conditionally independent?

Let’s check CI: p(a, b|c)
?
= p(a|c)p(b|c):

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a|c)p(b|c)p(c)

p(c)
= p(a|c)p(b|c)

We obtain a ⊥⊥ b|c .

Head-to-head nodes: statistical independence

c

a b

Consider the head-to-head node c . Are a and b independent?

Let’s check SI: p(a, b)
?
= p(a)p(b):

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a)p(b)p(c |a, b)

= p(a)p(b)
∑
c

p(c |a, b) = p(a)p(b)

We obtain a ⊥⊥ b.

Head-to-head nodes: conditional independence

c

a b

Assume c is observed. Are a and b conditionally independent?

Let’s check CI: p(a, b|c)
?
= p(a|c)p(b|c):

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b)p(c |a, b)

p(c)

No CI in general.

D-separation

A blocked path is one containing at least one of the following types
of nodes:

An observed head-to-tail or tail-to-tail node.
An unobserved head-to-head node, of which none of the descendants
are observed.

f

e b

a

c

f

e b

a

c

Let A, B and C be nonintersecting sets of nodes. A ⊥⊥ B|C if all
possible paths from any node in A to any node in B are blocked.

We say that A is d-separated from B by C .

d-separation allows us to directly reason on the graph.

Markov blanket

The Markov blanket of xi is the minimal set of nodes that isolates xi
from the rest of the graph.

Using CI we can express any conditional p(xi |{xj}j 6=i):

p(xi |{xn}n 6=i) =

∏
n p(xn|pan)∑

xi

∏
n p(xn|pan)

∝ p(xi |pai)
∏
ni

p(xni |pani),

where pani includes node xi .

The Markov blanket of xi contains the parents and children of xi , as
well as co-parents (spouses) of the children of xi .

xi

Learning in Bayesian networks

We assume the data X = {x(i)}Mi=1 are drawn i.i.d.:

All x(i) are drawn from the same distribution (identical assumption).
x(i) ⊥⊥ x(j) for i 6= j (independence assumption).

We posit a statistical model:

p(x;θ) =
1

Z (θ)

∏
s

fs(xs ;θs).

The quality of model depends on the vector of parameters θ.

The goal of learning is to estimate θ:

Maximum likelihood
Maximum a posteriori
Bayesian inference

We assume for now that there are no latent (hidden) variables.

Maximum likelihood (ML) estimation

The likelihood is the joint probability of observing i.i.d. data:

`(θ; X) = ln
∏
i

p(x(i);θ) =
∑
i

∑
s

ln fs(x(i)
s ;θs)−M ln Z (θ).

The goal in ML is to find the parameters that maximise the
log-likelihood function:

θ∗ = argmax
θ

`(θ; X).

A local optimum must satisfy ∇θ`(θ; X) = 0 or equivalently
∇θs `(θ; X) = 0 for all s.

Alternatively one can minimise the negative log-likelihood.

ML is asymptotically (i.e. when M →∞) consistent.

Maximum a posteriori (MAP) estimation

The likelihood is unbounded, so ML can lead to overfitting
(especially for small data set).

Penalise unreasonable values (∼ regularisation) by imposing a prior
distribution on the parameters:

p(θ|X) ∝ p(X|θ)p(θ)

MAP maximises the penalised log-likelihood :

`MAP(θ; X) = `(θ; X) +
∑
s

ln p(θs).

A local optimum must satisfy ∇θ`MAP(θ; X) = 0 or equivalently
∇θs `MAP(θ; X) = 0 for all s.

MAP leads to a point estimate of θ (while Bayesian statistics is
interested in the full posterior).

MAP is not invariant under reparametrisation.

Bayesian inference

Bayesian statistics views θ as a latent variable and is interested the
full posterior of θ instead of a point estimate.

The prior information (if any) is encoded in the prior distribution
and is updated into a posterior distribution based on the data:

p(θ|X)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(X|θ)

prior︷︸︸︷
p(θ)

p(X)︸︷︷︸
evidence

, p(X) =

∫
p(X,θ) dθ.

Prediction is performed by averaging over all possible models:

p(x∗|X) =

∫
p(x∗|θ) p(θ|X) dθ.

The Bayesian approach provides confidence measures for estimates
and predictions.

Computing the marginals is in general analytically intractable...

Part 2: Latent variable models for unsupervised learning

Learning latent variable models

Discrete latent variables:

Mixture of Bernoullis
Mixture of Gaussians

Continuous latent variables:

Probabilistic PCA
Extensions

Latent variable models

tn

φn

N

w

α

β

Nodes represent random variables or parameters.

Random variables can be observed or unobserved (latent).

Latent variables are a flexible way to model the data.

Example: hidden Markov models for sequential data

x1 x2 x3 x4
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

xn+1 ⊥⊥ xn−1|xn

zn+1 ⊥⊥ zn−1|zn
xn ⊥⊥ xn−1|zn

Expectation-maximisation (EM)

Assume there are observed as well as latent variables:

p(x, z;θ) =
1

Z (θ)

∏
s

fs(xs , zs ;θs).

If we knew the latent variables {z(i)}, the problem of learning θ
would reduce to ML (or MAP) estimation.

