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Overview

@ Elements of Bayesian networks

@ Latent variable models for unsupervised learning

@ Conditional models for supervised learning (regression)
@ Elements of probability theory and statistics



Reference material

e D. Koller and N. Friedman (2009): Probabilistic graphical models:
principles and techniques.

e C. Bishop (2006): Pattern recognition and machine learning. (Many
figures used in these slides are taken from the book.)

@ Michael Jordan (1999): Learning in graphical models.
o S. Lauritzen (1996): Graphical models.

e C. E. Rasmussen and C. K.I. Williams (2006): Gaussian processes
for machine learning.

@ J. Shawe-Taylor and N. Cristianin (2004)i: Kernel methods for
pattern analysis.

e D. J. C. MacKay (2003): Information theory, inference, and learning
algorithms.

@ The Matrix Cookbook by K. B. Petersen and M. S. Pedersen.

@ Many interesting tutorials and talks on videolectures!



Statistical machine learning

@ A mariage between statistics and computer science
o Digital data is omnipresent (web, images, sound, sensors, ...)

@ Data is inherently noisy and unreliable (recording errors, machine
faults, ...)

@ Modelling strategy: assume the data was generated according to
some (hierarchy of) probability distributions

@ Amount of data grows exponentially over time, so computational
complexity is major issue!



Graphical models

@ A marriage between probability theory and graph theory

Graph theoretic aspect provides intuitive representation and is
helpful to analyse, to reason on and to devise new models

Complex sytems are built by combining simpler parts and the
possible relations among them in a probabilistic way

(]

Probability theory is the glue, ensuring whole system is consistent
and can take data into account

Structured in terms of conditional independence assumptions



Graphical models are applied in ...

Bioinformatics

Natural language processing
Document processing
Speech processing

Image processing

Computer vision

Time series analysis
Economics

Physics

Social Sciences
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Organising document

collections (Blei et al., JMLR 2003)
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2 the o Lincoln Center’s share will be $2 for its new bt which
1ouse young artists and pr lic facilities. The Metropolitan Opera Co. and
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o Discovering themes/topics in large text corpora
@ Simple generative model for text (bag-of-words assumption)
@ Monitor trends, discover social network, etc.



Image denoising (McAuley et al., ICML 2006)

(Markov random fields, use neighborhood information.)



Printer infrastructure management

TEAP D A LRSI E A B B YR ™

t, L, t, time 5

(infrastructure map, user and device locations, printing profiles, device
characteristics, soft failure detection, infractructure optimisation, ...)



Part 1. Elements of Bayesian networks

o Conditional independence
@ Directed graphical models
@ D-separation and Markov blanket

@ Learning in Bayesian networks



Basics

m

Nodes denote random variables, shaded nodes are observed,
unshaded are unobserved (latent, hidden) random variables

Edges represent conditional dependencies, plates indicate replications

Directed graphs: Bayesian networks or nets, belief networks,
generative models, etc.

Undirected graphs: Markov networks, Markov Random Fields, etc.

Combinations are called chain graphs



Conditional independence

@ Statistical independence (SI): X 1L Y

p(x,y) = P(x)p(y)-
e Conditional independence (Cl): X 1L Y|Z

p(x,y|z) = p(x|y, 2)p(y|z) = p(x|z)p(y|2),
p(xly,z) = p(x|z),
p(y|x, z) = p(y|z).

o Examples:

e My wife's mood 1L my boss’ mood | my mood

o My genome 1L my grandmother's genome | my mother’'s genome

e The color of a pixel L the color of faraway pixels | the color of
neighboring pixels



Probabilistic graphical models

o Let {X,}V_; be a set of random variables.

@ A probabilistic graphical model is a family of joint probability
distributions p(xi, ..., xy) for which some Cl assumptions hold.

@ The set of Cl assumptions {X; 1L Xj|Xi} induces a structure in
p(x1,...,xn), which is made explicit in the graph.

@ This structure allows us to make computations more tractable and
storage more efficient.

@ In the case of Bayesian networks this is sometimes called a directed
factorisation (DF) filtering of the joint:

= =




Bayesian networks (directed graphical models)

@ A Bayesian network is a set of probability distributions associated to
a directed acyclic graph (DAG).

@ Node a is a parent of node b if there is a directed link from a to b
(conversely we say that b is a child of a).

@ A node is independent of its ancestors given its parents.

@ Random variables can be discrete or continuous.



Factorisation in directed graphical models

Cls lead to a particular factorisation of the joint!

For a graph with N nodes, we decompose the joint in terms of
conditionals on the parents:

N
p(x1,...,xn) = H p(xalpa,), pa, : parents of x,.
n=1
@ The factorisation is in terms of local conditional distributions.
@ The joint is correctly normalised.



Is the Cl-based factorisation useful?

X1 X2 XM

@ Consider the special case where M = 3:

p(x1, x2,x3) = p(x1)p(xe|x1)p(x3]|x2), Vm:xme{l,...,K}.

