# Syntactic Approaches for Natural Language Processing

# Joan Andreu Sánchez

Departamento Sistemas Informáticos y Computación Instituto Tecnológico de Informática Universidad Politécnica Valencia

PASCAL 2 Ghana Bootcamp 2011

**URL:** http://www.dsic.upv.es/~jandreu

e-mail: jandreu@dsic.upv.es

#### SYNTACTIC APPROACHES FOR NLP

#### Index

- 1 Introduction to the problem
  - 1.1 Introduction
  - 1.2 HMM and PoS Tagging
  - 1.3 PCFG and Parsing
  - 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

- 4. Preliminaries on PCFG
  - 4.1 Notation and definitions
  - 4.2 Basic probabilistic properties of syntactic models
  - 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

#### Index

#### 1 Introduction to the problem

- 1.1 Introduction
- 1.2 HMM and PoS Tagging
- 1.3 PCFG and Parsing
- 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

#### 4. Preliminaries on PCFG

- 4.1 Notation and definitions
- 4.2 Basic probabilistic properties of syntactic models
- 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

"Computational Linguistics" deals with the most difficult communication process: **Natural Language** 



#### Goal:

To develop systems that are able to process, to understand and, to produce Natural Language

#### Motivation:

- Natural Language is the main way to represent and to transfer human knowledge
- There exist lots of information and knowledge in Natural Language
- > There exist a lot of potential users that need to communicate with computers in Natural Language

# **Applications**

> Systems for information extraction from text and speech

#### Examples:

```
information retrieval, information extraction, text
categorization, ...
```

Systems for speech/text to speech/text:

#### Examples:

```
machine translation, speech translation, speech recognition, ...
```

> Systems for communication with humans:

#### Examples:

```
dialog systems, query systems, ...
```

# Probabilistic approach

> Interpretation by using the probabilistic decision rule

```
[ to generate a desired interpretation (output) ]
```

Modeling the human perception with Statistical Decision techniques and Formal Language theory

```
[ to define the statistical dependence between
observations (input) and interpretation (output) ]
```

Learning knowledge from examples

```
[ to learn the model parameters from training examples ]
```

# Main goals of the lecture

> To introduce syntactic approaches to deal with difficult problems related to **Natural Language** 

- > To study fundamentals related to Computational Linguistics
- > To learn basic techniques that are necessary to develop robust systems that are able to understand text data

# **Applications**

- Automatic Speech Recognition
- Machine Translation
- Dialog Systems
- Automatic Summarization
- > Text Classification
- Information Retrieval

## Abstract tasks

- > Language Modeling
- > Part of Speech Tagging
- > Parsing
- Lexical Disambiguation
- Semantic Analysis
- Discourse Analysis

# Knowledge levels in Natural Language:

- Morphology: word structure
- > Syntax:

```
word category - Part of Speech tagging
                     Parsing, Language Modeling
sentence structure —
```

> Semantics:

word semantics sentence semantics

- > Pragmatics: use of the language, cultural issues, environment
- Discourse: dialog structure

#### 1.2 HMM AND Pos Tagging

Part of Speech Tagging Problem: Given a set of PoS tags and a sentence, to assign a PoS tag to each word

Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

→ Problem is difficult because of ambiguity

# Approaches:

- > HMM
- Maximum Entropy
- > SVM

## 1.2 HMM AND PoS TAGGING

# HMM for PoS tagging: [Merialdo 94]



## Problems:

- Model learning
- > Interpretation

#### 1.3 PCFG AND PARSING

Parsing Problem: Given a sentence, to assign a parsing structure to the sentences

Difficulties in Parsing: Ambiguity



## 1.3 PCFG AND PARSING

# Parsing with syntactic models: (Formal) grammar

S NP VP NΡ PRP\$ NN

NP NN NNS

NP NN

VP **AUX NP** 

VP VP VP

VP **VBZ NP**  PRP\$ Our

> NN company

AUX is

NN training  $\longrightarrow$ 

NNS workers

## 1.3 PCFG AND PARSING

# Parsing with syntactic models: (Formal) grammar

1.0 S NP VP 1.0 PRP\$ Our 0.4NP PRP\$ NN 0.6 NN company 0.3NP NN NNS 1.0 AUX is 0.3NP NN 0.4NN training  $\longrightarrow$ 0.5VP **AUX NP** NNS workers 1.0 0.3VP VP VP VP 0.2**VBZ NP** 



#### 1.4 PCFG FOR LANGUAGE MODELING

# Recognition with noisy channel



$$\widehat{I} = \arg\max_{I} \Pr(I|O) = \arg\max_{I} \Pr(O|I) \Pr(I)$$

Pr(I): language model probability

Pr(O|I): channel probability

## 1.4 PCFG FOR LANGUAGE MODELING

# Automatic Speech Recognition



$$\widehat{w_1^N} = \arg\max_{w_1^N} \Pr(w_1^N | x_1^T) = \arg\max_{w_1^N} \Pr(x_1^T | w_1^N) \Pr(w_1^N)$$