Since {z(i)} are unobserved, ML requires to maximise the incomplete
log-likelihood:

`(θ; X) = ln
∏
i

∑
z(i)

p(x(i), z(i);θ)

=
∑
i

ln
∑
z(i)

∏
s

fs(x(i)
s ;θs)−M ln Z (θ).

The product is “blocked” inside the logarithm because of the sum,
making the marginalisation often analytically intractable.

EM (lower bound)

The key idea is to maximise the expected value of the log-complete
likelihood since Z = {z(i)} are unobserved:

`(θ; X) = ln
∑

Z

p(X,Z;θ)

= ln
∑

Z

q(Z)
p(X,Z;θ)

q(Z)

≥
∑

Z

q(Z) ln
p(X,Z;θ)

q(Z)
≡ L(q,θ)

where q(Z) is called the variational distribution.

The lower bound follows from Jensen’s inequality:

f (x) is convex⇒ E(f (x)) ≥ f (E(x)).

The quantity −L(q,θ) can be interpretted as the (variational) free
energy from statistical physics.

EM (principle)

ln p(X|θ)L(q,θ)

KL(q||p)

ln p(X|θold)L(q,θold)

KL(q||p) = 0

ln p(X|θnew)L(q,θnew)

KL(q||p)

EM is based on two decompositions of the bound L(q,θ):

L(q,θ) = ln p(X|θ)−KL[q(Z)‖p(Z|X,θ)],

L(q,θ) = Eq{ln p(X,Z|θ)}+ H[q(Z)].

where KL[q‖p] = Eq{ln q
p} is the Kullback-Leibler divergence (or relative

entropy) and H[q] = −E{ln q)} the entropy.

EM (algorithm)

����� � ���	��

��
��������

� ���
���� ���

Maximise lower bound by alternating between 2 steps:

E step: Minimise KL for fixed θ by setting q(Z) = p(Z|X,θ).
M step: Maximise Eq{ln p(X,Z|θ)} for given q(Z).

Gradient ascent to local maxima of `(θ; X), by construction it
ensures monotonic increase of the bound.

ML estimates of the parameters, still ok if q is a good approximation
of the posterior (approximate E step).

Mixture of Bernoulli distributions

Let x = (x1, . . . , xN) be a set of binary variables (e.g. B&W image).

Each component is a product of Bernoulli distributions:

p(x|µk) =
∏
n

Bernoulli(µkn) =
∏
n

µxn
kn(1− µkn)1−xn .

The mixture model (likelihood) is defined as

p(x|µ,π) =
∑
k

πkp(x|µk), πk ∈ [0, 1],
∑
k

πk = 1.

No closed form solution for ML estimates of θ = {µk , πk}.

Mixture of Bernoulli distributions (continued)

For each set of binary variables x we introduce a discrete latent
variable z which indicates the mixture component:

p(z |π) = Discrete(π) =
∏
k

π
δk (z)
k .

The new graphical model is completed by

p(x|z ,µ) =
∏
k

[∏
n

Bernoulli(µkn)

]δk (z)

.

The marginal likelihood is recovered by summing over z .

x

z

Mixture of Bernoullis (application)

Pixelised handwritten digits, converted from grey scale to binary
images by thresholding

Goal is to cluster the images (recognise digit automatically), learning
is done with EM algorithm

The bottom figure shows the mean images for each of the 3 clusters,
as well as the mean image when considering a single Bernoulli.

Mixture of Bernoullis (EM updates)

E step : responsibilities:

ρik ≡ E{z (i) = k} =
πkp(x(i)|µk)∑
k′ πk′p(x(i)|µk′)

M step : mean and mixture proportions:

µk =
1

Mk

M∑
i=1

ρikx(i), Mk =
M∑
i=1

ρik ,

πk =
Mk

M
.

Mixture of Gaussians (Old Faithful geyser data)

xn

zn

N

µ Σ

π p(x|{µk}, {Σk},π) =
∑
k

πkN (µk ,Σk),

πk ∈ [0, 1],
∑
k

πk = 1.

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

�����

−2 0 2

−2

0

2

(d)

�����

−2 0 2

−2

0

2

(e)

�����

−2 0 2

−2

0

2

(f)

�������

−2 0 2

−2

0

2

Multivariate Gaussian density

Let x be a D-dimensional Gaussian random vector.

The density of x is defined as

N (µ,Σ) = (2π)−D/2|Σ|−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
,

where µ ∈ RD×1 is the mean and Σ ∈ RD×D is the covariance matrix.The Gaussian Distribution

The Gaussian distribution is given by

p(x|µ Σ) = N(µ Σ) = (2π)−D/2|Σ|−1/2 exp
(

− 1
2 (x − µ)!Σ−1(x − µ)

)

where µ is the mean vector and Σ the covariance matrix.

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 8 / 55

2-dimensional Gaussian

Gaussian identities

Let x and y be jointly Gaussian:

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σ>xy Σyy

])
.

The marginal p(x) is Gaussian with mean µx and covariance Σxx .

