### Joan Andreu Sánchez

Departamento Sistemas Informáticos y Computación Instituto Tecnológico de Informática Universidad Politécnica Valencia

PASCAL 2 Ghana Bootcamp 2011

**URL:** http://www.dsic.upv.es/~jandreu

e-mail: jandreu@dsic.upv.es

### Index

- 1. Introduction
  - 1.1 Objectives of MT
  - 1.2 Approaches to MT
  - 1.3 Linguistic resources
  - 1.4 Assessment
- 2. Statistical alignment models
  - 2.1 Statistical framework to MT
  - 2.2 Alignments
  - 2.3 Statistical alignment models
  - 2.4 Categorization in MT
- 3. Advanced statistical alignment models
  - 3.1 Fertility-based models
  - 3.2 The search problem
  - 3.3 Using linguistic knowledge

- 4. Phrase-based models
  - 4.1 Beyond word models
  - 4.2 Phrase-based models
- 5. Syntax-based translation models
  - 5.1 Introduction
  - 5.2 ITG for MT
  - 5.3 Tree-to-string models
  - 5.4 Hierarchical MT

Slides in Sections 1, 2 and 3 have been prepared from slides supplied by F. Casacuberta.

### Index

#### 1. Introduction

- 1.1 Objectives of MT
- 1.2 Approaches to MT
- 1.3 Linguistic resources
- 1.4 Assessment
- 2. Statistical alignment models
  - 2.1 Statistical framework to MT
  - 2.2 Alignments
  - 2.3 Statistical alignment models
  - 2.4 Categorization in MT
- 3. Advanced statistical alignment models
  - 3.1 Fertility-based models
  - 3.2 The search problem
  - 3.3 Using linguistic knowledge

- 4. Phrase-based models
  - 4.1 Beyond word models
  - 4.2 Phrase-based models
- 5. Syntax-based translation models
  - 5.1 Introduction
  - 5.2 ITG for MT
  - 5.3 Tree-to-string models
  - 5.4 Hierarchical MT

### 1.1 Objectives of MT

## MT objectives: Erroneus conceptions

- > MT is a waste of time because a machine never will translate Shakespeare
- > In general, the quality of translation you can get from an MT system is very low
- MT threatens the jobs of translators
- There is an MT system that translates what you say into Japanese and translates the other speaker's replies in English

### 1.1 Objectives of MT

## MT objectives: Facts

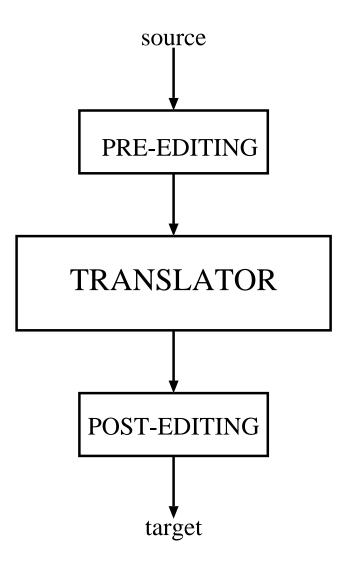
- There are many situations that a MT systems produce reliable, if less than perfect, translations at high speed
- > In some circunstances, MT systems can produce good quality outputs
- MT does not threaten transaltors' jobs: High demand of translations and too repetitive translation jobs
- > Speech-to-speech MT is still a research topic
- There are many open research problems in MT
- Building a traditional MT system is a time consuming job
- A user will typically have to invest a considerable amount of effort in customizing an MT system

### 1.1 Objectives of MT

# MT objectives: need of pre/post-editing

- While the number of errors and bad constructions is high, "post-editing" can make the result useful
- Many problems could have been avoided by making the source text "simpler".
- > Simplification of the translation problem by using adequate rules to produce "controled" (i.e., simple and regular) source text.

### General scheme for MT



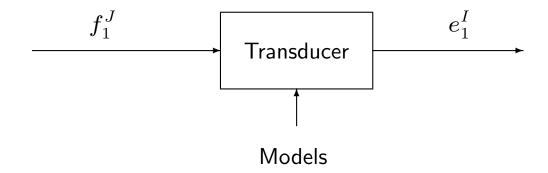
### 1.2 Approaches to MT

# **Technologies**

- (Linguistic) knowledge-based methods
- (Memorized) example-based methods
  - Translation memories
- > Statistical models
  - Alignment models
  - Syntax-based models
  - Finite-State models
- > Hybrid models

### 1.2 Approaches to MT

### Statistical MT



Inverse approach (noisy channel)

$$\widehat{e_1^I} = \arg\max_{e_1^I} \Pr(e_1^I|f_1^J) = \arg\max_{e_1^I} \Pr(f_1^J|e_1^I) \Pr(e_1^I)$$

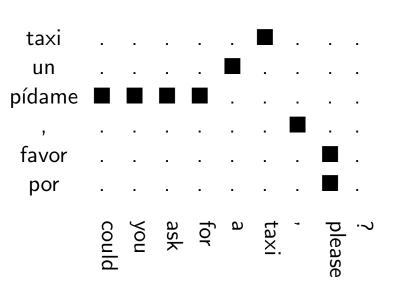
> Direct approach

$$\widehat{e_1^I} = \arg\max_{e_1^I} \Pr(e_1^I | f_1^J)$$

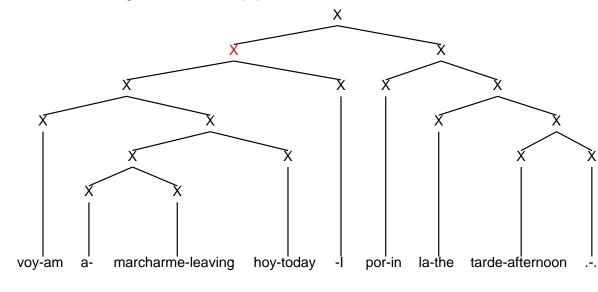
### 1.2 Approaches to MT

# Statistical approaches to MT

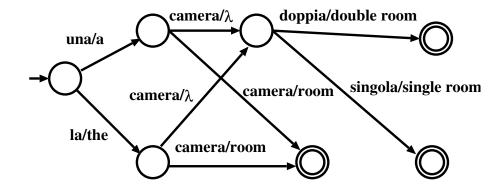
→ Word-alignment approaches



→ Syntactic approaches



→ Finite-state approaches



### 1.3 LINGUISTIC RESOURCES

### Resources

- Dictionaries
- > Grammars
- > Corpora
- > Paragraph-aligned and Labeled Corpora

### 1.4 Assesment

- > Test sentences with reference translation
- Automatic assessment
  - Editing Distances: Translation Word Error Rate (TWER) Translation Error Rate (TER)
  - Multireference TWER
  - N-Gram based: BLUE and NIST score

### Index

- 1. Introduction
  - 1.1 Objectives of MT
  - 1.2 Approaches to MT
  - 1.3 Linguistic resources
  - 1.4 Assessment
- 2. Statistical alignment models
  - 2.1 Statistical framework to MT
  - 2.2 Alignments
  - 2.3 Statistical alignment models
  - 2.4 Categorization in MT
- 3. Advanced statistical alignment models
  - 3.1 Fertility-based models
  - 3.2 The search problem
  - 3.3 Using linguistic knowledge

- 4. Phrase-based models
  - 4.1 Beyond word models
  - 4.2 Phrase-based models
- 5. Syntax-based translation models
  - 5.1 Introduction
  - 5.2 ITG for MT
  - 5.3 Tree-to-string models
  - 5.4 Hierarchical MT

### 2.1 Statistical framework for MT

### General framework

- Every sentence y in one language is a translation of any sentence x in another language
- For each possible pair of sentences, y and x, there is a probability  $Pr(y \mid x)$
- > The probability of pairs of sentences as quiero una habitación doble con vistas al mar # are all expenses included in the bill? should be low
- The probability of pairs of sentences as ¿ hay alguna habitación tranquila libre ? # is there a quiet room available ? should be high

### 2.1 Statistical framework for MT

### General framework

Given a source sentence x, search for the sentence  $\hat{y}$ 

$$\hat{y} = \arg\max_{y} \Pr(y \mid x)$$

### Approaches

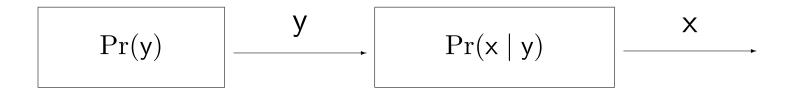
- > A direct approach: maximum entropy models
- > An inverse approach: channel models

## An inverse approach

Given a source sentence x, search for the sentence  $\hat{y}$ 

$$\hat{y} = \arg\max_{y} \Pr(y \mid x) = \arg\max_{y} \Pr(x \mid y) \cdot \Pr(y)$$