# Language Model

$$\Pr(w_1^N) = \Pr(w_1) \prod_{n=2}^N \Pr(w_n | w_1^{n-1})$$

#### 1.4 PCFG FOR LANGUAGE MODELING

 $\rightarrow$  N-Gram models: Restriction on the history length  $w_1^{n-1}$ 

$$\Pr(w_1^N) = \Pr(w_1) \prod_{n=2}^N \Pr(w_n | w_{n-k+1}^{n-1})$$

- × don't capture long-term dependencies
- efficient to compute
- efficient methods to estimate the model parameters
- $\rightarrow$  Grammatical models: No restriction on the history length  $w_1^{n-1}$

$$\Pr(w_1^N) = \Pr(w_1) \prod_{n=2}^N \Pr(w_n | w_1^{n-1})$$

- capture long-term dependencies
- × expensive to compute
- × efficient methods to estimate the model parameters, but expensive

#### Index

- 1 Introduction to the problem
  - 1.1 Introduction
  - 1.2 HMM and PoS Tagging
  - 1.3 PCFG and Parsing
  - 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

- 4. Preliminaries on PCFG
  - 4.1 Notation and definitions
  - 4.2 Basic probabilistic properties of syntactic models
  - 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

# Hidden Markov Models: [Vidal 05a, Vidal 05b]

- Simple and compact models for representing regular relations
- Formal framework well understood
- Natural Language is no regular (but almost)
- > Adequate representation of short-term syntactic structures
- Adequate modeling of ambiguity

# Example

- Primitives: alphabet words, punctuation symbols, . . .
- Object representation: written sentences "Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29."
- > Pattern set sentences
- > Interpretation: PoS tag association

Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

- > An alphabet T is a finite set of symbols.
- $\triangleright$  A string  $x = a_1 \cdots a_n \ (a_i \in T; i : 1 \dots n)$ , is a finite sequence of symbols of T. The length of the string is noted by |x|. Let x and y be two strings,  $x,y \in T^*$ , then the **concatenation** of x and y is the string xy. |xy| = |x| + |y|.
- $\triangleright$  The **empty string**  $\epsilon$ , is the string with length equal to zero. For any string x,  $x \in T^*$ :  $\epsilon x = x\epsilon = x$ .
- $\triangleright$  The closure  $T^*$  is the infinite and countable set of all strings with finite length composed with symbols of T,  $\epsilon$  included. The **positive closure**  $T^+$  is defined as:  $T^+ = T^* - \{\epsilon\}.$
- $\triangleright$  A language L is a set of strings composed with symbols of T ( $L \subseteq T^*$ ).

A discrete *HMM* is defined as  $M = (Q, T, a, b, \pi, q_f)$ :

$$a: Q - \{q_f\} \times Q \to [0, 1]; \quad \forall q \in Q - \{q_f\}: \sum_{q' \in Q} a(q, q') = 1$$

$$b: Q - \{q_f\} \times T \to [0, 1]; \qquad \forall q \in Q - \{q_f\}: \sum_{x \in T} b(q, x) = 1$$

$$\pi:Q \to [0,1];$$
 
$$\sum_{q \in Q} \pi(q) = 1$$

Example: Given  $T = \{a, b\}$ :

$$\begin{array}{ccc}
a & \begin{bmatrix} 0.9 \\ 0.1 \end{bmatrix} & a & \begin{bmatrix} 0.1 \\ 0.9 \end{bmatrix} & a & \begin{bmatrix} 0.9 \\ 0.1 \end{bmatrix}$$

Given  $x = x_1 \cdots x_n \in T^*$  and the HMM M:



$$b(s_1 = q_1, x_1)a(s_1, s_2)b(s_2, x_2) \dots a(s_{n-1}, s_n)b(s_n, x_n)a(s_n, q_f)$$

Let  $S = (s_1 = q_1, s_2, \dots, s_n, s_{n+1} = q_f)$  be a valid path through M. Then:

$$\Pr_M(S) = \prod_{i=1}^n a(s_i, s_{i+1}), \quad \text{and} \quad \Pr_M(x \mid S) = \prod_{i=1}^n b(s_i, x_i)$$

Let  $S_M(x)$  be the set of all valid paths for x. Then:

$$\Pr_{M}(x) = \sum_{S \in \mathcal{S}_{M}(x)} \Pr_{M}(x \mid S) \Pr_{M}(S)$$

# Forward algorithm

- $\alpha(i,q) = \Pr_M(x_1 \cdots x_i, q) \quad 1 \le i \le n+1 \quad q \in Q \cup \{q_f\}$ — Definition:
- **Recursion:**  $\forall q \in Q \text{ with } 2 \leq i \leq n$

$$\alpha(i,q) = \left[\sum_{q' \in Q} \alpha(i-1,q')a(q',q)\right]b(q,x_i)$$

$$\alpha(n+1, q_f) = \sum_{q' \in Q} \alpha(n, q') a(q', q_f)$$

- Initialization:  $\alpha(1,q) = \pi(q)b(q,x_1) \quad \forall q \in Q \cup \{q_f\}$
- Result:  $Pr_M(x) = \alpha(n+1, q_f)$