The conditional p(x|y) is Gaussian with mean and covariance equal to

µx|y = µx + ΣxyΣ−1
yy (y − µy),

Σx|y = Σxx −ΣxyΣ−1
yy Σ>xy.Conditionals and Marginals of a Gaussian

joint Gaussian

conditional

joint Gaussian

marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 9 / 55

(a) Marginal.

Conditionals and Marginals of a Gaussian

joint Gaussian

conditional

joint Gaussian

marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 9 / 55

(b) Conditional.

Gaussian identities (continued)

Consider the following two Gaussian distributions:

p(x) = N (µx,Σxx),

p(y|x) = N (Ax + b,Λ).

The marginal p(y) is Gaussian with mean and covariance given by

µy = Aµx + b,

Σyy = Λ+AΣxxA>.

The posterior p(x|y) is Gaussian with mean and covariance equal to

µx|y = Σx|y{Σ−1
xx µx + A>Λ−1(y − b)},

Σx|y = (Σ−1
xx + A>Λ−1A)−1.

(For proofs see for example chapter 2 of Bishop, 2006.)

Probabilistic principal component analysis (PPCA)

PCA is a standard pre-processing tool for
(linear) dimensionality reduction.

It uses a maximal variance criterion (or
minimal mean squared reconstruction error).

Standard algorithms are O(D3) (e.g.
Gaussian elimination).

!6 !4 !2 0 2 4 6
!6

!4

!2

0

2

4

6

t1

t 2

V

V 1

2

PPCA assumes a single Gaussian latent
variable and a Gaussian likelihood.

ML solution spans same subspace as PCA
solution.

Standard EM is O(DNd) per iteration.

Probabilistic principal component analysis (PPCA)

xn = Wzn + µ + εn

Likelihood (noise model):

xn|zn ∼ N (Wzn + µ, σ2ID).

Continuous latent variable:

zn ∼ N (0, Id).

xn

zn

N

µ

σ2

W

ML estimate of the projection matrix: W = Ud(Λd − σ2Id)1/2R.

ML estimate is equivalent to PCA solution up to a rotation R.

Residual variance σ2 is given by 1
D−d

∑
j>d λj .

PPCA: interpretation

z

p(z)

ẑ

x2

x1

µ

p(x|ẑ)}
ẑ|w|

w
x2

x1

µ

p(x)

Robust probabilistic principal component analysis

Many real noise sources are non-Gaussian.

Models based on Gaussian noise are sensitive to outliers.

A robust reformulation is based on the Student-t distribution:

!10 !8 !6 !4 !2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

x

p(
x)

−5 0 5
0

2

4

6

8

10

12

14

x

−l
og

 P
(x

)

Replace Gaussian likelihood and Gaussian prior by scaled ones.

Introduce the auxiliary (continuous) latent scale variable:

un ∼ G(ν/2, ν/2).

An outlier is considered atypical in the observation and latent space.

Multivariate Student-t density

The Student-t density is defined as follows:1

S(µ,Σ, ν) =
Γ(ν+D

2)

Γ(ν2)(νπ)D/2|Σ|1/2

(
1 +

1

ν
(x− µ)>Σ−1(x− µ)

)− ν+D
2

.

Parameter ν > 0 is the shape parameter:

The Cauchy density is recovered for ν = 1.

The Gaussian density is recovered when ν →∞.

The Student-t density can be reformulated as an infinite mixture of
scaled Gaussians:

S(µ,Σ, ν) =

∫ ∞
0

N (µ,Σ/u) G(ν2 ,
ν
2) du,

where u is a (latent) scale parameter.

1Student’s t density was published in 1908 by William S. Gosset, while he worked at
Guinness Brewery in Dublin and was not allowed to publish under his own name.

Gamma density

For x ∈ R+, the Gamma density is defined as follows:

G(α, β) =
βα

Γ(α)
xα−1 exp{−βx}, α, β > 0,

where Γ(u) ≡
∫∞

0
vu−1e−vdv is the gamma function. We have

〈x〉 = a/b and 〈ln x〉 = ψ(a)− ln b.

The function ψ(·) ≡ (ln Γ)′(·) is the digamma function.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

x

p(
x)

Figure: Gamma distribution for two values of a and b.

Example

−5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

y1

y 2

(a) Standard PPCA.

−5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

y1

y 2
(b) Robust PPCA.

The dimension of the latent subspace is fixed in advance, but the shape
parameter ν is learnt from the data (by a line search at each EM step).

Mixtures of probabilistic principal component analysers

p(x) =
∑

kπkp(x|z = k),

p(x|z = k) = N (µk ,WkW>k + σ2ID).

Clustering (very) high-dimensional data:

Stable due to low rank approximation of the covariance matrices.
Captures correlations between local leading directions.
Rotational ambiguity vanishes.

The number of components and the dimension of the latent
subspaces can be set by cross-validation.

Combining local analysers to obtain nonlinear generative models.

Possible issues are component misalignments and dimension
mismatches.

Natural extension to mixtures of robust PPCAs.

Finite mixture of (robust) PPCAs: example revisited

−5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

y1

y 2

(c) Standard PPCA.

−5 −4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

y1
y 2

(d) Robust PPCA.

USPS handwritten digits 2 and 3

USPS data set: 16× 16 pixels images of digits (0 to 9).

Only (respectively 731 and 658) images of digits 2 and 3 are kept.