@ Factorisation allows us to exploit the distributive law to make
computations more tractable:

without: p(x2) = >_, . p(x1,x2,X3) is O(K?3)
with: p(xp) = Exl p(x1, x2) ng p(x3|x2) is O(2K?)
@ Factorisation leads to a more efficient representation:

without: requires KM — 1 parameters
with: requires K — 1 + (M — 1)K(K — 1) parameters



Is there a rule to deduce Cls directly from the DAG?

@ Cls are usually known by the (human) expert.
@ Cls are imposed by removing links.
@ Do we induce other (hidden) Cls?

all b? all b|f?

o
o



Head-to-tail nodes: statistical independence

a c b

O—0O0—0

@ Consider the head-to-tail node c. Are a and b independent?

@ Let's check SI: p(a, b) i p(a)p(b):
p(a,b)—z (a,b,c) Zp blc)

Zp cla) = p(a) ) p(b, cla)
= p(a)p (bl )

@ No Sl in general.



Head-to-tail nodes: conditional independence

a c b

O—@—0O

@ Assume c is observed. Are a and b conditionally independent?

o Let's check Cl: p(a, b|c) L p(alc)p(b|c):

pla.ble) = 2229 _ PIEERLEID) _ 51015001

e We obtain a 1L b|c.
@ Applying Bayes rule reverts the link!



Tail-to-tail nodes: statistical independence

S
<>

o Consider the tail-to-tail node c. Are a and b independent?

o Let's check SI: p(a, b) = p(a)p(b):
p(a, b) = Zp(& b,c) = ZP(BIC)P(b\C)P(C)
= Zp(a)p cla)p(blc) = p(a Zp (b, cla)
= ( )p(bla)

@ No Sl in general.



Tail-to-tail nodes: conditional independence

S
<>

@ Assume c is observed. Are a and b conditionally independent?

o Let's check Cl: p(a, b|c) L p(alc)p(b|c):

pla.ble) = 225 _ PEIDPBPED) _ piaicyoiic)

o We obtain a 1L b|c.



Head-to-head nodes: statistical independence

c

@ Consider the head-to-head node c. Are a and b independent?

@ Let's check SI: p(a, b) i p(a)p(b):

b):Zp(a,b c Zp p(cla, b)
= p(a)p(b) > _ p(cla, b) = p(a)p(b)

c

@ We obtain a 1L b.



Head-to-head nodes: conditional independence

c

@ Assume c is observed. Are a and b conditionally independent?

o Let's check CI: p(a, b|c) L p(alc)p(b|c):

p(a, blc) = p(a b, c) _ p(a)p(b)p(c|a, b)

G p(c)

@ No Cl in general.



D-separation

@ A blocked path is one containing at least one of the following types
of nodes:

o An observed head-to-tail or tail-to-tail node.
o An unobserved head-to-head node, of which none of the descendants

are observed.

@ Let A, B and C be nonintersecting sets of nodes. A 1L B|C if all
possible paths from any node in A to any node in B are blocked.

@ We say that A is d-separated from B by C.

@ d-separation allows us to directly reason on the graph.



Markov blanket

@ The Markov blanket of x; is the minimal set of nodes that isolates x;
from the rest of the graph.

@ Using Cl we can express any conditional p(x;|{x;};i):
[1, p(xnlpa,)
P\Xi|\Xnsn#i) = X pLXi|Pa; P\Xn; P2, ),
(xil{xn} nzi) S 1L, pColbay) (ilpa;) [ T pCxn by, )

nj

where pa,, includes node x;.

@ The Markov blanket of x; contains the parents and children of x;, as
well as co-parents (spouses) of the children of x;.




Learning in Bayesian networks

o We assume the data X = {x()}M_ are drawn i.i.d.:

o All x(® are drawn from the same distribution (identical assumption).
o xD 1L x9 for i £ f (independence assumption).

@ We posit a statistical model:

p(x; 6) = ﬁ I f(xs: 05).

s

The quality of model depends on the vector of parameters 6.

The goal of learning is to estimate 6:

o Maximum likelihood
o Maximum a posteriori
o Bayesian inference

o We assume for now that there are no latent (hidden) variables.



Maximum likelihood (ML) estimation

@ The likelihood is the joint probability of observing i.i.d. data:

00;X) =In [ p(x;:0) => "> " Inf(x{); 6.) — Min Z(6).

The goal in ML is to find the parameters that maximise the
log-likelihood function:

0™ = argmax £(0; X).
0

A local optimum must satisfy Vg/¢(0; X) = 0 or equivalently
Ve £(0; X) =0 for all s.

Alternatively one can minimise the negative log-likelihood.

ML is asymptotically (i.e. when M — o0) consistent.



Maximum a posteriori (MAP) estimation

@ The likelihood is unbounded, so ML can lead to overfitting
(especially for small data set).

@ Penalise unreasonable values (~ regularisation) by imposing a prior
distribution on the parameters:

p(8]X) o p(X|0)p(0)
@ MAP maximises the penalised log-likelihood :

Ivap(0; X) = £(0; X) +Zlnp

@ A local optimum must satisfy Vg/lyap(0; X) = 0 or equivalently
Vo.luar(0; X) =0 for all s.