# Forward algorithm: Example

|       | a   | b           | b                                        | a                     |                   |
|-------|-----|-------------|------------------------------------------|-----------------------|-------------------|
| $q_1$ | 0.9 | 0.9 0.9 0.1 |                                          |                       |                   |
| $q_2$ |     | 0.9 0.1 0.9 | $0.081 \ 0.1 \ 0.9+ \ 0.081 \ 0.9 \ 0.9$ |                       |                   |
|       |     | 0.9 0.1 0.9 | $0.081 \ 0.9 \ 0.9$                      |                       |                   |
| $q_3$ |     |             | 0.081 0.1 0.1                            | $0.0729 \ 0.1 \ 0.9+$ |                   |
|       |     |             | 0.001 0.1 0.1                            | 0.00081 0.9 0.9       |                   |
| $q_4$ |     |             |                                          |                       | $0.0072171 \ 0.1$ |

# Backward algorithm

- $\beta(i,q) = \Pr_M(x_{i+1} \cdots x_n \mid q) \quad 1 \le i \le n+1 \quad q \in Q \cup \{q_f\}$ — Definition:
- $\forall q \in Q \text{ with } 1 \leq i \leq n-1$ : – Recursion:

$$\beta(i,q) = \sum_{q' \in Q} a(q, q') b(q', x_{i+1}) \beta(i+1, q')$$

- Initialization:  $\beta(n,q) = a(q,q_f)\beta(n+1,q_f)$  $\forall q \in Q$ .  $\beta(n+1,q_f)=1$
- $Pr_M(x) = b(q_1, x_1)\beta(1, q_1)$ – Result:

Let:

$$\widehat{S}_x = \max_{S \in \mathcal{S}_M(x)} \Pr_M(x \mid S) \Pr_M(S)$$

and:

$$\widehat{\Pr}_M(x) = \Pr_M(x, \widehat{S}_x)$$

# Viterbi algorithm

 $\gamma(i,q) = \widehat{\Pr}_M(x_1 \cdots x_i,q) \quad 1 \le i \le n \quad q \in Q \cup \{q_f\}$ — Definition:

- **Recursion:**  $\forall q \in Q \text{ with } 2 \leq i \leq n$ 

$$\gamma(i,q) = [\max_{q' \in Q} \gamma(i-1,q')a(q',q)]b(q,x_i)$$

$$\gamma(n+1, f) = \max_{q' \in Q} \gamma(n, q') a(q', q_f)$$

- Initialization:  $\gamma(1,q) = \pi(q)b(q,x_1) \quad \forall q \in Q \cup \{q_f\}$ 

- Result:  $\widehat{Pr}_M(x) = \gamma(n+1, q_f)$ 

# Viterbi algorithm: Example

|       | a   | b           | b                                           | a                     |                   |
|-------|-----|-------------|---------------------------------------------|-----------------------|-------------------|
| $q_1$ | 0.9 | 0.9 0.9 0.1 |                                             |                       |                   |
| $q_2$ |     | 0.9 0.1 0.9 | $0.081 \ 0.1 \ 0.9 \ , \ 0.081 \ 0.9 \ 0.9$ |                       |                   |
|       |     | 0.9 0.1 0.9 | $0.081 \ 0.9 \ 0.9$                         |                       |                   |
| $q_3$ |     |             | 0.081 0.1 0.1                               | $0.06561 \ 0.1 \ 0.9$ |                   |
|       |     |             | 0.001 0.1 0.1                               | $0.00081 \ 0.9 \ 0.9$ |                   |
| $q_4$ |     |             |                                             |                       | $0.0059049 \ 0.1$ |

#### SYNTACTIC APPROACHES FOR NLP

#### Index

- 1 Introduction to the problem
  - 1.1 Introduction
  - 1.2 HMM and PoS Tagging
  - 1.3 PCFG and Parsing
  - 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

- 4. Preliminaries on PCFG
  - 4.1 Notation and definitions
  - 4.2 Basic probabilistic properties of syntactic models
  - 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

- > Supervised methods
  - > Maximum likelihood estimation

$$\overline{a}(q, q') = \frac{C(q, q')}{C(q)}$$

- > Annotated data is needed
- > Non-supervised methods
  - > EM algorithms
  - > Problem: local optimum

Let M be a HMM and  $\theta=(a,b,\pi)$ , and let  $\Omega=\{x_1,x_2,\ldots,x_n\}$  be a training sample.

$$\widehat{\theta} = \arg\max_{\theta} F_{\theta}(\Omega)$$

- > Optimization method
  - > Growth transformations
- > Optimization function
  - Maximum likelihood
  - > Corrective training
  - > Maximum mutual information