100 (randomly chosen) images of digit 0.

Mixture of PPCAs:

Mixture of robust PPCAs:

Standard mixture of Gaussians and diagonal mixtures collapse...

Part 3: Conditional models for regression

Linear models for regression:

Maximum likelihood (vs. least squares)
Maximum a posteriori (vs. ridge regression)
Type II ML via EM

Gaussian process regression

Conditional models for regression

Consider a finite number of noisy observations {tn}Nn=1 associated to
some input data {xn}Nn=1.

The conditional model p(t|x) is not concerned with the density over
the inputs.

Conditional models for regression often assume iid noise:

tn = f (xn) + εn, εn ∼ iid.

The goal is to predict the outcome f (x∗) of an unseen input x∗ after
having observed the training data {xn, tn}Nn=1.

This is called generalisation.

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

f(xnew) = ?

Linear models for regression

Let {φm(·)}Mm=1 be a set of nonlinear basis functions centred on M
learning prototypes.

We assume f (x; w) is linear in the parameters w:

f (x; w) =
M∑

m=1

wmφm(x) + w0 = w>φ(x).

The goal is to learn w based on {xn, tn}Nn=1 so to predict at best on
unseen data (∼generalise).

Well-known examples:

Least squares regression
Partial least squares
Regularization networks
Support vector machines
Splines
...

Some notations

Let fn = f (xn; w), f = (f1, . . . , fN)> and t = (t1, . . . , tN)>.

The design matrix Φ is given by

Φ =

 1 φ1(x1) . . . φM(x1)
...

...
. . .

...
1 φ1(xN) . . . φM(xN)

 .

Φ† = (Φ>Φ)−1Φ> is its Moore-Penrose pseudo-inverse.

A probabilistic view of least squares regression

Assume observations are noisy iid samples drawn from a (univariate)
Gaussian:

tn = fn + εn, εn ∼ N (0, σ2).

The likelihood is then given by a multivariate Gaussian:

p(t) =
N∏

n=1

N (fn, σ
2) = N (f, σ2IN).

Maximum likelihood leads to

wML = Φ†t, σ2
ML =

1

N
‖t− f‖2.

The solution wML is equal to the least squares solution:

wML = argmin
w

1

2

N∑
n=1

(tn − fn)2 = argmin
w

1

2
‖t− f‖2

The solutoin σ2
ML is to the residual error (or unexplained variance).

The log-likelihood is given by

ln p(t) = −N

2
ln 2π − N

2
lnσ2 − 1

2σ2
(t− f)>(t− f)︸ ︷︷ ︸

=‖t−f‖2

.

Hence, this leads to

d ln p(t)

dw
= 0 ⇒ 1

σ2
Φ>(t−Φw) = 0,

d ln p(t)

dσ2
= 0 ⇒ − N

2σ2
+

1

2σ4
(t− f)>(t− f) = 0.

ML (or least squares) leads to overfitting

Consider the target function y(x) = sin x
x , x ∈ [−10, 10].

We choose the squared exponential basis function:

φm(x) = exp

{
−λm

2
(x − xm)2

}
, λm > 0.

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

Solid blue curve is ML (least squares) solution for λm = 1/36.

Φ is often ill-conditioned and solving the linear system leads to
overfitting (low bias, but high variance; too much flexibility!).

How to avoid overfitting?

We model the uncertainty on the value of the parameters by
imposing some prior distribution on them:

p(w) = N (0,A−1),

where A ≡ diag{α0, . . . , αM}.
In practice we will consider αm = α0 for all m.

The goal is to favour regularised (∼smooth) solutions by penalising
large values of w.

A probabilistic view of ridge regression (or weight decay)

Maximum a posteriori (MAP) maximises the posterior distribution of
the parameters:

p(w|t) ∝ p(t|w)p(w).

The MAP solution is given by

wMAP = σ−2(σ−2Φ>Φ + A)−1Φ>t,

where the noise variance σ2 is assumed to be known.

Numerically unstable inversion of Φ>Φ becomes stable thanks to A.

To learn the amount of noise, one has to use the EM (see later).

MAP (for fixed σ) leads to the same solution as ridge regression:

wMAP = argmin
w

1

2
‖t− f‖2 +

α

2
‖w‖2

where α = α0σ
2.

The log-posterior is given by

ln p(w|t) = −N

2
ln 2π − N

2
lnσ2 − 1

2σ2
(t− f)>(t− f)

− M + 1

2
ln 2π +

1

2
ln |A| − 1

2
w>Aw − ln Z .

Hence, this leads to

d ln p(w|t)

dw
= 0 ⇒ 1

σ2
Φ>(t−Φw)− Aw = 0

⇔ 1

σ2
Φ>t =

1

σ2
Φ>Φw + Aw.

Example revisited

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

(e)

0 0.01 0.02 0.03 0.04 0.05 0.06
5.95

6

6.05

6.1

!

E

(f)

Figure: (a) The target sinc function (dashed line) and the least squares
regression solution (solid line) for λm = 1/36 for all m. The noisy observations
are denoted by crosses. (b) Penalised error as a function of α.

Is the MAP solution a good solution?

Overfitting is solved by limiting the effective model complexity.