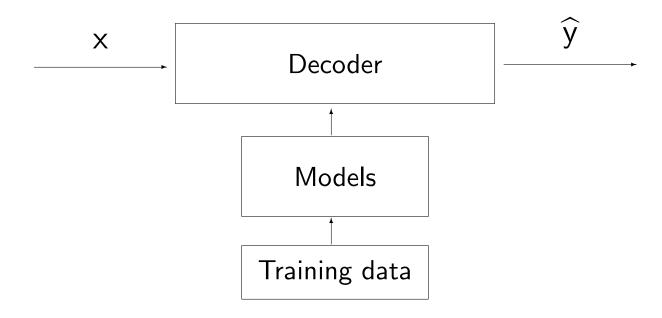
A channel model



A target-language model + alignment and lexicon models

### 2.1 Statistical framework for MT

### Translation search

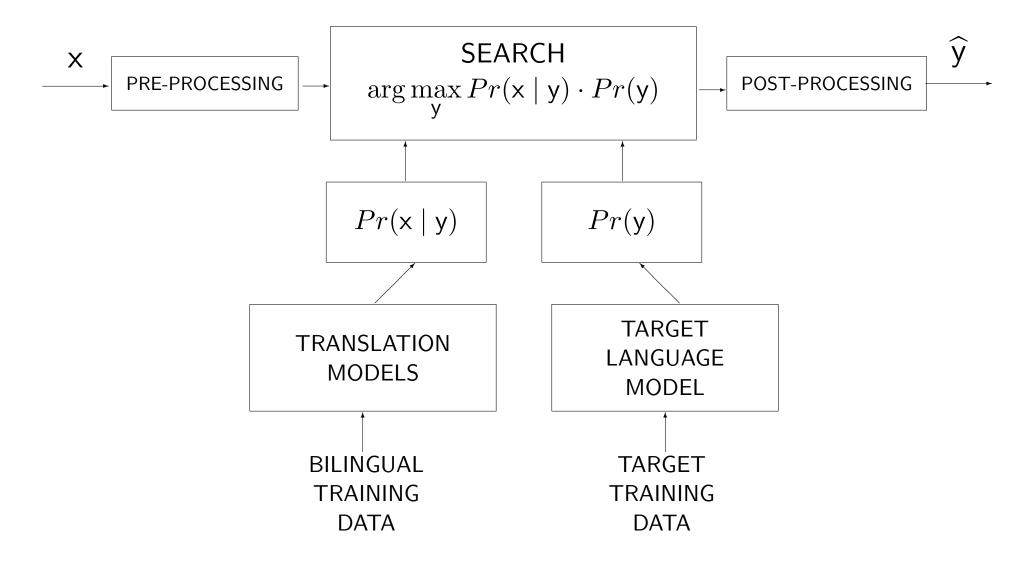


### Inverse approach:

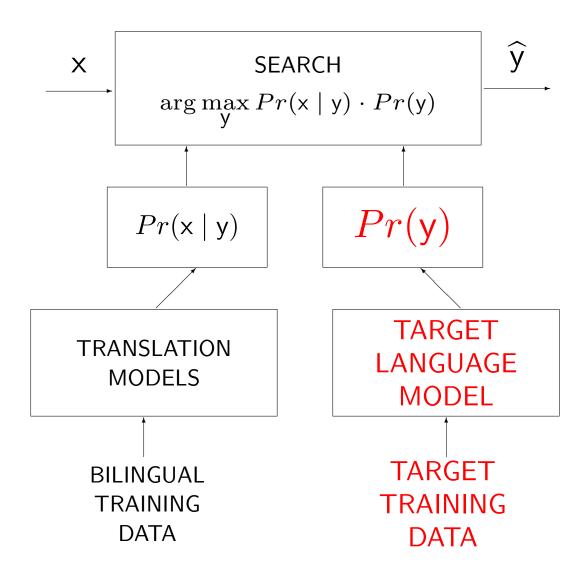
- ightharpoonup A target-language model:  $Pr(y) \approx Pr(y)$
- > Translation models (alignment and lexicon models):  $Pr(x \mid y) \approx Pr(x \mid y)$
- Search procedure:  $\widehat{\mathbf{y}} = \arg\max_{\mathbf{y}} Pr(\mathbf{x} \mid \mathbf{y}) \cdot Pr(\mathbf{y})$

### 2.1 Statistical framework for MT

# An inverse approach



# An inverse approach: The target language model



#### 2.1 Statistical framework for MT

## Language models

### Word n-grams

$$\Pr(\mathbf{y}) = \prod_{i=1}^{|\mathbf{y}|} \Pr(\mathbf{y}_i | \mathbf{y}_1 \dots \mathbf{y}_{i-1}) \approx \Pr(\mathbf{y}) = \prod_{i=1}^{|\mathbf{y}|} p_n(\mathbf{y}_i | \mathbf{y}_{i-n+1} \dots \mathbf{y}_{i-1})$$

### n-grams of categories

$$\Pr(y) \approx Pr(y) = \prod_{i=1}^{|y|} p_n(C_i | C_{i-N+1} \dots C_{i-1}) \cdot p(y_i | C_i)$$

### Regular or context-free grammars

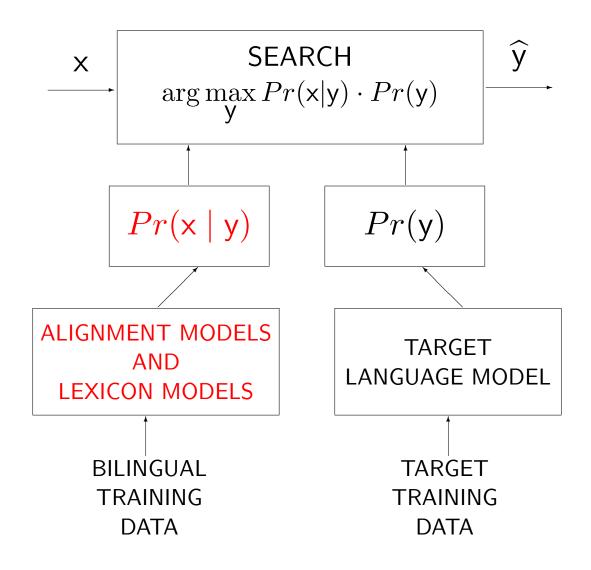
$$\Pr(\mathbf{y}) \approx \Pr(\mathbf{y}) = \sum_{d(\mathbf{y})} p_G(d(\mathbf{y})) \approx \max_{d(\mathbf{y})} p_G(d(\mathbf{y}))$$

### 2.1 Statistical framework for MT

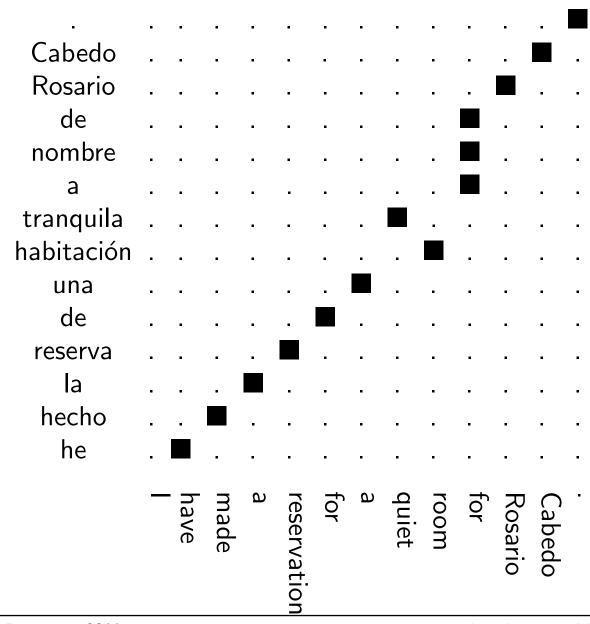
## Learning language models

- Probabilistic estimation techniques.
  - Maximum likelihood
  - Maximum entropy.
- $\succ$  Smoothing.
- Extensions: cache, triggers, categories, etc.
- $\triangleright$  Widely used toolkits for n-grams:
  - SRILM The SRI Language Modeling Toolkit http://www.speech.sri.com/projects/srilm/
  - The CMU Statistical Language Modeling (SLM) Toolkit http://www.speech.cs.cmu.edu/SLM\_info.html

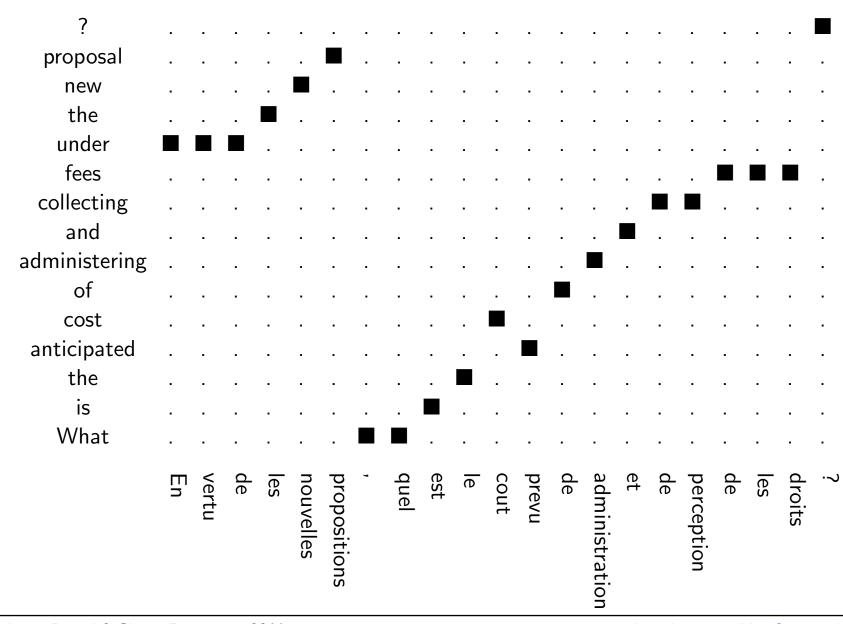
## An inverse approach



# Example of word alignments



# Example of word alignments [Ney 03a]



### 2.2 ALIGNMENTS

**Alignments** [Brown 90]: J = |x| y I = |y|

$$a \subseteq \{1, ..., J\} \times \{1, ..., I\}$$

- Number of connections:  $I \cdot J$
- Number of alignments:  $2^{I \cdot J}$
- ightharpoonup Constrain:  $a:\{1,...,J\} \to \{0,...,I\}$ ,  $(a_j=0 \Rightarrow j \text{ in } x \text{ is not aligned with any position in } y)$ .
  - Number of alignments:  $(I+1)^J$
- $\rightarrow$  Set of possible alignments:  $\mathcal{A}(x,y)$
- $\rightarrow$  The probability of translation y to x through an alignment a is  $Pr(x, a \mid y)$

$$\Pr(\mathbf{x} \mid \mathbf{y}) = \sum_{\mathbf{a} \in \mathcal{A}(\mathbf{y}, \mathbf{x})} \Pr(\mathbf{x}, \mathbf{a} \mid \mathbf{y})$$