# Theorem [Baum 72]

Let  $P(\Theta)$  be a homogeneous polynomial with non-negative coefficients. Let  $\theta = \{\theta_{ij}\}$  be a point in the domain  $D = \{\theta_{ij} \mid \theta_{ij} \geq 0; \sum_{j=1}^{q_i} \theta_{ij} = 1, i = 1, \dots, p; \quad j = 1, \dots, q_i\}$ , and let  $Q(\theta)$  be a close transformation in D, that is defined as:

$$Q(\theta)_{ij} = \frac{\theta_{ij}(\partial P/\partial \Theta_{ij})_{\theta}}{\sum_{k=1}^{q_i} \theta_{ik}(\partial P/\partial \Theta_{ik})_{\theta}}$$

with the denominator different from zero. Then,  $P(Q(\theta)) > P(\theta)$  except if  $Q(\theta) = \theta$ .

```
input P(\Theta)
\theta = \text{initial values}
repeat
\operatorname{compute} \ Q(\theta) \ \operatorname{using} \ P(\Theta)
\theta = Q(\theta)
until convergence
output \theta
```

# Optimization function

Given a sample  $\Omega$  and a model M

$$\Pr_M(\Omega, \Delta_{\Omega}) = \prod_{x \in \Omega} \Pr_M(x, \Delta_M(x)),$$

such that:

- $-\Delta_M(x)\subseteq \mathcal{S}_M(x)$
- $\Pr_{M}(x, \Delta_{M}(x)) = \sum_{S \in \Delta_{M}(x)} \Pr_{M}(x, S)$
- $\forall q, q' \in Q \{q_f\}$  (See demonstration [Benedí 05])

$$\overline{a}(q, q') = \frac{\sum_{x \in \Omega} \frac{1}{\Pr_M(x, \Delta_M(x))} \sum_{S \in \Delta_M(x)} N((q, q'), S) \Pr_M(x, S)}{\sum_{x \in \Omega} \frac{1}{\Pr_M(x, \Delta_M(x))} \sum_{S \in \Delta_M(x)} N(q, S) \Pr_M(x, S)}$$

- $\forall q \in Q: \overline{a}(q, q_f)$
- $\forall q \in Q$ ,  $\forall a \in t$ :  $\overline{b}(q, a)$

#### 3.2 Baum-Welch algorithm

# Optimization function

$$\Pr_M(\Omega) = \prod_{x \in \Omega} \Pr_M(x),$$

## Baum-Welch algorithm

$$- \forall q, q' \in Q - \{q_f\}$$

$$\overline{a}(q, q') = \frac{\sum_{x \in \Omega} \frac{1}{\Pr_M(x)} \sum_{i=1}^{n-1} \alpha(i, q) a(q, q') b(q', x_{i+1}) \beta(i+1, q')}{\sum_{x \in \Omega} \frac{1}{\Pr_M(x)} \sum_{i=1}^{n} \alpha(i, q) \beta(i, q)}$$

- $\forall q \in Q: \overline{a}(q, q_f)$
- $\forall q \in Q$ ,  $\forall a \in t$ :  $\overline{b}(q, a)$
- $\forall q \in Q, \, \overline{\pi}(q)$

Time complexity:  $O(|\Omega||N|b)$ 

#### 3.3 VITERBI ALGORITHM

# Optimization function

$$\widehat{\Pr}_M(\Omega) = \prod_{x \in \Omega} \widehat{\Pr}_M(x),$$

# Viterbi algorithm

$$- \forall q, q' \in Q - \{q_f\}$$

$$\overline{a}(q, q') = \frac{\sum_{x \in \Omega} N((q, q'), \widehat{S}_x)}{\sum_{x \in \Omega} N(q, \widehat{S}_x)}$$

- $\forall q \in Q: \ \overline{a}(q, q_f)$
- $\forall q \in Q$ ,  $\forall a \in t$ :  $\overline{b}(q, a)$
- $\ \forall q \in Q$ ,  $\overline{\pi}(q)$

Time complexity:  $O(|\Omega||N|b)$ 

#### 3.3 VITERBI ALGORITHM

1. Carrying out the maximization with  $M^{(i)}$ :  $\widehat{\mathcal{S}}_x^{(i)}$ ;

$$\widehat{\mathcal{S}}_x^{(i)} = \{\widehat{S}_x^{(i)} : \widehat{S}_x^{(i)} = \arg\max_{S \in \mathcal{S}_M(x)} \Pr_{M^{(i)}}(x, S)\}$$

2. Applying the transformation:  $M^{(i+1)}$ .

The function to be optimized is defined after step 1. This function is continous and differentiable:

$$\prod_{x \in \Omega} \Pr_{M^{(i)}}(x, \widehat{S}_x^{(i)}) \le \prod_{x \in \Omega} \Pr_{M^{(i+1)}}(x, \widehat{S}_x^{(i)}).$$