Model selection, i.e. choising the number of prototypes, is also
solved, but it might be difficult to deal with (very) large data sets.

The better (∼smooth) solution is at the cost of an additional
hyperparameter α, which can only be set by cross-validation.

The residual noise σ2 needs also to be set by cross-validation.

The uncertainty on the parameters is not taken into account when
making predictions (point estimate):

p(t|t) ≈ p(t|wMAP) = N (t|f (x; wMAP), σ2).

The MAP solution depends on the parametrisation of the prior.

EM for linear regressors

We view w as a latent variable on which
an isotropic Gaussian prior is imposed:

p(w) = N (0, α−1
0 IM+1).

The goal is to learn the noise variance σ2

and the scale parameter α0 via EM.
tn

xn

N

w

α

σ2

EM applied to linear regressors is as follows

L(q,θ) = ln p(t|θ)−KL[q(w)‖p(w|t,θ)],

L(q,θ) = Eq{ln p(t,w|θ)}+ H[q(w)].

where θ = {σ, α0}.
EM iteratively maximises the log-marginal likelihood:

θML2 = argmax
θ

ln p(t|θ) = argmax
θ

ln

∫
p(t,w|θ)dw.

This procedure is known as type II ML (or evidence maximisation).

Type II ML for linear regressors (EM updates)

E step : compute posterior p(w|t) = N (µw,Σw):2

µ = σ−2ΣwΦ>t,

Σw = (σ−2Φ>Φ + α0IM+1)−1.

M step : estimate residual noise and scale parameter:

σ2
ML2 ←

1

N
‖t−Φµw‖2 + tr{ΦΣwΦ>},

αML2 ←
M + 1

µ>wµw + tr{Σw}
.

2The posterior mean µw is equal to the MAP estimate of w (why?).

The posterior is given by (completing the square)

p(w|t) ∝ e−
1

2σ2 (t−Φw)>(t−Φw) e−
α0
2 w>w

∝ e−
1
2 (w>(σ−2Φ>Φ+α0IM+1)w−2σ−2t>Φw)

∝ e−
1
2 (w>Σ−1

w w−2µ>w Σ−1
w w)

∝ e−
1
2 (w−µw)>Σ−1

w (w−µw).

The expected complete log-likelihood is given by

〈ln p(t,w)〉 = −N

2
ln 2π − N

2
lnσ2 − 1

2σ2

〈
(t− f)>(t− f)

〉
− M + 1

2
ln 2π +

M + 1

2
lnα0 −

α0

2
〈w>w〉

= −N

2
ln 2π − N

2
lnσ2 − 1

2σ2
(t−Φ〈w〉)>(t−Φ〈w〉)

− 1

2σ2
tr{ΦΣwΦ>} − M + 1

2
ln 2π +

M + 1

2
lnα− α

2
〈w>w〉.

Taking the derivative wrt σ2 and α0, and equating to zero leads to the
desired updates.

Predictive distributions

We are not only interested in the optimal predictions, but also in the
best approximation of the full predictive distribution.

The predictive distributions for the ML and the type II ML solutions
are given by

p(t|t) ≈ p(t|wML, σML) = N (w>MLφ(x), σ2
ML),

p(t|t) ≈ p(t|t, σML2, αML2) = N (µ>wφ(x), σ2
ML2+φ>(x)Σwφ(x)).

In the case of type II ML, the predictive variance has two
components:

One due to the noise on the data.
One due to the uncertainty on the parameters.

Example revisited

We compare the solutions on the sinc example with N = 25, σ = 0.1 and
λm = 1/9 for all m. We show the mean and the error bars (±3 std):

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

(a) ML.

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t
(b) ML2.

Figure: (a) ML solution: σML = 0.05. (b) Type II ML solution: σML2 = 0.08
and αML2 = 1.15. (Target function: dashed; observations: crosses.)

Is the type II ML solution a good solution?

Overfitting is avoided by taking parameter uncertainty into account.

Integrating out w leads to confidence measures for predictions.

The variational bound is not suitable for selecting the kernel width:

10!1 100 1010

0.05

0.1

!

RMSE
!F/c

(a)

10!1 100 101
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

!

"

(b)

Figure: (a) Root mean square error (RMSE) and normalised lower bound
(−F/c) versus the kernel width λ. (b) Noise standard deviation versus λ.

From Bayesian linear regression to Gaussian processes

Bayesian linear model for regression:

tn = fn + εn, εn ∼ N (0, σ2),

f (x; w) = w>φ(x), w ∼ N (0, α−1I).

Integrating out the parameter vector w leads to

E{f (x; w)} = E{w>}φ(x) = 0,

E{f (x; w)f (x′; w)} = φ(x)>E{ww>}φ(x′) = α−1
∑
k

φk(x)φk(x′),

The prior over functions is entirely determined by the mean function
m(x) = 0 and the covariance function k(x, x′) =

∑
k φk(x)φk(x′).

This GP has a finite number of basis functions (implicit kernel).

The idea is to define the covariance function (or kernel) directly.

Example of a covariance function

The squared exponential kernel is defined as

k(x, x′) = c2 exp

{
−‖x− x′‖2

2l2

}
,

where c > 0 and l > 0 are hyperparameters.