#### 2.2 ALIGNMENTS

$$Pr(x, a \mid y) = Pr(J \mid y) \cdot Pr(x, a \mid J, y)$$
$$= Pr(J \mid y) \cdot Pr(a \mid J, y) \cdot Pr(x \mid a, J, y)$$

- Length probability:  $Pr(J \mid y)$
- Alignment probability:  $Pr(a \mid J, y)$
- **Lexicon probability**:  $Pr(x \mid a, J, y)$

$$\Pr(\mathbf{a}\mid J,\mathbf{y}) = \prod_{j=1}^{J} \Pr(\mathbf{a}_j\mid \mathbf{a}_1^{j-1},J,\mathbf{y}) \qquad \qquad \Pr(\mathbf{x}\mid \mathbf{a},J,\mathbf{y}) = \prod_{j=1}^{J} \Pr(\mathbf{x}_j\mid \mathbf{x}_1^{j-1},\mathbf{a},J,\mathbf{y})$$

$$\Pr(\mathbf{x}, \mathbf{a} \mid \mathbf{y}) = \Pr(J \mid \mathbf{y}) \cdot \prod_{j=1}^{J} \Pr(\mathbf{a}_{j} \mid \mathbf{a}_{1}^{j-1}, \mathbf{x}_{1}^{j-1}, J, \mathbf{y}) \cdot \Pr(\mathbf{x}_{j} \mid \mathbf{a}_{1}^{j}, \mathbf{x}_{1}^{j-1}, J, \mathbf{y})$$

## 2.3 STATISTICAL ALIGNMENTS MODELS

### Zero-order models

- > Model 1
- > Model 2
- The Viterbi approximation
- > The search problem

### Model 1

$$\Pr(\mathsf{x}, \mathsf{a} \mid \mathsf{y}) = \Pr(J \mid \mathsf{y}) \cdot \prod_{j=1}^{J} \Pr(\mathsf{a}_{j} \mid \mathsf{a}_{1}^{j-1}, \mathsf{x}_{1}^{j-1}, J, \mathsf{y}) \cdot \Pr(\mathsf{x}_{j} \mid \mathsf{a}_{1}^{j}, \mathsf{x}_{1}^{j-1}, J, \mathsf{y})$$

- $\Pr(J \mid \mathsf{y}) \approx n(J|I)$
- $\Pr(\mathsf{a}_j \mid \mathsf{a}_1^{j-1}, \mathsf{x}_1^{j-1}, J, \mathsf{y}) \approx \frac{1}{(I+1)^J}$
- $\Pr(\mathsf{x}_j \mid \mathsf{a}_1^j, \mathsf{x}_1^{j-1}, J, \mathsf{y}) \approx l(\mathsf{x}_j \mid \mathsf{y}_{\mathsf{a}_j})$

 $l(x_i \mid y_i)$  defines a statistical lexicon

$$\Pr(\mathbf{x} \mid \mathbf{y}) \approx P_{M1}(\mathbf{x} \mid \mathbf{y}) = \frac{n(J|I)}{(I+1)^J} \prod_{j=1}^J \sum_{i=0}^I l(\mathbf{x}_j \mid \mathbf{y}_i)$$

### Model 1

- $ightharpoonup \Pr(J \mid \mathsf{y}) \approx n(J|I)$
- $ightharpoonup \Pr(\mathsf{a}_j \mid \mathsf{a}_1^{j-1}, \mathsf{x}_1^{j-1}, J, \mathsf{y}) pprox \frac{1}{(I+1)^J}$
- $ightharpoonup \operatorname{Pr}(\mathsf{x}_j \mid \mathsf{a}_1^j, \mathsf{x}_1^{j-1}, J, \mathsf{y}) \approx l(\mathsf{x}_j \mid \mathsf{y}_{\mathsf{a}_j})$

Generative process: Given a target sentence y of length I,

- 1. Choose the length of the source sentence J according to n(J|I)
- 2. For each  $1 \le j \le J$ , choose a position  $a_j$  in the target sentence according to an uniform distribution.
- 3. For each  $1 \le j \le J$  choose a source word  $x_j$  according to  $l(x_j \mid y_{a_j})$

## 2.3 STATISTICAL ALIGNMENTS MODELS

# Model 1: An example

|          | Given y:                         | a | double | room       | (I =        | = 3)        |             |  |
|----------|----------------------------------|---|--------|------------|-------------|-------------|-------------|--|
| Choose . | $J(n(J \mid 3)): (J = 5)$        | ) | 1      | 2          | 3           | 4           | 5           |  |
| Choose a | $\mathbf{a}_j$ (uniform)         |   | 1<br>a | 3<br>room  | 2<br>double | 2<br>double | 2<br>double |  |
| Choose   | $x_{j} \; (l(x_{j} \mid y_{i}))$ |   | Una    | habitación | con         | dos         | camas       |  |

### Model 2

$$\Pr(\mathbf{x}, \mathbf{a} \mid \mathbf{y}) = \Pr(J \mid \mathbf{y}) \cdot \prod_{j=1}^{J} \Pr(\mathbf{a}_j \mid \mathbf{a}_1^{j-1}, \mathbf{x}_1^{j-1}, J, \mathbf{y}) \cdot \Pr(\mathbf{x}_j \mid \mathbf{a}_1^j, \mathbf{x}_1^{j-1}, J, \mathbf{y})$$

- $\Pr(J \mid \mathsf{y}) \approx n(J|I)$
- $\Pr(a_j \mid a_1^{j-1}, x_1^{j-1}, J, y) \approx a(a_j \mid j, J, I)$
- $\Pr(\mathbf{x}_j \mid \mathbf{a}_1^j, \mathbf{x}_1^{j-1}, J, \mathbf{y}) \approx l(\mathbf{x}_j \mid \mathbf{y}_{\mathbf{a}_j})$

 $l(x_i \mid y_i)$  defines a statistical lexicon

 $a(i \mid j, J, I)$  defines statistical alignments

$$\Pr(\mathbf{x} \mid \mathbf{y}) \approx P_{M2}(\mathbf{x} \mid \mathbf{y}) = n(J|I) \cdot \prod_{j=1}^{J} \sum_{i=0}^{I} a(i \mid j, J, I) \cdot l(\mathbf{x}_{j} \mid \mathbf{y}_{i})$$

### 2.3 STATISTICAL ALIGNMENTS MODELS

### Model 2

- $ightharpoonup \Pr(J \mid \mathsf{y}) \approx n(J|I)$
- $ightharpoonup \Pr(\mathsf{a}_i \mid \mathsf{a}_1^{j-1}, \mathsf{x}_1^{j-1}, J, \mathsf{y}) \approx a(\mathsf{a}_i \mid j, J, I)$
- $ightharpoonup \operatorname{Pr}(\mathsf{x}_j \mid \mathsf{a}_1^j, \mathsf{x}_1^{j-1}, J, \mathsf{y}) \approx l(\mathsf{x}_j \mid \mathsf{y}_{\mathsf{a}_j})$

Generative process: Given a target sentence y of length I,

- 1. Choose the length of the source sentence J according to n(J|I).
- 2. For each  $1 \leq j \leq J$ , choose a position  $a_j$  in the target sentence according to  $a(\mathsf{a}_i \mid j, J, I)$ .
- 3. For each  $1 \le j \le J$  choose a source word  $x_j$  according to  $l(x_j \mid y_{a_j})$ .

## 2.3 STATISTICAL ALIGNMENTS MODELS

# Model 2: An example

|          | Given y:                                               | a | double | room       | (I =        | = 3)        |             |  |
|----------|--------------------------------------------------------|---|--------|------------|-------------|-------------|-------------|--|
| Choose . | $J(n(J \mid 3)): (J = 5)$                              | ) | 1      | 2          | 3           | 4           | 5           |  |
| Choose a | $\mathbf{a}_{j}$ $oxed{(a(\mathbf{a}_{j}\mid,j,I,J))}$ |   | 1<br>a | 3<br>room  | 2<br>double | 2<br>double | 2<br>double |  |
| Choose × | $x_{j} \; (l(x_{j} \mid y_{i}))$                       |   | Una    | habitación | con         | dos         | camas       |  |

# The translation process: searching

$$\arg\max_{\mathbf{y}} Pr(\mathbf{x}\mid\mathbf{y}) \cdot Pr(\mathbf{y})$$

## A computational difficult problem [Knight 99]

ALGORITHMIC SOLUTIONS:

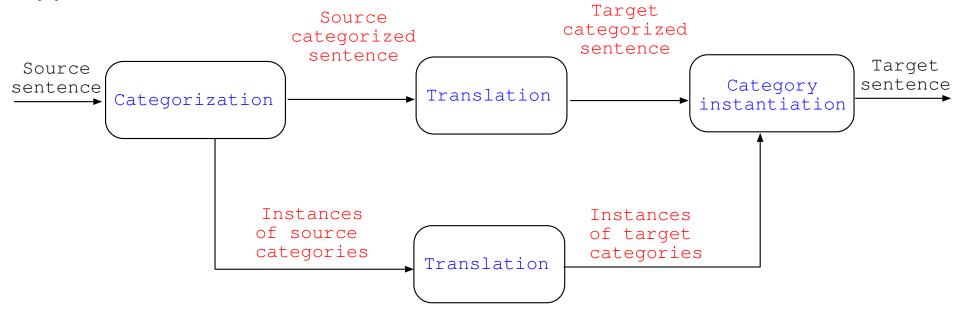
- Dynamic Programming like [Ney 00a]
- > Stack-Decoding: A\* or Branch & Bound [Brown 90]

### 2.4 Categorization in MT

- Too many parameters to be estimated
- Many words play the same role: names, dates, etc.
- Substitution of words by categories:
  - The vocabulary size decreases.
  - Easy word addition to the vocabulary.
- > Examples:
  - mi nombre es \$NAME.masc \$SURNAME . # my name is \$NAME.masc \$SURNAME .
  - nos vamos a ir el \$DATE a \$HOUR . # we are leaving on \$DATE at \$HOUR .
- Given a bilingual corpus:
  - Automatic extraction of bilingual categories.
  - Manual extraction of bilingual categories.