In the next step i+1, the most probable sequence  $\widehat{S}_x^{(i+1)}$  is computed for each string x with  $M^{(i+1)}$ , and therefore:

$$\Pr_{M^{(i+1)}}(x, \widehat{S}_x^{(i)}) \le \Pr_{M^{(i+1)}}(x, \widehat{S}_x^{(i+1)}) \quad \forall x \in \Omega,$$

and hence

$$\prod_{x\in\Omega} \mathrm{Pr}_{M^{(i+1)}}(x,\widehat{S}_x^{(i)}) \leq \prod_{x\in\Omega} \mathrm{Pr}_{M^{(i+1)}}(x,\widehat{S}_x^{(i+1)}).$$



### 3.4 Use of HMM for PoS tagging

Problem: Let W be a sentence and let  $C = \{c_1, c_2, \dots, c_C\}$  be a PoS tag set:

$$\widehat{C} = \arg \max_{C \in \mathcal{C}^{|W|}} P(c_1 c_2 \dots c_{|W|} \mid w_1 w_2 w_{|W|}) 
= \arg \max_{C \in \mathcal{C}^{|W|}} P(c_1 c_2 \dots c_{|W|}) P(w_1 w_2 w_{|W|} \mid c_1 c_2 \dots c_{|W|})$$

## Assumption:

$$P(c_1 c_2 \dots c_{|W|}) \approx P(c_1) \prod_{i=2}^{|W|} P(c_i | c_{i-1})$$

$$P(w_1 w_2 w_{|W|} \mid c_1 c_2 \dots c_{|W|}) \approx \prod_{i=1}^{|W|} P(w_i | c_i)$$

#### 3.4 Use of HMM for PoS tagging

## Bigram approach:

$$\widehat{C} = \arg \max_{C \in \mathcal{C}^{|W|}} P(c_1) P(w_1|c_1) \prod_{i=2}^{|W|} P(c_i|c_{i-1}) P(w_i|c_i)$$



### **Problems**

- > Labeling: Viterbi algorithm
- > Parameter learning:
  - Non-supervised methods: Baum-Welch estimation.
  - Supervised methods:

$$P(c_i|c_{i-1}) = \frac{f(c_{i-1}c_i)}{f(c_{i-1})} \qquad P(w_i|c_i) = \frac{f(w_i, c_i)}{f(c_i)}$$

## 3.4 Use of HMM for PoS tagging

## Example:

he/PRP has/VBZ good/JJ control/NN ./. the/DT percentage/NN change/ NN is/VBZ since/IN year-end/ NN ./.

the/DT price/NN was/VBD n't/RB disclosed/VBN ./.

he/PRP becameVBD/ angry/JJ in/IN return/NN ./.

the/DT inquiry/NN soon/RB focused/VBD on/IN the/DT judge/NN ./.



### Index

- 1 Introduction to the problem
  - 1.1 Introduction
  - 1.2 HMM and PoS Tagging
  - 1.3 PCFG and Parsing
  - 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

#### 4. Preliminaries on PCFG

- 4.1 Notation and definitions
- 4.2 Basic probabilistic properties of syntactic models
- 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

# Context-free grammar: [Aho,72]

- Simple and compact models for parsing
- Formal framework well understood
- > Adequate representation of long-term syntactic structures
- Adequate modeling of ambiguity

# Example

- > Primitives: alphabet words, punctuation symbols, . . .
- > Object representation: written sentences "Bridget O'Brian contributed to this article"
- > Pattern set sentences
- > Interpretation: syntactic analysis



### Similar definitions as in HMM:

- > Alphabet: T is a finite set of symbols.
- $\triangleright$  **String**: a finite sequence of symbols of T.
- $\triangleright$  Closure  $T^*$ : the infinite and countable set of all strings with finite length composed with symbols of T,  $\epsilon$  included.
- $\triangleright$  Language: L is a set of strings composed with symbols of T  $(L \subseteq T^*)$ .

ightharpoonup Grammar: G = (N, T, P, S)

$$V = N \cup T; \ N \cap T = \emptyset; \ S \in N; \ (A \to \beta) \in P;$$

$$A \in N; \beta \in V^*$$

Derivation:

$$\mu A\delta \Longrightarrow \mu \beta \delta \text{ iff } \exists (A \to \beta) \in P;$$

$$\mu, \delta \in V^*$$

Sentential Form:

$$\alpha \in V^*$$
 is a  $sentential form of  $G \xrightarrow{if} S \stackrel{*}{\Longrightarrow} \alpha$$ 

> Language generated by G:

$$L(G) = \{ x \in T^* \mid S \stackrel{*}{\Longrightarrow} x \}$$

- Grammar classification:
  - **Type 2**: context free grammars

$$A \to \beta$$

 $A \in N; \beta \in V^*$ 

• **Type 3**: regular grammars

$$A \rightarrow aB, \quad A \rightarrow a$$

 $A, B \in N; a \in T$ 

## **Approaches**

- > Top-Down parsing
- Down-Top parsing

## Depending on time complexity

- Backtracking methods
- > Deterministic methods

Grammars: LL(1), SLR(1), LALR(1), LR(1), . . .