@ MAP leads to a point estimate of 8 (while Bayesian statistics is
interested in the full posterior).

@ MAP is not invariant under reparametrisation.



Bayesian inference

@ Bayesian statistics views 6 as a latent variable and is interested the
full posterior of O instead of a point estimate.

@ The prior information (if any) is encoded in the prior distribution
and is updated into a posterior distribution based on the data:

likelihood prior

(X]6) p(6)
o) = PXOEEL )= [ px,6) de.
N—— p(X)
posterior 7/"

@ Prediction is performed by averaging over all possible models:

plx.IX) = [ p(x.16) p(61X) do.

@ The Bayesian approach provides confidence measures for estimates
and predictions.

@ Computing the marginals is in general analytically intractable...



Part 2: Latent variable models for unsupervised learning

@ Learning latent variable models

@ Discrete latent variables:
o Mixture of Bernoullis
o Mixture of Gaussians
@ Continuous latent variables:

o Probabilistic PCA
o Extensions



Latent variable models

Nodes represent random variables or parameters.

°
@ Random variables can be observed or unobserved (latent).
o Latent variables are a flexible way to model the data.

("]

Example: hidden Markov models for sequential data

Xp41 uis Xp—1 |xn

Znt1 uis Zp—1 |zn

xp 1L xp_1|z,



Expectation-maximisation (EM)

@ Assume there are observed as well as latent variables:

p(x,z; 0) Hf Xs, Zs; 0

o If we knew the latent variables {z()}, the problem of learning
would reduce to ML (or MAP) estimation.

o Since {z(7} are unobserved, ML requires to maximise the incomplete
log-likelihood:

X) = InHZp(x(/),z(i),B
iz
=> In> [P 0:) - MinZ(6).
i z() s

@ The product is “blocked” inside the logarithm because of the sum,
making the marginalisation often analytically intractable.



EM (lower bound)

@ The key idea is to maximise the expected value of the log-complete
likelihood since Z = {z())} are unobserved:

=In> p(X,Z;0)

—n P(X.Z;6)
=! ijq(Z) q(2)

2 Z a(z)in 2% 5) % _ £(q.0)

where g(Z) is called the variational distribution.
@ The lower bound follows from Jensen's inequality:

f(x) is convex = E(f(x)) > f(E(x)).

@ The quantity —£L(q, 0) can be interpretted as the (variational) free
energy from statistical physics.



EM (principle)

KL(qllp) [
KL(qllp) =0 ———-- I ——— F-L—-

KL(qllp) J

L(q.0) Inp(X]6) L(q.6°) Inp(X[6°)  L(g,0™") Inp(X[6™")

EM is based on two decompositions of the bound £(gq, 8):

£(q,0) = In p(X|0) — KL[q(Z)[|p(Z|X, 8)],
L(q,0) = Eq{Inp(X,Z|0)} + H[q(Z)].

where KL[q(|p] = Eq{In I} is the Kullback-Leibler divergence (or relative
entropy) and H[g] = —E{Inq)} the entropy.



EM (algorithm)

gold_grew

@ Maximise lower bound by alternating between 2 steps:
E step: Minimise KL for fixed 6 by setting q(Z) = p(Z|X, 6).
M step: Maximise Eq{In p(X, Z|0)} for given gq(Z).
o Gradient ascent to local maxima of ¢(8; X), by construction it
ensures monotonic increase of the bound.
@ ML estimates of the parameters, still ok if g is a good approximation
of the posterior (approximate E step).



Mixture of Bernoulli distributions

Let x = (x1,...,xn) be a set of binary variables (e.g. B&W image).

Each component is a product of Bernoulli distributions:

p(x|py) = H Bernoulli(pixn) H,ukn (L= fusen)' .

The mixture model (likelihood) is defined as

p(x|w, 7 ZWkP X\t )s 7k € [0,1], Zwk =1.
K

No closed form solution for ML estimates of 6 = { g, 7k }.



Mixture of Bernoulli distributions (continued)

@ For each set of binary variables x we introduce a discrete latent
variable z which indicates the mixture component:

p(z|m) = Discrete(m) = [ [ .
k

@ The new graphical model is completed by

p(xlz,m) =[]

3k(2)
H Bernoulli(,ukn)] .
k

n

@ The marginal likelihood is recovered by summing over z.



Mixture of Bernoullis (application)

L4 9Y™dH

o Pixelised handwritten digits, converted from grey scale to binary
images by thresholding

@ Goal is to cluster the images (recognise digit automatically), learning
is done with EM algorithm

@ The bottom figure shows the mean images for each of the 3 clusters,
as well as the mean image when considering a single Bernoulli.