#### 2.4 Categorization in MT

## An approach

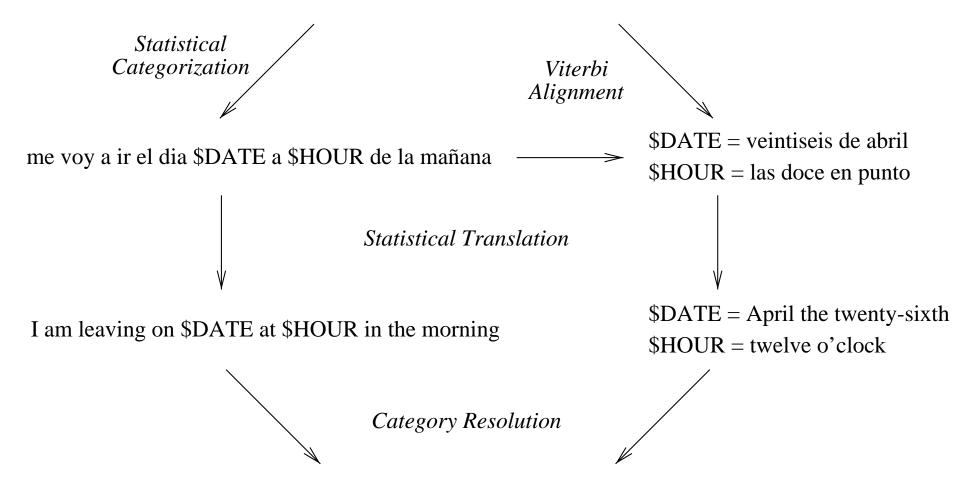


- 1. CATEGORIZATION: Translate the source sentence into an source categorized sentence and obtain the source instances of each category.
- 2. CATEGORIZED TRANSLATION: Translate the source categorized sentence into a target categorized sentence.
- 3. Translation of Each Category: Translate the source instances of each category detected.
- 4. CATEGORY RESOLUTION: Substitution of each target category by the corresponding instance translation.

## 2.4 CATEGORIZATION IN MT

## An example

me voy a ir el dia veintiseis de abril a las doce en punto de la mañana



I am leaving on April the twenty-sixth at twelve o'clock in the morning

## 2.4 CATEGORIZATION IN MT

## Automatic categorization

- Extended word categories [Barrachina 99]
  - 1. Align a bilingual corpus
  - 2. Build extended words using the alignments
  - 3. Apply a clustering algorithm to the corpus of extended word sentences
- Statistical bilingual categories [Och 99]
  - 1. Align a bilingual corpus
  - 2. Apply a clustering algorithm to the target corpus.
  - 3. Apply a clustering algorithm to the source corpus taking into account the categories of target words aligned to the source words.

#### Introduction to Machine Translation

#### Index

- 1. Introduction
  - 1.1 Objectives of MT
  - 1.2 Approaches to MT
  - 1.3 Linguistic resources
  - 1.4 Assessment
- 2. Statistical alignment models
  - 2.1 Statistical framework to MT
  - 2.2 Alignments
  - 2.3 Statistical alignment models
  - 2.4 Categorization in MT
- 3. Advanced statistical alignment models
  - 3.1 Fertility-based models
  - 3.2 The search problem
  - 3.3 Using linguistic knowledge

- 4. Phrase-based models
  - 4.1 Beyond word models
  - 4.2 Phrase-based models
- 5. Syntax-based translation models
  - 5.1 Introduction
  - 5.2 ITG for MT
  - 5.3 Tree-to-string models
  - 5.4 Hierarchical MT

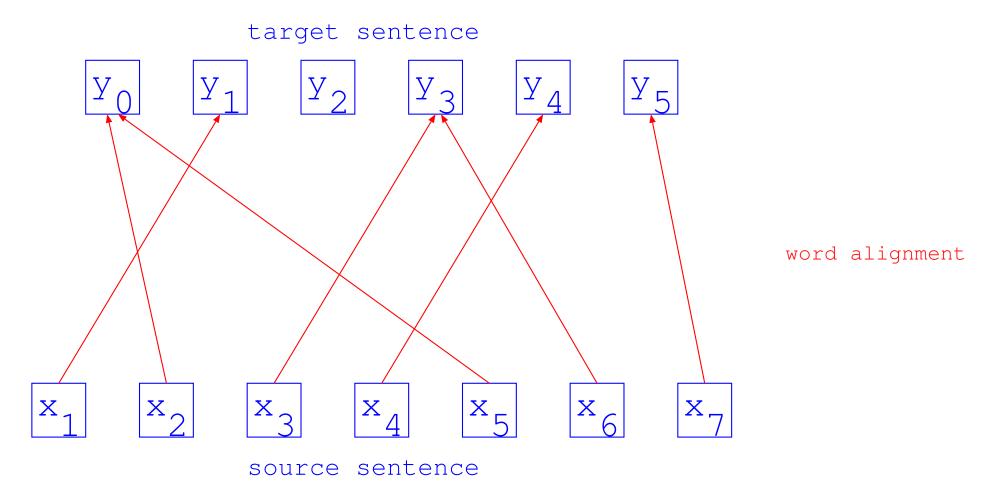
## Alignments

$$\Pr(\mathbf{x} \mid \mathbf{y}) = \sum_{\mathbf{a} \in \mathcal{A}(\mathbf{y}, \mathbf{x})} \Pr(\mathbf{x}, \mathbf{a} \mid \mathbf{y}) = \Pr(J \mid \mathbf{y}) \cdot \sum_{\mathbf{a} \in \mathcal{A}(\mathbf{y}, \mathbf{x})} \Pr(\mathbf{x}, \mathbf{a} \mid J, \mathbf{y})$$

Alignment probabilities and lexicon probabilities

- > Model 1
- > Model 2

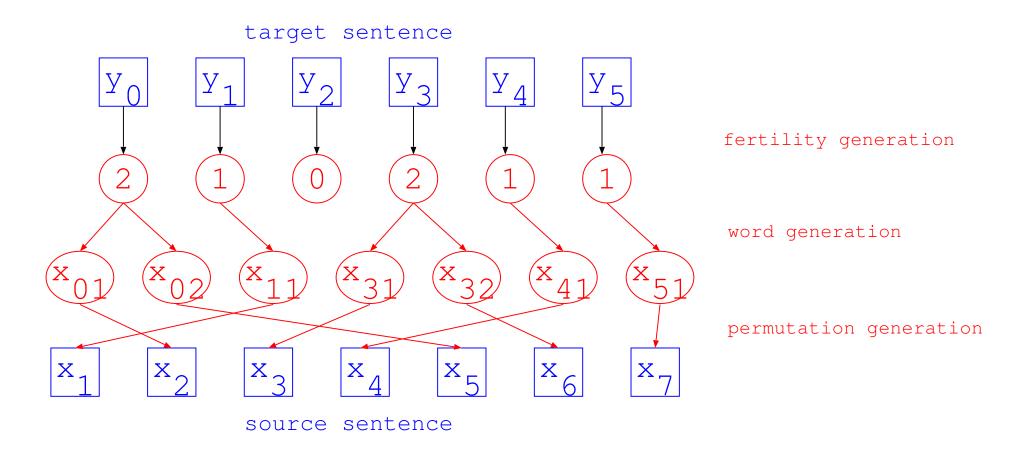
## Models 1, 2 or HMM



## Models 3, 4 and 5

- Model 3: Lexicon, fertility and distortion models
- Model 4 is a refined version of distortion distribution in Model 3
- Model 5 is a consistent version of distortion distribution in Model 4

# **Fertility**



**Fertility**  $\phi$  of  $y_i \in \Delta$ : number of the source words connected to an target word  $y_i$ 

- 1. Choose how many source words are connected to a target word  $y_i$ : fertility of  $y_i$
- 2. Choose a set of the source words, a tablet  $\tau_i$ , that is connected to i-th target word
- 3. Choose the position  $\pi_{i,k}$  in the source sentence of the k-th word  $\tau_{i,k}$  that is connected to the *i*-th target word

#### Model 3

Given a target sentence y of length I:

- 1. For each  $1 \leq i \leq I$  choose a length  $\phi_i$
- 2. Choose a length  $\phi_0$
- 3.  $J = \sum_{i=0}^{I} \phi_i$ .
- 4. For each  $1 \le i \le I$  and  $1 \le k \le \phi_i$ , choose a source word
- 5. For each  $1 \le i \le I$  and  $1 \le k \le \phi_i$ , choose a position
- 6. If any position has been choosen then **error** (inconsistent model).
- 7. For each  $1 \le k \le \phi_0$  choose a position from the vacant positions according to a uniform distribution.

## Example

Given y: double (I = 3)room camas

## Examples of alignments

## Corpus EuTrans-I: Spanish-English

```
2 3 4 5 6 7
                                              10
   favor , ¿ podría ver alguna habitación tranquila
por
```

- Model 1, Iteration 5 could (5) I (6) see (6) a (7) quiet (9) room (8), (3) please (2)? (4)
- Model 2, Iteration 2 could (5) I (6) see (6) a (7) quiet (9) room (8), (3) please (3)? (10)
- Model 3, Iteration 2 could (5) I (5) see (6) a (7) quiet (9) room (8), (3) please (2)? (10)

# Conventional IBM Models Training

- > Every model has a specific set of free parameters.
- $\succ$  To train the model parameters  $\theta$ : A maximum likelihood criterium, using a parallel training corpus consisting of S sentence pairs  $\{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) : n = 1, \dots, N\}$ :

$$\hat{\theta} = \arg \max_{\theta} \prod_{n=1}^{N} \sum_{\mathsf{a}} p_{\theta}(\mathsf{x}^{(n)}, \mathsf{a}|\mathsf{y}^{(n)})$$
 .

The training is carried out using the Expectation-Maximization (EM) algorithm.