> Tabular methods

**CKY** algorithm

Earley algorithm [Aho 72, Stolcke 95]

Exponential complexity

Linear complexity

Cubic complexity

```
ALGORITHM: Cocke-Kasami-Younger
Input G = (N, T, P, S) in CNF and \mathbf{x} = x_1 \dots x_n \in T^*
          Parsing table t[i, l] (1 \le i, l \le n)
Output
           A \in t[i, l] \text{ if } A \stackrel{*}{\Longrightarrow} x_{i+1} \dots x_l
METHOD
for all i:0...n-1 do
  t[i, i+1] := t[i, i+1] \cup \{A \mid (A \to b) \in P; b = x_{i+1}\}
for all j: 2 \dots n do
  for all i: 0 \dots n-j do
     for all k: 1 \dots j-1 do
        t[i, i+j] := t[i, i+j] \cup \{A \mid (A \to BC) \in P;
                      B \in t[i, i+k]; \ C \in t[i+k, i+j]
if S \in t[0,n] then x \in L(G) else x \notin L(G)
END
```



**S**<sub>7</sub>

Let  $x \in T^*$  and a stochastic model M characterized by a parameter vector  $\theta$ , we are interested in computing:  $p_{\theta}(x)$ 

Stochastic language  $(L, \phi)$  over T [Wetherell 80]:

- $\blacktriangleright L \subset T^*$ characteristic language
- $\blacktriangleright \phi: T^* \longrightarrow [0,1]$ computable stochastic function:
  - i)  $x \notin L \Longrightarrow \phi(x) = 0$  $\forall x \in T^*$
  - ii)  $x \in L \Longrightarrow 0 < \phi(x) \le 1$   $\forall x \in T^*$
  - iii)  $\sum_{x \in L} \phi(x) = 1$

# Example [Booth 73]

Given the alphabet  $T = \{a, b\}$ , the following language is defined:  $L = \{a^n b^n \mid n \geq 0\}$ , where  $\phi(x)=0$ ,  $\forall x \notin L$  and  $\phi(a^nb^n)=\frac{1}{e^{n!}}$ 

$$\sum_{x \in L} \phi(x) = \sum_{0 \le n \le \infty} \frac{1}{e^{n!}} = \frac{1}{e} \sum_{0 \le n \le \infty} \frac{1}{n!} = \frac{1}{e} e = 1$$

# Probabilistic context-free grammar: $G_s = (G, p)$

- ightharpoonup G = (N, T, P, S) characteristic grammar
- $> p: P \rightarrow ]0,1]$ probability of the rules.  $\forall A_i \in N$ :

$$\sum_{1 \le j \le n_i} p(A_i \to \alpha_j) = 1,$$

where  $n_i$  is the number of rules with  $A_i$  in the left side of the rules.

### Stochastic derivation for PCFG

Given a sequence of stochastic events:

$$S = \alpha_0 \stackrel{r_1}{\Rightarrow} \alpha_1 \stackrel{r_2}{\Rightarrow} \alpha_2 \cdots \alpha_{m-1} \stackrel{r_m}{\Rightarrow} \alpha_m = x$$

the probability of x being generated by  $G_s = (G, p)$  from the rule sequence  $d_x = r_1, \dots, r_m$ , is:

$$\Pr_{G_s}(x, d_x) = p(r_1)p(r_2 \mid r_1) \cdots p(r_m \mid r_1 \cdots r_{m-1})$$

- > problem: computation of the probabilities
- > restriction:  $p(r_i \mid r_1 \cdots r_{i-1}) = p(r_i)$

$$\Pr_{G_s}(x, d_x) = \prod_{j=1\cdots m} p(r_j)$$

Probability of a derivation  $d_x = r_1, \ldots, r_m$ 

$$\Pr_{G_s}(x, d_x) = \prod_{j=1\cdots m} p(r_j) = \prod_{\forall (A \to \alpha) \in P} p(A \to \alpha)^{N(A \to \alpha, d_x)}$$

Probability of a string

$$\Pr_{G_s}(x) = \sum_{d_x \in D_x} \Pr_{G_s}(x, d_x)$$

Probability of the best derivation

$$\widehat{\Pr}_{G_s}(x) = \max_{d_x \in D_x} \Pr_{G_s}(x, d_x)$$

Probability of a string with a subset of derivations  $\Delta_x \subseteq D_x$ 

$$\Pr_{G_s}(x, \Delta_x) = \sum_{d_x \in \Delta_x} \Pr_{G_s}(x, d_x)$$

Language generated by a PCFG

$$L(G_s) = \{ x \in L(G) \mid \Pr_{G_s}(x) > 0 \}$$

### 4.2 Basic probabilistic properties of syntactic models

# Consistent grammar

A PCFG  $G_s = (G, p)$  is consistent iff:

$$\sum_{x \in L(G)} \Pr_{G_s}(x) = 1$$

## Theorem [Booth 73]

There exist stochastic languages  $(L,\phi)$  that can not be generated by a stochastic grammar  $G_s = (G, p)$ 