443 8




Mixture of Bernoullis (EM updates)

E step : responsibilities:

(1)
o) o TeP(x )
Pik = ]E{Z = k} - Zk/ ﬂ'k/p(x(i)“J/M)

M step : mean and mixture proportions:

1 M M
- () M, — )
l*l’k Mk ;P:kx ) k ;P:h

My
<3

Tk —



Mixture of Gaussians (Old Faithful geyser data)

p(x|{“k}» {Zk}vﬂ-) = Zﬂ—kN(p‘kv Zk)a
k

7 € [0,1], Z?Tk =1.
K

O# O# | %
0 . ,:.3-. * 0 0 . % *
wihte T O g O 1"." A
- o >
-2 L ."“ -2 -2 .(-"?
-2 0 @ 2 0 2 -2 0 (@ 2
2 2 2

. g0 M
. uke
B
0 R

5 wihte T

v v

W/ A ‘ :o‘

:7 ©




Multivariate Gaussian density

Let x be a D-dimensional Gaussian random vector.

The density of x is defined as
1
N ) = (20) P22 e {5 ) E - )

where g € RP*1 is the mean and X € RP*P is the covariance matrix.

2-dimensional Gaussian



Gaussian identities
Let x and y be jointly Gaussian:
Hy T Xy
p(x7y)_N(|: :|a|: T :|>
'u’)’ ny Zyy
The marginal p(x) is Gaussian with mean p, and covariance Xy .

The conditional p(x|y) is Gaussian with mean and covariance equal to

-1
Hyy = Hx + nyzyy (y - Uy)v
Ty = T — Tay X,y T,y

—joint Gaussian
— marginal

(a) Marginal. (b) Conditional.



Gaussian identities (continued)

Consider the following two Gaussian distributions:

p(x)
pylx

= N (x> Zxx)
) = N(Ax + b, N).
The marginal p(y) is Gaussian with mean and covariance given by

my = Ap, +b,
T, =NAT AT

The posterior p(x|y) is Gaussian with mean and covariance equal to

Hyy = ZXIy{Z;(le + AT/\_I(Y - b)}>
Ty = (Tl +ATATTA)?

(For proofs see for example chapter 2 of Bishop, 2006.)



Probabilistic principal component analysis (PPCA)

@ PCA is a standard pre-processing tool for )
(linear) dimensionality reduction. ,
@ It uses a maximal variance criterion (or o
minimal mean squared reconstruction error).
e Standard algorithms are O(D?) (e.g. y

Gaussian elimination).

y1 @ PPCA assumes a single Gaussian latent
‘ variable and a Gaussian likelihood.
l @ ML solution spans same subspace as PCA

solution.
X1 e Standard EM is O(DNd) per iteration.



Probabilistic principal component analysis (PPCA)

x, =Wz, +p+e€,

Likelihood (noise model):

0.2
Xn|zn ~ N (Wz, + p, 0%1p). \

e Continuous latent variable: JTpe— W
X’Vl
N
Z, ~ N(O, Id)- —
@ ML estimate of the projection matrix: W = Uy(Ay — 014)'/?R.

ML estimate is equivalent to PCA solution up to a rotation R.

Residual variance o2 is given by D g Z,>d



PPCA: interpretation

Na

1



Robust probabilistic principal component analysis

@ Many real noise sources are non-Gaussian.
@ Models based on Gaussian noise are sensitive to outliers.

@ A robust reformulation is based on the Student-t distribution:

—log P(x)

@ Replace Gaussian likelihood and Gaussian prior by scaled ones.

o Introduce the auxiliary (continuous) latent scale variable:

u, ~ G(v/2,v/2).

@ An outlier is considered atypical in the observation and latent space



Multivariate Student-t density

The Student-t density is defined as follows:?

v+D
2

r(50)

)(vm)P2|E[H?

S E0) = (14 Do)
2

Parameter v > 0 is the shape parameter:

@ The Cauchy density is recovered for v = 1.
@ The Gaussian density is recovered when v — co.

The Student-t density can be reformulated as an infinite mixture of
scaled Gaussians:

S(u.E,v) = /O N E/u) G(%.%) du,

where u is a (latent) scale parameter.

1Student’s t density was published in 1908 by William S. Gosset, while he worked at
Guinness Brewery in Dublin and was not allowed to publish under his own name.



Gamma density

For x € R", the Gamma density is defined as follows:

(o) = rfa)xa‘lew{—ﬁxh 0,80,
where ['(u) = [;° v¥~te™Vdv is the gamma function. We have

(x)=a/b and (Inx)=1(a)—Inb.
The function ¢(-) = (InT)'(+) is the digamma function.

Figure: Gamma distribution for two values of a and b.



Example

3
2 s >P P 2 )
1 S & 1
> >
>
i -
o 0
>
N > N
-1 1
D>
>
2 IS 2
>
B 5
-3 3
>
s -4 -3 2 -1 0 1 2 5 —4 -3 2 =] 0 1 2
'yY y7
(a) Standard PPCA. (b) Robust PPCA.

The dimension of the latent subspace is fixed in advance, but the shape
parameter v is learnt from the data (by a line search at each EM step).



Mixtures of probabilistic principal component analysers

p(x) = 2o mip(x|z = k),
p(x|z = k) = N (e, W, W, + 5?lp).

o Clustering (very) high-dimensional data:

o Stable due to low rank approximation of the covariance matrices.
o Captures correlations between local leading directions.
o Rotational ambiguity vanishes.