#### 3.2 The search problem

$$\widehat{\mathbf{y}} = \arg \max_{\mathbf{y}} Pr(\mathbf{x} \mid \mathbf{y}) \cdot Pr(\mathbf{y})$$

- Search is a NP-Hard problem. [Knight 99]
- Algorithmic solutions: (+ heuristics for efficient suboptimal solutions)
  - Dynamic Programming [Tillmann 03]
  - Stack-decoding, A\* or Branch & Bound (Ortiz, 2003)

# Some stack-decoding proposals

- Candide systems from IBM [Berger et al. 96]: Multiple stacks, model 3.
- Multiple stack-decoding [Wang and Waibel 98]: Model 2.
- ightharpoonup Algorithm  $A^*$  [Ueffing et al. 01]: model 4.
- Basic stack-decoding strategy:
  - Origin of the *stack decoding* or  $A^*$ : ASR
  - Optimal solution to the search problem (Jelinek, 1976)
  - Incremental development of pratical hyphotesis
  - The hypothesis are stored in a prioritary queue (a type of 'stack')
  - Selection and expansion of the top of the stack(s).

#### 3.2 The search problem

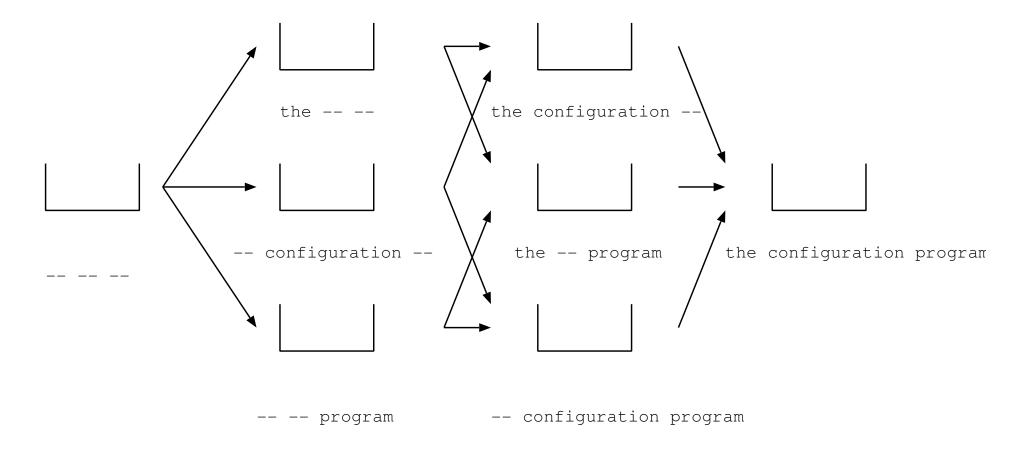
## A taxonomy of the stack-decoding algorithms

- Basic stack-decoding algorithm:
  - All the hypothesis are stored in a one stack
  - A hypothesis is selected in each iteration: the hypothesis with higher score in the stack
- > Problem: hypothesis with a high number of aligned words are discarded.
- Possible solutions:
  - Use of heuristics: an estimation of the contribution to the set of the optimal score.
  - Multiple stacks.
- > Taxonomy:
  - Single stack algorithms  $A^*$
  - Multiple stack algorithms

## Basic multiple stack decoding *StackDecoding*

- > A hypothesis in a stack:
  - A prefix of the target sentence  $(y_1^i)$
  - A coverage subset of source positions (C)
  - A score (*S*).
- There is one stack for each possible subset of source positions which words has already been translated.
- > The possible number of stacks can be very high.
- In each iteration, the best hypothesis from each available stack is selected to generate new extended hypothesis.
- > The new hypothesis is stored in the corresponding stack.

Source sentence: "the configuration program"



## Is the linguistic knowledge needed for statistical machine translation?

- > YES?
  - There are many linguistic knowledge available.
  - The bilingual training data can be better exploited.
- > NOT?
  - Many linguistic knowledge is hard to formalize.
  - The generation of new linguistic knowledge requires great human effort.

# Linguistic knowledge that has been used in statistical machine translation

- Morpho-syntactic knowledge: lexicon, Part-of-Speech, etc... (Nießen and Ney, 2004)
  - Hybrid linguistic-statistical approaches have been used with success (i.e. hidden markov models)
- > Others: Cognates (Kondrak, Marcu and Knight, 2003), named entities (Huang, Vogel and Waibel, 2003), ...
- Syntactic information: next topic!

## Morpho-syntactic knowledge in statistical machine translation

Nießen and Ney, 2004. Statistical machine translation with scarce resources using morpho-syntactic information. Computational Linguistics.

- Present statistical machine translation systems often treat different inflected forms of the same lemma as if they were independent of one another.
- > The bilingual data can be better exploited by explicitely taking into account the interdependencies of related inflected forms.

# Morpho-syntactic knowledge in statistical machine translation

yo como pan

- Morphological and syntactic tags (POS, tense, person, ...)
- The base form

comer verb indicative present singular 1

#### Introduction to Machine Translation

#### Index

- 1. Introduction
  - 1.1 Objectives of MT
  - 1.2 Approaches to MT
  - 1.3 Linguistic resources
  - 1.4 Assessment
- 2. Statistical alignment models
  - 2.1 Statistical framework to MT
  - 2.2 Alignments
  - 2.3 Statistical alignment models
  - 2.4 Categorization in MT
- 3. Advanced statistical alignment models
  - 3.1 Fertility-based models
  - 3.2 The search problem
  - 3.3 Using linguistic knowledge

#### 4. Phrase-based models

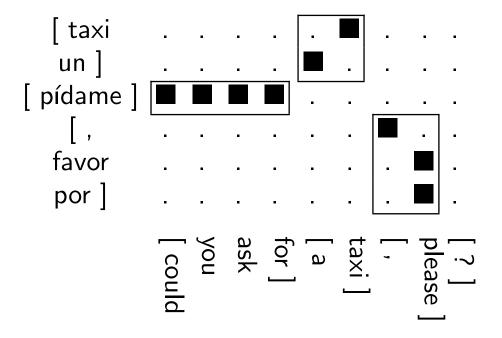
- 4.1 Beyond word models
- 4.2 Phrase-based models
- 5. Syntax-based translation models
  - 5.1 Introduction
  - 5.2 ITG for MT
  - 5.3 Tree-to-string models
  - 5.4 Hierarchical MT

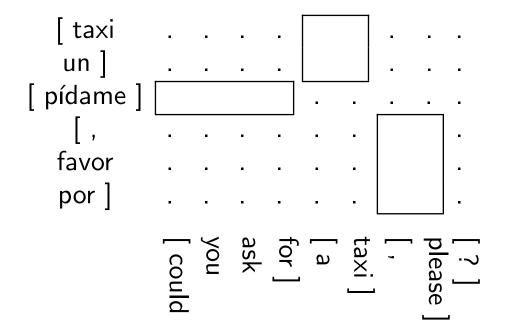
#### 4.1 BEYOND WORD MODELS

- The basic assumption in the current word-based models: Each source word is generated by only one target word.
- This assumption does not correspond to the nature of natural language. In some cases, it is necessary to know the context.
- > Solutions:
  - Context-dependent dictionaries. The basic unit is the word.
  - Word sequences:
    - Alignment templates: A sequence of source (classes of) words is aligned with a sequence of target (classes of) words. Inside the templates there are word-to-word correspondences. The basic unit is the word.
    - Phrase-based models: A sequence of source words is aligned with a sequence of target words. The basic unit is the phrase.

#### 4.1 BEYOND WORD MODELS

## Word sequences





Alignment templates

Bilingual phrases

#### 4.1 Beyond word models

## Word sequences

The statistical dictionaries of single word pairs are substituted by statistical dictionaries of *bilingual phrases*.

Bilingual phrases are related with a bilingual segmentation.

- Problem: The generalisation capability, since only sequences of segments that have been seeing in the training corpus are accepted.
- Problem: The selection of adequate bilingual phrases.

## 4.2 Phrase-based models

# An example

| y: could you ask for a taxi , please ? |          |                |        |      |                 |            |                |    |          |            |
|----------------------------------------|----------|----------------|--------|------|-----------------|------------|----------------|----|----------|------------|
|                                        | У        | could          | you    | ask  | for             | а          | taxi           | ,  | please   | ?          |
|                                        | i        | 1              | 2      | 3    | 4               | 5          | 6              | 7  | 8        | 9=1        |
| Segmentation                           | i        |                |        |      | $i_1$           |            | $i_2$          |    |          | $i_3$      |
| Translation                            | X        |                | [ pída | me ] |                 | [ un ta    | xi . ]         | [  | por favo | or , ]     |
| Permutation                            | $\alpha$ | $\alpha_1 = 2$ |        |      | $\alpha_2$ =    | = 3        | $\alpha_3 = 1$ |    | 1        |            |
|                                        |          | por            | fa     | vor  | ,               | pída       | me             | un | taxi     |            |
|                                        | j        | 1              | 2      |      | 3               | 4          |                | 5  | 6        | 7          |
| Segmentation                           | $\gamma$ |                |        |      | $\gamma_1 \mid$ | $\gamma_2$ | ?              |    |          | $\gamma_3$ |

x: por favor , pídame un taxi .

## Log-linear models

Search for a target sentence with maximum *posterior* probability:

$$\hat{y} = \arg\max_{y} \Pr(y \mid x)$$

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y}} \frac{\exp\left(\sum_{k=1}^{K} \lambda_k h_k(\mathbf{x}, \mathbf{y})\right)}{\sum_{\mathbf{y}'} \exp\left(\sum_{k=1}^{K} \lambda_k h_k(\mathbf{x}, \mathbf{y}')\right)} = \arg\max_{k=1}^{K} \sum_{k=1}^{K} \lambda_k h_k(\mathbf{x}, \mathbf{y})$$

- $> h_1(x,y) = \log Pr(y),$  a language model
- $> h_2(x,y) = \log Pr_{PB}(y \mid x),$  phrase-based models
- $> h_3(x,y) = \log Pr_{PB}(x \mid y),$  phrase-based inverse model
- $> h_4(x,y) = \log Pr_{M1}(x \mid y),$  statistical dictionaries
- $> h_5(x,y) = \log Pr_{M1}(y \mid x),$  statistical inverse dictionaries

# Learning phrase-based models

Given a sentence-aligned corpus T:

- $\succ$  A word-aligned corpus is generated using the GIZA++ toolkit with  $\mathcal T$ http://www-i6.informatik.rwth-aachen.de/Colleagues/och/software/GIZA++.html
- > A set of bilingual word sequences from the word aligned corpus is extracted.
- The parameters of the phrase-model are estimated.