Dem. outline Let  $L = \{a^nb^n \mid n \ge 0\}$  be a stochastic language:

$$\phi(a^n b^n) = \frac{1}{en!}$$

There is not any  $G_s$  such that  $\phi(x) = \Pr_{G_s}(x) \quad \forall x \in L$ 

$$\phi(x) = \Pr_{G_s}(x)$$

$$\forall x \in L$$

# Inside algorithm for PCFG [Lari 90]

ightharpoonup Given  $x=x_1\dots x_n\in T^*$  and  $A\in N$ 

$$e(A < i, l >) = \Pr_{G_s}(A \stackrel{*}{\Rightarrow} x_i \dots x_l)$$

ightharpoonup Compute  $\forall A \in N$ :

$$e(A < i, i >) = p(A \to b) \delta(b, x_i)$$

$$1 \le i \le n$$

$$e(A < i, j >) = \sum_{B,C \in N} p(A \to BC) \sum_{k=i}^{j-1} e(B < i, k >) e(C < k+1, j >)$$

$$1 \le i < j \le n$$

- $ightharpoonup \Pr_{G_e}(x) = e(S < 1, n >)$
- $\rightarrow$  Time complexity:  $O(|x|^3|P|)$

# Inside algorithm for PCFG (bracketed version [Pereira 92])

Bracketed sentence:

((Pierre Vinken), (61 years) old),)(will(join(the board)(as(a nonexecutive director ) ( Nov. 29. ) ) .)

$$c(i,j) = \left\{ \begin{array}{ll} 1 & \text{if } (i,j) \text{ does not overlap any span in the sentence,} \\ 0 & \text{otherwise.} \end{array} \right.$$

ightharpoonup Compute  $\forall A \in N$ :

$$e(A < i, i >) = p(A \to b) \delta(b, x_i)$$
  $1 \le i \le n$   $e(A < i, j >) = c(i, j) \sum_{B \in C \in N} p(A \to BC) \sum_{k=i}^{j-1} e(B < i, k >) e(C < k+1, j >)$ 

 $1 \le i < j \le n$ 

Linear if full bracketing

# Viterbi algorithm for PCFG [Ney 91]

ightharpoonup Given  $x=x_1\dots x_n\in T^*$  and  $A\in N$ 

$$\widehat{e}(A < i, l >) = \widehat{\Pr}_{G_s}(A \stackrel{*}{\Rightarrow} x_i \dots x_l)$$

ightharpoonup Compute  $\forall A \in N$ :

$$\widehat{e}(A < i, i >) = p(A \to b) \, \delta(b, x_i)$$

$$\widehat{e}(A < i, j >) = \max_{B, C \in N} p(A \to BC) \max_{k=i, \dots, j-1} \widehat{e}(B < i, k >) \widehat{e}(C < k+1, j >)$$

$$1 \le i < j \le n$$

- $ightharpoonup \widehat{Pr}_{G_c}(x) = \widehat{e}(S < 1, n > 1)$
- ightharpoonup Time complexity:  $O(|x|^3|P|)$  (Bracketed version: linear if full bracketing)

# Outside algorithm for PCFG

ightharpoonup Given  $x = x_1 \dots x_n \in T^*$  and  $A \in N$ 

$$f(A < i, l >) = \Pr_{G_s}(S \stackrel{*}{\Rightarrow} x_1 \dots x_{i-1} \ A \ x_{l+1} \dots x_n)$$

ightharpoonup Compute  $\forall A \in N$ :

$$f(A < 1, n >) = \delta(A, S)$$

$$f(A < i, j >) = \sum_{B,C \in N} p(B \to CA) \sum_{k=1}^{i-1} f(B < k, j >) \ e(C < k, i-1 >)$$

+ 
$$\sum_{B,C \in N} p(B \to AC) \sum_{k=j+1}^{n} f(B < i, k >) \ e(C < j+1, k >)$$

$$1 \le i \le j \le n$$

$$ightharpoonup \operatorname{Pr}_{G_s}(x) = \sum_{A \in N} f(A < i, i >) p(A \to x_i),$$
  $1 \le i \le n$ 

ightharpoonup Time complexity:  $O(|x|^3|P|)$  (Bracketed version: linear if full bracketing)

## Probability of an initial substring: LRI algorithm

$$T(A \Rightarrow B) = \sum_{\alpha} \Pr_{G_s}(A \stackrel{*}{\Rightarrow} B\alpha)$$
  