@ The number of components and the dimension of the latent
subspaces can be set by cross-validation.

@ Combining local analysers to obtain nonlinear generative models.

@ Possible issues are component misalignments and dimension
mismatches.

@ Natural extension to mixtures of robust PPCAs.



Finite mixture of (robust) PPCAs: example revisited

3
2 2
s
1 1
L B
5
o
0 0
N b N
B . BN
1 1
.
-2 2
L] *
-3 3
.
-4 4
-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1
Yy Y

(c) Standard PPCA. (d) Robust PPCA.



USPS handwritten digits 2 and 3

USPS data set: 16 x 16 pixels images of digits (0 to 9).
Only (respectively 731 and 658) images of digits 2 and 3 are kept.

100 (randomly chosen) images of digit 0.

@ Mixture of PPCAs:

gl #333353333)
Q0022272

Mixture of robust PPCAs:

Q3333533333

Standard mixture of Gaussians and diagonal mixtures collapse...



Part 3: Conditional models for regression

@ Linear models for regression:

e Maximum likelihood (vs. least squares)
o Maximum a posteriori (vs. ridge regression)
o Type Il ML via EM

@ Gaussian process regression



Conditional models for regression

o Consider a finite number of noisy observations {t,}"_; associated to
some input data {x,}"N_,.

@ The conditional model p(t|x) is not concerned with the density over
the inputs.

@ Conditional models for regression often assume iid noise:

ty = f(xn) + €n, €n ~ iid.

@ The goal is to predict the outcome f(x*) of an unseen input x* after
having observed the training data {x,, t,}"_;.
@ This is called generalisation.

; y x
- 05| K | - 05 Xx K4 =2

x : «
x . x
X&X%{X 1 *
x x box x
: X x




Linear models for regression

o Let {¢m(-)}M_, be a set of nonlinear basis functions centred on M
learning prototypes.

o We assume f(x;w) is linear in the parameters w:
M
f(X; W) = Z Wm(zsm(x) +wp = WT¢(X)'
m=1

@ The goal is to learn w based on {x,, t,}_; so to predict at best on
unseen data (~generalise).

o Well-known examples:

Least squares regression
Partial least squares
Regularization networks
Support vector machines
Splines



Some notations

o Let f, = f(xpw), F=(f,....,n)" and t = (t1,...,tn)".
@ The design matrix ® is given by

1 ¢1(X1) ¢M(X1)
o= = :

i ¢1(XN) qu(XN)

°o ®f = (¢T¢)71¢T is its Moore-Penrose pseudo-inverse.



A probabilistic view of least squares regression

@ Assume observations are noisy iid samples drawn from a (univariate)
Gaussian:

th=fo4€n € ~N(0,0°).

@ The likelihood is then given by a multivariate Gaussian:
N
p(t) = HN(fnaU2) :N(faU2IN)'
n=1

@ Maximum likelihood leads to
t 2 1 2
@ The solution wyyy, is equal to the least squares solution:

N
1 1
wyL = argglin B E (t,— £,)° = argivnin §||t —f|?

n=1

@ The solutoin o3, is to the residual error (or unexplained variance).



The log-likelihood is given by

N N 1
Inp(t):—EInQﬂ'—§In02—ﬁ(t—f)—r(t—f).
~—

=lle—f|2

Hence, this leads to

I 1
d za(t) —0 = o (t—ow)=0,
o
dinp(t) N 1 T B
do?2 0 = 202 + 204 (t=f) (t-H=0




ML (or least squares) leads to overfitting

o Consider the target function y(x) = "X x € [-10, 10].

x !

@ We choose the squared exponential basis function:

Am
Pm(x) = exp{—2(x _Xm)z} ,  Am>0.

@ Solid blue curve is ML (least squares) solution for A, = 1/36.

@ @ is often ill-conditioned and solving the linear system leads to
overfitting (low bias, but high variance; too much flexibility!).



How to avoid overfitting?

@ We model the uncertainty on the value of the parameters by
imposing some prior distribution on them:

p(w) = N(0,A1),

where A = diag{ao, ..., am}.
@ In practice we will consider ., = ag for all m.

@ The goal is to favour regularised (~smooth) solutions by penalising
large values of w.



A probabilistic view of ridge regression (or weight decay)

@ Maximum a posteriori (MAP) maximises the posterior distribution of
the parameters:

p(wlt) oc p(t|w)p(w).
@ The MAP solution is given by
wyap =0 (020 Td + A) Tt

2 is assumed to be known.

where the noise variance o
@ Numerically unstable inversion of ® " ® becomes stable thanks to A.
@ To learn the amount of noise, one has to use the EM (see later).

e MAP (for fixed o) leads to the same solution as ridge regression:
1 5 5
wyiap = argmin = ||t — f[|© + = ||w||
w 2 2

where a = ago?.