#### 4.2 Phrase-based models

## Estimating the parameters

#### Estimating the parameters

By relative frequencies, for each pair of segments (x, y):

$$p(\widetilde{x} \mid \widetilde{y}) = \frac{N(\widetilde{x}, \widetilde{y})}{N(\widetilde{y})}$$

where  $N(\widetilde{y})$  denotes the number of times that phrase  $\widetilde{y}$  has appeared, and  $N(\widetilde{x},\widetilde{y})$  is the number of times that the bilingual phrase  $(\widetilde{x},\widetilde{y})$  has appeared.

#### Distortion model

$$p(\alpha_k \mid \alpha_{k-1}) = p_0^{|\gamma_{\alpha_k} - \gamma_{\alpha_{k-1}}|},$$

where  $p_0$  is a parameter to be ajusted using a validation set.

#### Introduction to Machine Translation

#### Index

- 1. Introduction
  - 1.1 Objectives of MT
  - 1.2 Approaches to MT
  - 1.3 Linguistic resources
  - 1.4 Assessment
- 2. Statistical alignment models
  - 2.1 Statistical framework to MT
  - 2.2 Alignments
  - 2.3 Statistical alignment models
  - 2.4 Categorization in MT
- 3. Advanced statistical alignment models
  - 3.1 Fertility-based models
  - 3.2 The search problem
  - 3.3 Using linguistic knowledge

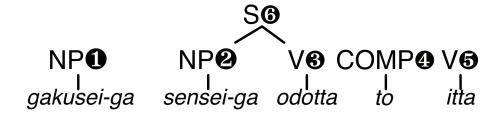
- 4. Phrase-based models
  - 4.1 Beyond word models
  - 4.2 Phrase-based models
- 5. Syntax-based translation models
  - 5.1 Introduction
  - 5.2 ITG for MT
  - 5.3 Tree-to-string models
  - 5.4 Hierarchical MT

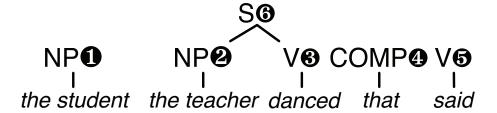


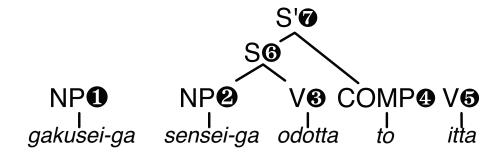
# Example SCFG\*

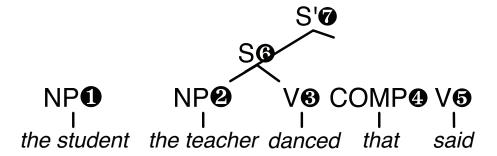
|                    | Japanese   | English                          |
|--------------------|------------|----------------------------------|
| S →                | NP1 VP2    | NP1 VP2                          |
| S'→                | S1 COMP2   | COMP <sup>2</sup> S <sup>1</sup> |
| $VP \rightarrow$   | NP1) V2    | <b>V</b> ② <b>NP</b> ①           |
| $NP \rightarrow$   | gakusei-ga | student                          |
| $NP \rightarrow$   | sensei-ga  | teacher                          |
| $\vee \rightarrow$ | odotta     | danced                           |
| $\vee \rightarrow$ | itta       | said                             |
| OMP →              | to         | that                             |

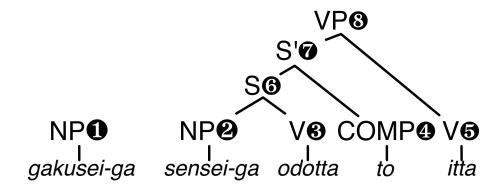
Slide source: http://www.mt-archive.info/MTMarathon-2009-Li-ppt.pdf

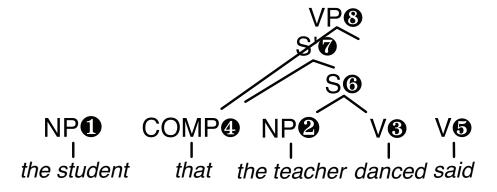


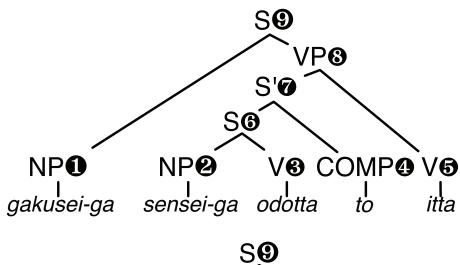


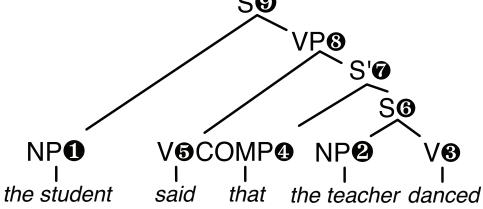












# Stochastic inversion transduction grammars [Wu 97, Maryanski 79]

- Primitives: two alphabets (words, punctuation symbols, . . . )
- Object representation: two paired written sentences

"voy a marcharme hoy por la tarde"  $\iff$  "I am leaving today in the afternoon"

> Pattern set: paired sentences Interpretation: syntactic analysis marcharme-leaving tarde-afternoon hoy-today por-in la-the voy-am a-

> ITG:  $G = (N, W_1, W_2, R, S)$ 

R is a finite set of straight orientation rules  $A \to [a_1 a_2 \dots a_r]$  and inverted orientation rules  $A \to \langle a_1 a_2 \dots a_r \rangle$ ,  $a_i \in N \cup X$  and  $X = (W_1 \cup \{\epsilon\}) \times (W_2 \cup \{\epsilon\})$ 

**Theorem.** For any ITG G, there exists an equivalent ITG G' in which every production takes one of the following forms:

$$S \to \epsilon/\epsilon$$
  $A \to x/\epsilon$   $A \to [BC]$   $S \to x/y$   $A \to \epsilon/y$   $A \to \langle BC \rangle$ 

- > SITG:  $G_s = (G, p)$  where:
  - $\succ G$  is an ITG
  - $\triangleright$  p is a function that attaches a probability to each rule:

$$p: R \to ]0,1] \qquad \sum_{1 \le j \le n_i} p(A_i \to \alpha_j) = 1, \qquad \forall A_i \in N$$

#### Stochastic derivation for SITG

Given a sequence of stochastic events:

$$(S,S) = (\alpha_0, \beta_0) \stackrel{r_1}{\Rightarrow} (\alpha_1, \beta_1) \stackrel{r_2}{\Rightarrow} (\alpha_2, \beta_2) \cdots (\alpha_{m-1}, \beta_{m-1}) \stackrel{r_m}{\Rightarrow} (\alpha_m, \beta_m) = (x, y)$$

Probability of (x,y) being generated by  $G_s=(G,p)$  from the rule sequence  $d_x = (r_1, \dots, r_m)$ , is:

$$P_{G_s}((x,y),d_x) = \prod_{j=1\cdots m} p(r_j)$$

## Example

$$(S,S) \Rightarrow (AB,AB) \Rightarrow (x_1B,y_1B) \Rightarrow (x_1CD,y_1DC) \Rightarrow (x_1x_2D,y_1Dy_2) \Rightarrow (x_1x_2x_3,y_1y_3y_2)$$

## Probability of a string pair

$$\Pr_{G_s}(x,y) = \sum_{d_x \in D_x} \Pr_{G_s}((x,y), d_x)$$

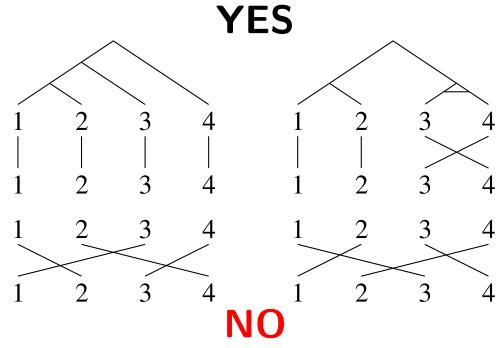
# Probability of the best derivation

$$\widehat{\Pr}_{G_s}(x,y) = \max_{d_x \in D_x} \Pr_{G_s}((x,y), d_x)$$

# Language generated by a SITG

$$L(G_s) = \{(x, y) \mid \Pr_{G_s}(x, y) > 0\}$$

# Expressiveness of ITGs



| r             | ITG | all matchings | ratio |
|---------------|-----|---------------|-------|
| 1             | 1   | 1             | 1.000 |
| $\mid 2 \mid$ | 2   | 2             | 1.000 |
| 3             | 6   | 6             | 1.000 |
| $\mid 4 \mid$ | 22  | 24            | 0.917 |
| 5             | 90  | 120           | 0.750 |

| r  | ITG     | all matchings | ratio |
|----|---------|---------------|-------|
| 6  | 394     | 720           | 0.547 |
| 7  | 1,806   | 5,040         | 0.358 |
| 8  | 8,558   | 40,320        | 0.212 |
| 9  | 41,586  | 362,880       | 0.115 |
| 10 | 206,098 | 3,628,800     | 0.057 |

- > Parsing:
  - > Inside algorithm
  - > Viterbi algorithm
- > Learning:
  - > Structure learning
  - > Probabilistic estimation: Inside-outside estimation