Valid kernel function as for any set {xn}Nn=1, the kernel matrix
K ∈ RN×N is positive semidefinite

Depends only on the difference x− x′, i.e. it is a stationary kernel

Corresponds to projecting the input data into an infinite dimensional
feature space (see e.g. Shawe-Taylor and Cristianini, 2004)

Corresponds to using an infinite number of basis functions (not
just on the training points)

Gaussian process

A multivariate Gaussian distribution:

Defines a probability density over D random variables (based on
correlations).

Characterized by mean vector and covariance matrix:

f ≡ (f1, . . . , fD)> ∼ N (µ,Σ).

A Gaussian process (GP) is a generalization of a multivariate Gaussian
distribution to infinitely many variables.

Defines a probability measure over random functions (Informally a
function can be viewed as an infinitely long vector.)

Characterized by mean function and covariance function:

f (·) ∼ GP(m(·), k(·, ·))

The (joint) marginal distribution over any finite subset of variables
is a consistent finite dimensional Gaussian!

Sampling random functions from GPs

Batch sampling: f ∼ N (m,K)

Generate a set of inputs {xn}Nn=1.

Draw N samples from N (0, 1).

Compute the function values using f = L>z + m, where L is the
upper triangular Cholesky factor of the kernel matrix K.

Sequential sampling: f ∼
∏

n>0
p(fn|f\n) =

∏
n>0
N (m̃n, σ̃

2
n)

Repeat for n > 0:

Generate xn.

Draw a sample zn from N (0, 1).

Compute the function value associated to xn using fn = σ̃nzn + m̃n.

The function values fn and y\n = (fn−1, . . . , f1)> are jointly Gaussian:

p(fn, f\n) = N
([

m(xn)
m\n

]
,

[
k(xn, xn) kn

k>n K\n

])
= N (m,K).

The conditional p(fn|f\n) is then also Gaussian with the conditional
mean and the conditional variance respectively given by

m̃n = m(xn) + knK−1
\n (f\n −m\n),

σ̃2
n = k(xn, xn)− knK−1

\n k>n .

Example

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!2.5

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

2.5

x

y(
x)

Figure: Three random functions generated from a GP with m(x) = 0 and a
squared exponential covariance function (c = 1 and l = 0.5).

Gaussian processes for regression

The kernel defines a prior over function space:

f (·) ∼ GP(0, k(·, ·)).

We assume a finite number of observations and iid Gaussian noise:

t|f ∼ N (f, σ2IN),

where f ≡ (f (x1), . . . , f (xN))> are the latent function values.

The posterior process is again a Gaussian process:

f (·)|t ∼ GP(m̃(·), k̃(·, ·)),

where

m̃(·) = k>(·)(K + σ2IN)−1t,

k̃(·, ·) = k(·, ·)− k>(·)(K + σ2IN)−1k(·).

Any latent function value f (x) is jointly Gaussian with the finite subset f:

p(f, f (x)) = N
(

0,

[
K k(x)

k>(x) k(x, x)

])
,

where k(x) ≡ (k(x, x1), . . . , k(x, xN))>.

The mean and the variance of the conditional Gaussian p(f (x)|f) are given by

µ(x) = k>(x)K−1y,

κ(x, x) = k(x, x)− k>(x)K−1k(x).

We have the p(y) = N (0,K) and the p(t|y) = N (f, σ2IN), such that

p(f|t) = N (σ−2Σt,Σ),

where Σ = (K−1 + σ−2IN)−1.

Hence, the marginal posterior p(f (x)|t) =
∫
p(f (x)|f)p(f|t)df is a Gaussian

with mean and variance given by

m̃(x) = k>(x)(K + σ2IN)−1t,

k̃(x, x) = k(x, x)− k>(x)(K + σ2IN)−1k(x),

where the Woodbury identity was invoked.

Example

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(a) Prior.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(b) Posterior.

Figure: Three random functions generated from (a) the prior GP and (b) the
posterior GP. An observation is indicated by a +, the mean function by a
dashed line and the 3 standard deviation error bars by the shaded regions. We
used a squared exponential covariance function (c = 1 and l = 0.25).

Learning the parameters by type II ML

We view the latent functions as nuisance parameters (thus integrate
them out).

The log-marginal likelihood is given by

ln p(t) = −N

2
ln 2π−1

2
ln |K(θ) + σ2IN |︸ ︷︷ ︸

complexity penality

−1

2
t>(K(θ) + σ2IN)−1t︸ ︷︷ ︸

data fit

.

The noise variance σ2 and the kernel parameters θ can be learned by
means of gradient ascent techniques:

∂ ln p(t)

∂σ2
= −1

2
tr
{

(K + σ2IN)−1
}

+
1

2
ν>ν,

∂ ln p(t)

∂θk
= −1

2
tr

{(
(K + σ2IN)−1 − νν>

) ∂K

∂θk

}
,

where ν ≡ (K(θ) + σ2IN)−1t.

Computational considerations

No need to explicitly invert the kernel matrix (no numerical
instabilities), but K + σ2IN .

Use of standard nonlinear optimisation tools, but objective is
non-convex (no guarantee of attaining a global maximum).