The log-posterior is given by

N N 1
In p(wlt) = ) In27 — o) Ino? — ﬁ(t )T (t-f)

M+1 1 1
_ 2+ 027+ 5 In|A] = Sw’ Aw—InZ.
Hence, this leads to
dIn p(w(t) 1 -
TZO = ;tb (t—dw)—Aw =0
1 1
& S0't= 0 dw+Aw.
o o



Example revisited

05, - - 5

(e) ()

Figure: (a) The target sinc function (dashed line) and the least squares
regression solution (solid line) for A, = 1/36 for all m. The noisy observations
are denoted by crosses. (b) Penalised error as a function of a.



Is the MAP solution a good solution?

e Overfitting is solved by limiting the effective model complexity.

@ Model selection, i.e. choising the number of prototypes, is also
solved, but it might be difficult to deal with (very) large data sets.

@ The better (~smooth) solution is at the cost of an additional
hyperparameter «, which can only be set by cross-validation.

@ The residual noise o2 needs also to be set by cross-validation.

@ The uncertainty on the parameters is not taken into account when
making predictions (point estimate):

p(tlt) ~ p(tlwaiar) = N (t|f(x; waar), 07).

@ The MAP solution depends on the parametrisation of the prior.



EM for linear regressors

@ We view w as a latent variable on which
an isotropic Gaussian prior is imposed:

p(w) = N(0, ag 1)

2
. . . ag
@ The goal is to learn the noise variance o2

and the scale parameter ag via EM.

@ EM applied to linear regressors is as follows

£(q,0) = In p(t|6) — KL[g(w)]|p(w]t, O)],
£(q,0) = Eq{In p(t, w[0)} + H[g(w)].

where 8 = {0, ap}.

o EM iteratively maximises the log-marginal likelihood:
Onir2 = argmaxIn p(t|6) = argmaxln/p(t,w\@)dw.
6 6

@ This procedure is known as type Il ML (or evidence maximisation).



Type Il ML for linear regressors (EM updates)

E step : compute posterior p(w(t) = N(p,,, Zw):>

p=0 2,0t
T = (0720 & + agly,1) 7L

M step : estimate residual noise and scale parameter:

1
oRins It = Oy + {OE, T},
M+1

« — -
M + (%)

°The posterior mean p,, is equal to the MAP estimate of w (why?).



The posterior is given by (completing the square)

p(W|t) - efﬁ(tflbw)T(tfd)w) e—%wTw

- e—%(wT(J*ZmT¢+a0|M+1)w—2a*2tT¢w)
o e tW I w2 T w)

o e Bw— i) TES (W)

The expected complete log-likelihood is given by

N N, 1 .
M+1 M+1
Ml In27 + i Inag — %<WTW>
2 2
N N, 1 .
=-3 In2m — > Ino* — ?(t —d(w)) (t— d(w))
1 M+1 M+1 a

Taking the derivative wrt o2 and ag, and equating to zero leads to the
desired updates.



Predictive distributions

@ We are not only interested in the optimal predictions, but also in the
best approximation of the full predictive distribution.

@ The predictive distributions for the ML and the type Il ML solutions
are given by

p(t[t) ~ p(tiwm, one) = N (Wi, é(x), oap)
p(t[t) ~ p(tt, onre, anre) = N (g d(x), oba+é | (x)Zwe(x)).

@ In the case of type Il ML, the predictive variance has two
components:
o One due to the noise on the data.
o One due to the uncertainty on the parameters.



Example revisited

We compare the solutions on the sinc example with N =25, 0 = 0.1 and
Am = 1/9 for all m. We show the mean and the error bars (£3 std):

(a) ML. (b) ML2.

Figure: (a) ML solution: omr, = 0.05. (b) Type Il ML solution: omr2 = 0.08
and anp2 = 1.15. (Target function: dashed; observations: crosses.)



Is the type Il ML solution a good solution?

@ Overfitting is avoided by taking parameter uncertainty into account.
@ Integrating out w leads to confidence measures for predictions.

@ The variational bound is not suitable for selecting the kernel width:
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Figure: (a) Root mean square error (RMSE) and normalised lower bound
(—=F/c) versus the kernel width X. (b) Noise standard deviation versus A.



From Bayesian linear regression to Gaussian processes

@ Bayesian linear model for regression:
th = fo + €n, €n ~ N(0,02),
f(x;w) =w ' ¢(x), w ~ N(0,a ).
@ Integrating out the parameter vector w leads to
E{f(x;w)} = E{w}¢(x) =0,
E{f(x;w)f(x';w)} = (x) 'E{ww " }$(x) = a 12 Pi(x
@ The prior over functions is entirely determined by the mean function

m(x) = 0 and the covariance function k(x,x’) = >, &x(x)dr(x’).
This GP has a finite number of basis functions (implicit kernel).

The idea is to define the covariance function (or kernel) directly.