Viterbi-based estimation

- > Translation:
  - > Adapted Cooke-Kasami-Younger parser algorithm

# Viterbi algorithm [Wu 97, Gascó 10b]

ightharpoonup Given  $(x,y)\in (W_1^*,W_2^*)$  and  $A\in N$ 

$$\delta_{i,j,k,l}(A) = \widehat{\Pr}(A \stackrel{*}{\Rightarrow} x_{i+1} \cdots x_j / y_{k+1} \cdots y_l)$$

Initialization

$$\delta_{i-1,i,k-1,k}(A) = p(A \to x_i/y_k) \qquad 1 \le i \le |x|, 1 \le k \le |y|$$

$$\delta_{i-1,i,k,k}(A) = p(A \to x_i/\epsilon) \qquad 1 \le i \le |x|, 0 \le k \le |y|$$

$$\delta_{i,i,k-1,k}(A) = p(A \to \epsilon/y_k) \qquad 0 \le i \le |x|, 1 \le k \le |y|$$

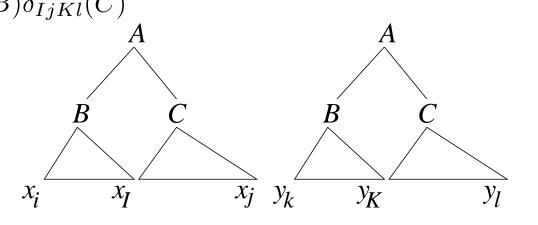
ightharpoonup Recursion. For all  $A \in N$ , and i, j, k, l such that  $0 \le i < j \le |x|$ ,  $0 \le k < l \le |y|$ and  $j - i + l - k \ge 2$ :

$$\delta_{ijkl}(A) = \max(\delta_{ijkl}^{[]}(A), \delta_{ijkl}^{\langle\rangle}(A))$$

$$\delta_{ijkl}^{[]}(A) = \max_{B,C \in N} p(A \to [BC])\delta_{iIkK}(B)\delta_{IjKl}(C)$$

$$i \leq I \leq j, k \leq K \leq l$$

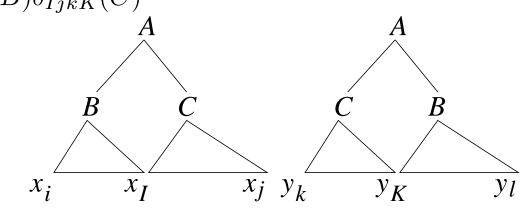
$$((j-I)+(l-K))\times((l-i)+(K-k)\neq 0$$



$$\delta_{ijkl}^{\langle \rangle}(A) = \max_{B,C \in N} p(A \to \langle BC \rangle) \delta_{iIKl}(B) \delta_{IjkK}(C)$$

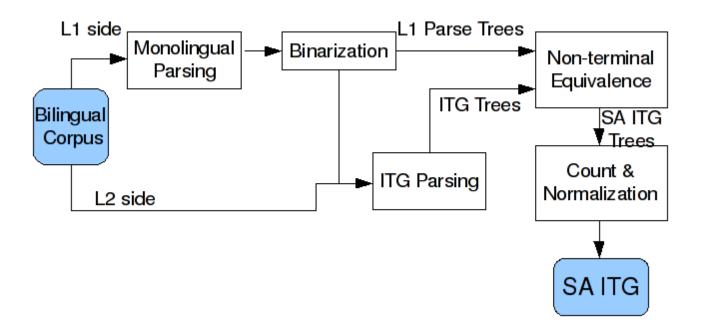
$$i \leq I \leq j, k \leq K \leq l$$

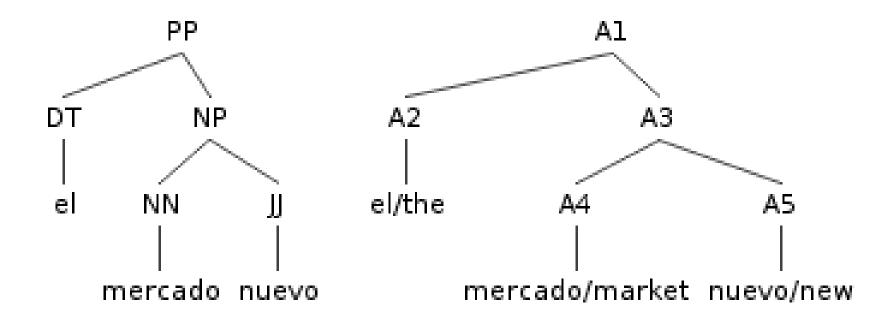
$$((j-I)+(K-k)) \times ((I-i)+(I-K)) \neq 0$$



## [Gascó 10a]

- 1. Create an initial SITG
- 2. Estimate the probabilities
- 3. Attach linguistic information to the non-terminal symbols





- IWSLT 2008 (Chinese-English BTEC)
- Standard tools: GIZA++, ZMERT
- Stanford parser for Chinese
- Baseline: Moses, 5-gram

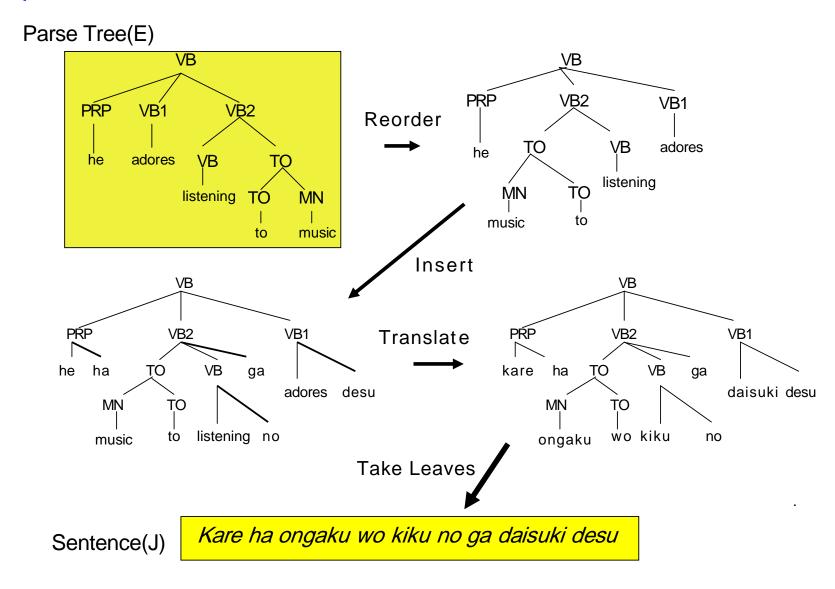
| Corpus Set | Statistic | Chinese | English |  |  |
|------------|-----------|---------|---------|--|--|
|            | Sentences | 42,6    | 555     |  |  |
| Training   | Words     | 330,163 | 380,431 |  |  |
|            | Voc. Size | 8,773   | 8,387   |  |  |
|            | Sentences | 489     |         |  |  |
| DevSet     | Words     | 3,169   | 3,861   |  |  |
|            | OOV Words | ,       |         |  |  |
|            | Sentences | 507     |         |  |  |
| Test       | Words     | 3,357   | -       |  |  |
|            | OOV Words | 97      | _       |  |  |

| System           | %BLEU |
|------------------|-------|
| Baseline PBT     | 41.1  |
| Initial ITG      | 41.2  |
| Re-estimated ITG | 41.8  |
| Source SAITG     | 42.9  |
| Target SAITG     | 43.0  |

# Main ideas [Yamada 01]

- > The input sentence is preprocessed by a syntactic parser
- > The channel performs operations on each node of the parse tree:
  - reordering child nodes
  - inserting extra words at each node
  - translating leaf words
- > The output of the the model is a string.

## An example\*

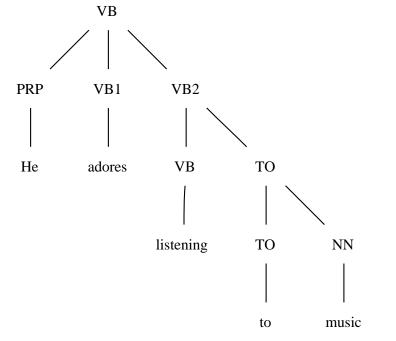


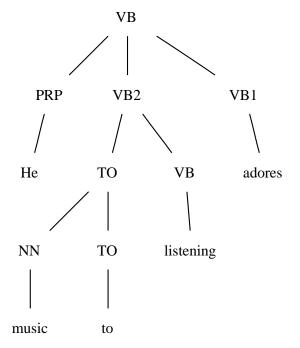
<sup>\*</sup>Source: http://www.isi.edu/natural-language/people/cs562-8-22-06.pdf

#### 5.3 Tree-to-string models

## $\Rightarrow$ The reordering is decided according to the *r*-table

| original order | reordering  | P(reorder) |
|----------------|-------------|------------|
|                | PRP VB1 VB2 | 0.074      |
|                | PRP VB2 VB1 | 0.723      |
| PRP VB1 VB2    | VB1 PRP VB2 | 0.061      |
|                |             |            |
| VB TO          | VB TO       | 0.252      |
|                | TO VB       | 0.749      |
| TO NN          | TO NN       | 0.107      |
|                | NN TO       | 0.893      |
|                | •••         | • • •      |