Main bottleneck is the computational complexity of the kernel
matrix, which is O(N3) for a training set of size N.

The computation of the derivatives requires only time O(N2) per
hyperparameter.

Useful tricks include:

Matrix inversion lemma (Woodbury identity):

(Ψ + VΦW)−1 = Ψ−1 −Ψ−1V(Φ−1 + WΨ−1V)−1WΨ−1,

|Ψ + VΦW| = |Ψ| |Φ| |Φ−1 + WΨ−1V|,

where Ψ ∈ RN×N , Φ ∈ RM×M , V ∈ RN×M and W ∈ RM×N .

Cholesky decomposition Λ = Q>Q, where the Cholesky factor
Q ∈ RD×D is upper triangular.

Predictive distribution

The predictive distribution at x for type II ML estimates of the
hyperparameters is given by

p(t|t) ≈ p(t|t, σML2,θML2) = N (m̃ML2(x), k̃ML2(x, x) + σ2
ML2).

The predictive variance has three components:

The prior variance kML2(x, x).

The term −k>ML2(x)(KML2 + σ2
ML2IN)−1kML2(x), which reduces the

prior uncertainty and tells us how much is explained by the data.3

The noise σ2
ML2 on the observations.

3This term is independent of the targets!

Sinc example

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

(a) Variational linear regression.

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

(b) GP regression.

Figure: Comparison of the optimal solutions found by (a) variational linear
regression with squared exponential basis functions (λ = 0.4095) and by (b)
Gaussian process regression with a squared exponential kernel (λ = 0.1804).

Covariance functions

A valid kernel should satisfy Mercer’s condition (see e.g. Shawe-Taylor
and Cristianini, 2004).

In practice we require the kernel to induce a symmetric and positive
semidefinite kernel matrix.

Examples of other kernels:

Non-stationary kernels (e.g. sigmoidal kernel).

Kernels for structured inputs (e.g. string kernels).

Some rules for kernel design:

k(x, x′) = ck1(x, x′),

k(x, x′) = k1(x, x′) + k2(x, x′),

k(x, x′) = k1(x, x′)k2(x, x′),

k(x, x′) = f (x)k1(x, x′)f (x′),

...

where c > 0 is a constant and f (·) is a deterministic function.

Periodic covariance functions

Construct a periodic signal of x :

u(x) = (sin x , cos x)>.

Plug into the squared exponential kernel:

k(x, x′) = c2 exp

−2 sin2
(

x−x′
2

)
l2

 ,

where we used ‖u(x)− u(x ′)‖2 = 4 sin2(x−x′
2).

!10 !8 !6 !4 !2 0 2 4 6 8 10
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

Figure: 3 random functions generated with a periodic kernel (c = 1, l = 0.5).

Rational quadratic covariance functions

k(x, x′) =

(
1 +
‖x− x′‖2

νl2

)− ν+D
2

,

ν > 0 is the shape parameter, l > 0 the scale parameter and D is
the dimension of the input space.

The kernel corresponds to an infinite mixture of scaled squared
exponentials:∫

p(r |u, l) p(u|ν) du =

∫
N (0, l2/u)G(ν2 ,

ν
2) du

∝
(

1 +
r 2

νl2

)− ν+D
2

.

where r ≡ ‖x− x′‖.
The shape parameter ν defines the thickness of the kernel tails.
The squared exponential is recovered for ν →∞.

Example revisited

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(a) Prior ν = 1
3

.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(b) Prior ν = 3.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(c) Prior ν → ∞.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(d) Prior ν = 1
3

.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(e) Prior ν = 3.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(f) Prior ν → ∞.

Figure: Three random functions generated from (a) the prior GP and (b) the
posterior GP with the rational quadratic kernel (l = 0.25). The observations
are indicated by +, the means by a dashed lines and the 3 standard deviation
error bars by the shaded regions.

Matérn covariance functions

k(x, x′) =
21−ν

Γ(ν)

(√
2ν |x− x′|

l

)ν
Kν

(√
2ν |x− x′|

l

)
,

Kν(·) is the modified Bessel function of the second kind, ν > 0 and
l > 0.

The order ν defines the roughness of the random functions as they
are bν − 1c times differentiable:

We have the Laplacian or Ornstein-Uhlenbeck4 kernel for ν = 1
2
.

For ν = p + 1
2

with p ∈ N, the covariance function takes the simple
form of a product of an exponential and a polynomial of order p.

k(x, x′) = exp

{
−
√

2ν |x− x′|
l

}
p!

(2p)!

p∑
i=0

(p + i)!

i !(p − i)!

(√
8ν |x− x′|

l

)p−i

.

We recover the squared exponential kernel for ν →∞.

There is no closed form solution for the derivative of Kν(·) wrt ν.
4The Ornstein-Uhlenbeck (OU) process is a mathematical description of the

velocity of a particle undergoing Brownian motion.

Example revisited

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(a) Prior ν = 1
2

.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(b) Prior ν = 5
2

.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(c) Prior ν → ∞.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(d) Prior ν = 1
2

.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(e) Prior ν = 5
2

.

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!5

!4

!3

!2

!1

0

1

2

3

4

5

x

y(
x)

(f) Prior ν → ∞.