Example of a covariance function

The squared exponential kernel is defined as

_ 2 [[x —x']?
k(x,x') = ¢ exp{—2l2 ,

where ¢ > 0 and / > 0 are hyperparameters.

e Valid kernel function as for any set {x,}~_;, the kernel matrix
K € RV*N is positive semidefinite

@ Depends only on the difference x — X/, i.e. it is a stationary kernel

o Corresponds to projecting the input data into an infinite dimensional
feature space (see e.g. Shawe-Taylor and Cristianini, 2004)

@ Corresponds to using an infinite number of basis functions (not
just on the training points)



Gaussian process

A multivariate Gaussian distribution:
o Defines a probability density over D random variables (based on

correlations).
o Characterized by mean vector and covariance matrix:

f=(f,....f) ~N(X).

A Gaussian process (GP) is a generalization of a multivariate Gaussian

distribution to infinitely many variables.
@ Defines a probability measure over random functions (Informally a

function can be viewed as an infinitely long vector.)
@ Characterized by mean function and covariance function:

F(:) ~ GP(m(:), k(-;-))

@ The (joint) marginal distribution over any finite subset of variables
is a consistent finite dimensional Gaussian!



Sampling random functions from GPs

Batch sampling: f ~ A'(m, K)
o Generate a set of inputs {x,}"N_;.
@ Draw N samples from A/(0,1).

e Compute the function values using f = L'z 4+ m, where L is the
upper triangular Cholesky factor of the kernel matrix K.

Sequential sampling: f ~ Hn (falf\n) = H N(m,, %)
Repeat for n > 0:

o Generate x,,.

e Draw a sample z, from N(0,1).

@ Compute the function value associated to x, using f, = Gpz, + My.



The function values f, and y\, = (fo-1,. . ., f1)T are jointly Gaussian:
_ m(x") k(xnaxn) kn _
p(fnaf\n) _N<|: m,, :| ) |: knT K\n —N(l‘l’l,K)

The conditional p(f,|f\,) is then also Gaussian with the conditional
mean and the conditional variance respectively given by
My = m(xn) + koK (L — my ),

5 = k(Xn, Xn) — koK { Ky -



Example

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure: Three random functions generated from a GP with m(x) =0 and a
squared exponential covariance function (¢ =1 and / = 0.5).



Gaussian processes for regression

@ The kernel defines a prior over function space:
@ We assume a finite number of observations and iid Gaussian noise:
t‘f ~ N(f, O‘2|N)7

where f = (f(x1),...,f(xn))" are the latent function values.

@ The posterior process is again a Gaussian process:
F()|e ~ GP(m(-), k(-,-)),
where
m(-) =k ()(K+a?ly)7't,

k() = k() = kT ()(K+0%In) k().



Any latent function value f(x) is jointly Gaussian with the finite subset f:

_ K k(x)
p(f, f(X)) - N (07 |: kT(X) k(X, X) :|> )
where k(x) = (k(x,x1), ..., k(x,xn)) "
The mean and the variance of the conditional Gaussian p(f(x)|f) are given by

pn(x) = k' ()K",
(%, %) = k(x,x) — k' (x)K k(x).

We have the p(y) = NV (0,K) and the p(tly) = N(f, o%ly), such that
p(f[t) = N(c Xt ¥),
where £ = (K™ +672Iy) L.

Hence, the marginal posterior p(f(x)|t) = [p(f(x)|f)p(f|t)df is a Gaussian
with mean and variance given by

m(x) = k" (x)(K + o’ly) 't,
k(x,x) = k(x,x) — k' (x)(K + o”ln) " "k(x),

where the Woodbury identity was invoked.



Example
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(a) Prior. (b) Posterior.

Figure: Three random functions generated from (a) the prior GP and (b) the
posterior GP. An observation is indicated by a +, the mean function by a
dashed line and the 3 standard deviation error bars by the shaded regions. We
used a squared exponential covariance function (¢ =1 and / = 0.25).



Learning the parameters by type || ML

o We view the latent functions as nuisance parameters (thus integrate
them out).

@ The log-marginal likelihood is given by

Inp(t) = —g In 27 —% In |K(0) + ?ly| —%tT(K(B) +%ly) "t

complexity penality data fit

@ The noise variance 02 and the kernel parameters 6 can be learned by
means of gradient ascent techniques:

dlnp(t) 1 _ 1
9o = =5t {(K+0’I) 1}+§uTu,
np(t) 1 oy v-1 Ty OK
90, 2tr{((K+a Iy) vy )89k ,

where v = (K(0) + o21y) 1t



Computational considerations

@ No need to explicitly invert the kernel matrix (no numerical
instabilities), but K + o?ly.

@ Use of standard nonlinear optimisation tools, but objective is
non-convex (no guarantee of attaining a global maximum).

@ Main bottleneck is the computational complexity of the kernel
matrix, which is O(N3) for a training set of size N.

@ The computation of the derivatives requires only time O(N?) per
hyperparameter.

Useful tricks include:
e Matrix inversion lemma (Woodbury identity):
(W+Vow) l=w ! —w v - wu v iwe !
W+ VOW| = (W] & [0~ + Wwlv|,

where W € RVXN @ ¢ RMXM 'y ¢ RVXM and W € RM*NV,

@ Cholesky decomposition A = QT Q, where the Cholesky factor
Q € RP*D s upper triangular.