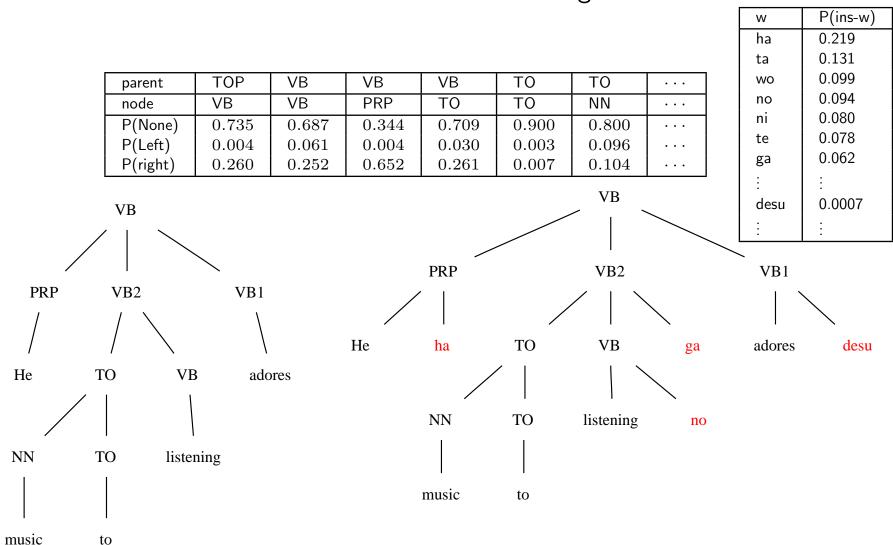




Reordering probability:  $0.723 \cdot 0.749 \cdot 0.893 = 0.484$ 

#### 5.3 Tree-to-string models

 $\Rightarrow$ The insertion of a new node is decided according to the *n*-table

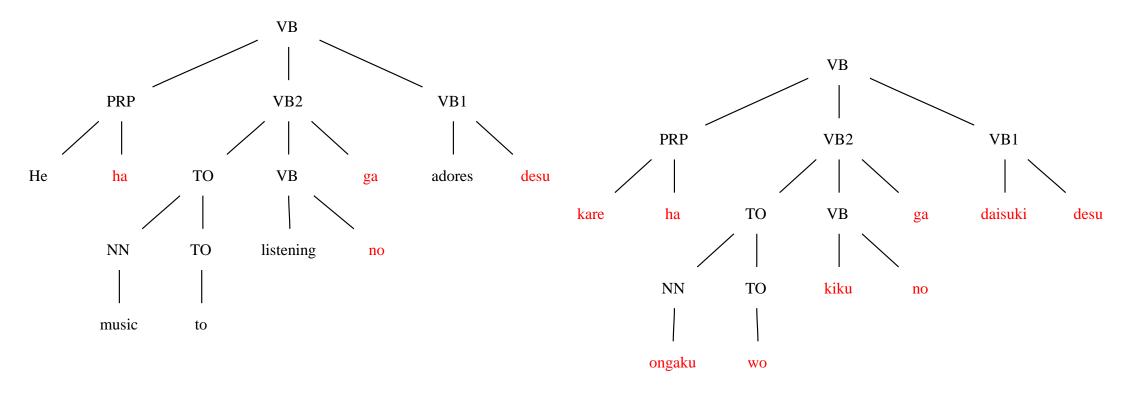


Insertion probability:  $(0.652 \cdot 0.219) \cdot (0.252 \cdot 0.094) \cdot (0.252 \cdot 0.062) \cdot (0.252 \cdot 0.0007) \cdot 0.735 \cdot 0.709 \cdot 0.900 \cdot 0.800 = 3.498e - 9$ 

#### 5.3 Tree-to-string models

## $\Rightarrow$ The translation is decided according to the *t-table*

| adores  |       | h    | he listening |      | music |        | to    |      |       |  |
|---------|-------|------|--------------|------|-------|--------|-------|------|-------|--|
| daisuki | 1.000 | kare | 0.952        | kiku | 0.333 | ongaku | 0.900 | ni   | 0.216 |  |
|         |       | NULL | 0.016        | kii  | 0.333 | naru   | 0.100 | NULL | 0.204 |  |
|         |       | nani | 0.005        | mi   | 0.333 |        |       | to   | 0.133 |  |
|         |       | ÷    | ÷            | :    | ÷     |        |       | :    | i:    |  |



Translation probability:  $0.952 \cdot 0.900 \cdot 0.038 \cdot 1.000 = 0.0108$ 

## Decoder description

- Given a French sentence, the decoder will find the most plausible English parse tree
- Idea: a mechanism similar to normal parsing is used
- > Steps:
  - 1. Start from an English context-free grammar and incorporate to it the channel operations
  - 2. For each non-lexical rule (such as "VP  $\rightarrow$  VB NP PP"), supplement the grammar with reordered rules and probabilities are taken from the r-table
  - 3. Rules such as "VP  $\rightarrow$  VP X" and "X  $\rightarrow$  word" are added and probabilities are taken from the n-table
  - 4. For each lexical rule in the English grammar, we add rules such as "englishWord  $\rightarrow$  foreingWord"
  - 5. Parse a string of foreign words
  - 6. Undo reordering operations and remove leaf nodes with foreign words
  - 7. Among all possible tree, choose pick the best in which the product of the LM and the TM probability is the highest

## 5.4 HIERARCHICAL MT

# Main ideas [Chiang 07]

- It allows to capture difficult reordering
- Hierarchical phrases: phrases that can contain other phrases
- Related to Synchronous CFG: useful for specifying relations between languages.
- Rules are as follows:

$$X \to \langle \gamma, \alpha, \sim \rangle$$

#### where

- $\succ X$  is a non-terminal symbol
- $> \gamma, \alpha$  are strings of terminal and non-terminal symbols
- $\succ\sim$  is one-to-one correspondence between non-terminal ocurrences in  $\gamma$  and lpha

#### 5.4 Hierarchical MT

#### Rule extraction

- Rules are extracted from word-alignments sentences
  - Extract a rule for each phrase pair
  - Replace pharse pairs in each rule by a non-terminal symbol if another rule produces that phrase pair.
- $\succ$  The set of rules of two word-aligned sentences  $\langle f, e, \sim \rangle$  is the smallest set satisfying the following:
  - If  $\langle f_i^j, e_{i'}^{j'} \rangle$  is an initial phrase pair, then add the following rule:

$$X \to \langle f_i^j, e_{i'}^{j'} \rangle$$

• If  $(X \to \langle \gamma, \alpha \rangle)$  is a rule and  $\langle f_i^j, e_{i'}^{j'} \rangle$  is an initial phrase pair such that  $\gamma = \gamma_1 f_i^j \gamma_2$ and  $\alpha = \alpha_1 e_{i'}^{j'} \alpha_2$ , then add the following rule:

$$X \to \langle \gamma_1 X_k \gamma_2, \alpha_1 X_k \alpha_2 \rangle$$

Glue rules:

$$S \to \langle S_1 X_2, S_1 X_2 \rangle$$
$$S \to \langle X_1, X_1 \rangle$$

#### 5.4 Hierarchical MT

#### Translation model

Log-linear model over derivations:

$$P(D) \propto \prod_{i} \Phi_{i}(D)^{\lambda_{i}}$$

where  $\Phi_i$  are features defined on derivations and  $\lambda_i$  are feature weights

Features: functions on the rules and and an additional LM funtion:

$$P(D) \propto P_{LM}(e)^{\lambda_{LM}} \prod_{i \neq LM} \prod_{(X \to \langle \gamma, \alpha \rangle) \in D} \Phi_i(X \to \langle \gamma, \alpha \rangle)^{\lambda_i}$$

- Features on rules:
  - $P(\gamma \mid \alpha)$  and  $P(\alpha \mid \gamma)$
  - Lexical weights:  $P_w(\gamma \mid \alpha)$  and  $P_w(\alpha \mid \gamma)$
  - ullet A penalty  $\exp(-1)$  to learn a preference for longer or shorter derivations
  - Word penalty:  $\exp(-\#T(\alpha))$

## 5.4 HIERARCHICAL MT

# **Training**

- > Rules probabilities obtained from frequencies
- $> \lambda_i$ : minimum-error-rate training [Och 02]
- CKY-based algorithm

# REFERENCES

#### REFERENCES

- [Barrachina 99] S. Barrachina and J.M Vilar. Bilingual clustering using monolingual algorithms. TMI. 1999.
- [Brown 90] P. F. Brown et al. A statistical approach to machine translation. Computational Linguistics, 16, 79–85, 1990.
- Brown 93 P. F. Brown et al. The mathematics of statistical machine translation: parameter estimation. Computational Linguistics, 19(2), 263–310, 1993.
- D. Chiang Hierarchical phrase-based translation. Computational Linguistics, 33(2), 201–228, [Chiang 07] 2007.
- [Gascó 10a] G. Gascó and J.A. Sánchez. Syntax augmented inversion transduction grammars for machine translation. 11th International Conference on Intelligent Text Processing and Computational Linguistics (CICLING), March, 2010.
- [Gascó 10b] G. Gascó, J.A. Sánchez and J.M. Benedí. *Enlarged Search Space for SITG Parsing*, Proc. 11th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL HLT), June, 2010, 653-656.
- [Knight 99] K. Knight. Decoding Complexity in Word-Replacement Translation Models, Computational Linguistics, Squibs & Discussion, 25(4), 1999.
- [Kumar 04] S. Kumar and W. Byrne. A Weighted Finite State Transducer Implementation of the Alignment Template Model for Statistical Machine Translation. Proceedings of HLT-NAACL 2003, May 2003.

#### REFERENCES

- [Ney 00a] H. Ney, S. Nießen, F. Och, H. Sawaf, C. Tillmann and S. Vogel. Algorithms for Statistical Translation of Spoken Language. IEEE Transactions on Speech and Audio Processing, vol. 8(1), 24–36, 2000.
- [Ney 03a] H. Ney Statistical Natural Language Processing, 2003, Canadian Hansard.
- [Och 99] F.J. Och. An Efficient Method for Determining Bilingual Word Classes. EACL. 1999.
- [Och 02] F.J. Och. Discriminative training and maximum entropy models for statistical machine translation. Proc. of ACL, 295-302, 2002.
- Tillmann 01 C. Tillmann. Word re-ordering and DP based search for SMT. PhD Thesis, 2001.
- [Wu 97] D. Wu. Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora. Computational Linguisctics, 23(3):377-403, 1997.
- Yamada 01 K. Yamada and K. Knight. A Syntax-Based Statistical Translation Model. ACL, 2001.