Figure: Three random functions generated from (a) the prior GP and (b) the
posterior GP with the Matérn kernel (l = 0.25). The observations are indicated
by +, the means by a dashed lines and the 3 standard deviation error bars by
the shaded regions.

Matérn kernel vs rational quadratic kernel

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x!x’

k(
x,

x’
)

! = 1/3
! = 3
! " #

(a) Rational quadratic.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x!x’

k(
x,

x’
)

p = 1
p = 2
p ! "

(b) Matérn.

Figure: Comparison of the rational quadratic and the Matérn kernel with unit
length scale (l = 1) for three values of respectively the shape and the
roughness parameter.

Both kernels are less localised than the squared exponential.

Forcing the random latent functions to be infinitely differentiable
might be unrealistic in practice.

Automatic relevance determination (ARD)

The principle denotes the idea that relevant input dimensions can be
directly selected form the data.

ARD can be implemented as follows in the case of GPs with a squared
exponential kernel:

k(x, x′) = c2 exp

{
−1

2

D∑
d=1

(xd − x ′d)2

ld
2

}
,

where {ld}Dd=1 are allowed to be different.

The characteristic length scale ld measures the distance for being
uncorrelated along xd . Hence, xd is not relevant if 1/ld is small.

ExampleC. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.1 The Model Selection Problem 107

!2

0

2

!2

0

2

!2

!1

0

1

2

input x1input x2

o
u

tp
u

t
y

(a)

!2

0

2

!2

0

2

!2

!1

0

1

2

input x1input x2

o
u

tp
u

t
y

!2

0

2

!2

0

2

!2

!1

0

1

2

input x1input x2

o
u

tp
u

t
y

(b) (c)

Figure 5.1: Functions with two dimensional input drawn at random from noise free
squared exponential covariance function Gaussian processes, corresponding to the
three different distance measures in eq. (5.2) respectively. The parameters were: (a)
! = 1, (b) ! = (1, 3)!, and (c) Λ = (1,−1)!, ! = (6, 6)!. In panel (a) the two inputs
are equally important, while in (b) the function varies less rapidly as a function of x2

than x1. In (c) the Λ column gives the direction of most rapid variation .

covariance will become almost independent of that input, effectively removing
it from the inference. ARD has been used successfully for removing irrelevant
input by several authors, e.g. Williams and Rasmussen [1996]. We call the pa-
rameterization of M3 in eq. (5.2) the factor analysis distance due to the analogy factor analysis distance

with the (unsupervised) factor analysis model which seeks to explain the data
through a low rank plus diagonal decomposition. For high dimensional datasets
the k columns of the Λ matrix could identify a few directions in the input space
with specially high “relevance”, and their lengths give the inverse characteristic
length-scale for those directions.

In Figure 5.1 we show functions drawn at random from squared exponential
covariance function Gaussian processes, for different choices of M . In panel
(a) we get an isotropic behaviour. In panel (b) the characteristic length-scale
is different along the two input axes; the function varies rapidly as a function
of x1, but less rapidly as a function of x2. In panel (c) the direction of most
rapid variation is perpendicular to the direction (1, 1). As this figure illustrates,

(a)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.1 The Model Selection Problem 107

!2

0

2

!2

0

2

!2

!1

0

1

2

input x1input x2

o
u

tp
u

t
y

(a)

!2

0

2

!2

0

2

!2

!1

0

1

2

input x1input x2

o
u

tp
u

t
y

!2

0

2

!2

0

2

!2

!1

0

1

2

input x1input x2

o
u

tp
u

t
y

(b) (c)

Figure 5.1: Functions with two dimensional input drawn at random from noise free
squared exponential covariance function Gaussian processes, corresponding to the
three different distance measures in eq. (5.2) respectively. The parameters were: (a)
! = 1, (b) ! = (1, 3)!, and (c) Λ = (1,−1)!, ! = (6, 6)!. In panel (a) the two inputs
are equally important, while in (b) the function varies less rapidly as a function of x2

than x1. In (c) the Λ column gives the direction of most rapid variation .

covariance will become almost independent of that input, effectively removing
it from the inference. ARD has been used successfully for removing irrelevant
input by several authors, e.g. Williams and Rasmussen [1996]. We call the pa-
rameterization of M3 in eq. (5.2) the factor analysis distance due to the analogy factor analysis distance

with the (unsupervised) factor analysis model which seeks to explain the data
through a low rank plus diagonal decomposition. For high dimensional datasets
the k columns of the Λ matrix could identify a few directions in the input space
with specially high “relevance”, and their lengths give the inverse characteristic
length-scale for those directions.

In Figure 5.1 we show functions drawn at random from squared exponential
covariance function Gaussian processes, for different choices of M . In panel
(a) we get an isotropic behaviour. In panel (b) the characteristic length-scale
is different along the two input axes; the function varies rapidly as a function
of x1, but less rapidly as a function of x2. In panel (c) the direction of most
rapid variation is perpendicular to the direction (1, 1). As this figure illustrates,

(b)

Figure: Latent function values y(x) as a function of the input dimensions x1

and x2. In (a) both dimensions are relevant, while in (b) only x1 is.