Predictive distribution

The predictive distribution at x for type Il ML estimates of the
hyperparameters is given by

p(tlt) = p(t|t, onmr2, Omrz) = N (Mar2(x), /N<1\/1L2(Xex) + 012\4L2)~

The predictive variance has three components:
@ The prior variance kyr2(x, x).

o The term —ky;o(x)(Kyirz + 03 00n) tkarz(x), which reduces the
prior uncertainty and tells us how much is explained by the data.3

@ The noise 037, on the observations.

3This term is independent of the targets!



Sinc example

(a) Variational linear regression. (b) GP regression.

Figure: Comparison of the optimal solutions found by (a) variational linear
regression with squared exponential basis functions (A = 0.4095) and by (b)
Gaussian process regression with a squared exponential kernel (A = 0.1804).



Covariance functions

A valid kernel should satisfy Mercer’s condition (see e.g. Shawe-Taylor
and Cristianini, 2004).

In practice we require the kernel to induce a symmetric and positive
semidefinite kernel matrix.

Examples of other kernels:
o Non-stationary kernels (e.g. sigmoidal kernel).
@ Kernels for structured inputs (e.g. string kernels).

@ Some rules for kernel design:

k(x,x") = cki(x,x'),

k(x,x") = ki(x,x") + ka(x,x"),
k(X, xl) = kl(xa Xl)k2(xv X )7
k(x,x") = f(x)ki(x,x")F(x),

where ¢ > 0 is a constant and f(-) is a deterministic function.



Periodic covariance functions

@ Construct a periodic signal of x:
u(x) = (sin x,cos x) .

@ Plug into the squared exponential kernel:

2sin? <X7X1>
k(x,x") = c®exp R A ,

/2

where we used |lu(x) — u(x)||? = 4sin2(X’TX/).

Figure: 3 random functions generated with a periodic kernel (c =1, / = 0.5).



Rational quadratic covariance functions

v+D
, Ix =X\ "%
k(x,x") = 1+T )

@ v > 0 is the shape parameter, / > 0 the scale parameter and D is
the dimension of the input space.

@ The kernel corresponds to an infinite mixture of scaled squared
exponentials:

/p(r|u, 1) p(ulv) du= /N(O, P/u)G(%,%) du

v+D

2\
14
O<< +1//2)

@ The shape parameter v defines the thickness of the kernel tails.
The squared exponential is recovered for v — oo.

where r = ||x — X'||.



Example revisited

(f) Prior v — oc.

(d) Prior v = % (e) Prior v = 3.

Figure: Three random functions generated from (a) the prior GP and (b) the
posterior GP with the rational quadratic kernel (/ = 0.25). The observations
are indicated by +, the means by a dashed lines and the 3 standard deviation

error bars by the shaded regions.



Matérn covariance functions

1-v o/ v !
k(x,x’):2 (\/2V|7 x|> Ky(\/2l/|7 x|>7

e K, (-) is the modified Bessel function of the second kind, v > 0 and
/> 0.
@ The order v defines the roughness of the random functions as they

are |v — 1] times differentiable:
1

o We have the Laplacian or Ornstein-Uhlenbeck* kernel for v = 5
o Forv=p+ % with p € N, the covariance function takes the simple
form of a product of an exponential and a polynomial of order p.

" V2u |x — X| pI o(p+i) (Ve x—x\
k(x,x)_exp{ ] |le(p—l ]

o We recover the squared exponential kernel for v — oo.

@ There is no closed form solution for the derivative of K, () wrt v.

4The Ornstein-Uhlenbeck (OU) process is a mathematical description of the
velocity of a particle undergoing Brownian motion.



Example revisited
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(a) Prior v = 3. (b) Prior v = % (c) Prior v — oo.

(d) Prior v = 1. (e) Prior v = 3. (f) Prior v — oc.

2 2

Figure: Three random functions generated from (a) the prior GP and (b) the
posterior GP with the Matérn kernel (/ = 0.25). The observations are indicated
by +, the means by a dashed lines and the 3 standard deviation error bars by
the shaded regions.



Matérn kernel vs rational quadratic kernel

(a) Rational quadratic. (b) Matérn.

Figure: Comparison of the rational quadratic and the Matérn kernel with unit
length scale (/ = 1) for three values of respectively the shape and the
roughness parameter.

@ Both kernels are less localised than the squared exponential.

@ Forcing the random latent functions to be infinitely differentiable
might be unrealistic in practice.



Automatic relevance determination (ARD)

The principle denotes the idea that relevant input dimensions can be
directly selected form the data.

ARD can be implemented as follows in the case of GPs with a squared
exponential kernel:

D
1 (xg — x4)?
k ! — 2 _ = d
(X, X ) cexp { 2 3:1: /d2 9
where {l;}0_, are allowed to be different.

The characteristic length scale /; measures the distance for being
uncorrelated along x4. Hence, x4 is not relevant if 1//4 is small.



Example

output y
o
output y
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Figure: Latent function values y(x) as a function of the input dimensions x;
and x2. In (a) both dimensions are relevant, while in (b) only x; is.