 $T(A \Rightarrow BC) = p(A \to BC) + \sum_{D} T(A \Rightarrow D)p(D \to BC)$ 

ightharpoonup Given  $x=x_1\dots x_n\in T^*$  and  $A\in N$  $e(A \ll i, l) = \Pr_{G_s}(A \stackrel{*}{\Rightarrow} x_i \dots x_l \dots)$ 

ightharpoonup Compute  $\forall A \in N$ :

$$e(A \ll i, i) = p(A \to x_i) + \sum_{D} T(A \Rightarrow D) \ p(D \to x_i)$$

$$1 \leq i \leq n$$

$$e(A \ll i, j) = \sum_{B,C \in N} T(A \Rightarrow BC) \sum_{k=i}^{j-1} e(B < i, k >) \ e(C \ll k + 1, j)$$

$$1 \leq i \leq n$$

$$1 \leq i \leq j$$

- $ightharpoonup \Pr_{G_e}(x_1 \dots x_k \dots) = e(S \ll 1, k)$
- ightharpoonup Time complexity:  $O(|x|^3|P|)$

### Index

- 1 Introduction to the problem
  - 1.1 Introduction
  - 1.2 HMM and PoS Tagging
  - 1.3 PCFG and Parsing
  - 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

- 4. Preliminaries on PCFG
  - 4.1 Notation and definitions
  - 4.2 Basic probabilistic properties of syntactic models
  - 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

### 5.1 Introduction

# > Supervised methods

> Maximum likelihood estimation:

- $\widehat{\Pr}(A \to \alpha) = \frac{C(A \to \alpha)}{C(A)}$
- Annotated data is needed ("treebank")

## Non-supervised methods

- > EM algorithms
- > Problem: local optimum

Let  $G_s$  a PCFG with parameters  $\theta$  and a sample  $\Omega = \{x_1, x_2, \dots, x_n\}$ .

$$\hat{\theta} = \arg\max_{\theta} F_{\theta}(\Omega)$$

- > Optimization method: Growth transformations
- > Optimization function: Maximum likelihood

# Theorem [Baum 72]

Let  $P(\Theta)$  be a homogeneous polynomial with non-negative coefficients. Let  $\theta = \{\theta_{ij}\}$  be a point in the domain  $D=\{\theta_{ij}\mid \theta_{ij}\geq 0; \sum_{j=1}^{q_i}\theta_{ij}=1,\ i=1,\ldots,p;\quad j=1,\ldots,q_i\}$ , and let  $Q(\theta)$  be a close transformation in D, that is defined as:

$$Q(\theta)_{ij} = \frac{\theta_{ij}(\partial P/\partial \Theta_{ij})_{\theta}}{\sum_{k=1}^{q_i} \theta_{ik}(\partial P/\partial \Theta_{ik})_{\theta}}$$

with the denominator different from zero. Then,  $P(Q(\theta)) > P(\theta)$ except if  $Q(\theta) = \theta$ .

```
input P(\Theta)
\theta = \text{initial values}
repeat
      compute Q(\theta) using P(\Theta)
      \theta = Q(\theta)
until convergence
output \theta
```

### 5.2 Inside-Outside algorithm

Let a PCFG  $G_s$ , a sample  $\Omega$  and a set of derivations  $\Delta_x$  for each  $x \in \Omega$ 

$$\Pr_{G_s}(\Omega, \Delta_{\Omega}) = \prod_{x \in \Omega} \Pr_{G_s}(x, \Delta_x)$$

 $\forall (A \rightarrow \alpha) \in P$  (See demonstration [Benedí 05])

$$\overline{p}(A \to \alpha) = \frac{\sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x, \Delta_x)} \sum_{\forall d_x \in \Delta_x} N(A \to \alpha, d_x) \Pr_{G_s}(x, d_x)}{\sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x, \Delta_x)} \sum_{\forall d_x \in \Delta_x} N(A, d_x) \Pr_{G_s}(x, d_x)}$$

#### 5.2 Inside-Outside algorithm

Optimization function  $(\Delta_x = D_x)$ 

$$\Pr_{G_s}(\Omega) = \prod_{x \in \Omega} \Pr_{G_s}(x)$$

 $\rightarrow \forall (A \to BC) \in P$ ; y  $\forall (A \to b) \in P$  (See demonstration)

$$\overline{p}(A \to BC) = \frac{\sum_{x \in \Omega} \frac{p(A \to BC)}{\Pr_{G_s}(x)} \sum_{i=0}^{n-j} \sum_{j=2}^{n} \sum_{k=1}^{j-1} f(A < i, i+j >) e(B < i, i+k >) e(C < i+k, i+j >)}{\sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x)} \sum_{i=0}^{n-j} \sum_{j=1}^{n} f(A < i, i+j >) e(A < i, i+j >)}$$

$$\overline{p}(A \to b) = \frac{\sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x)} \sum_{i=0, b=x_i}^{n-1} f(A < i, i >) p(A \to b)}{\sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x)} \sum_{i=0}^{n-j} \sum_{j=1}^{n} f(A < i, i+j >) e(A < i, i+j >)}$$

 $O(|LT|^3|P|)$ Time complexity:

## 5.3 VITERBI ALGORITHM

Optimization function  $(\Delta_x = \widehat{d}_x)$  [Benedí 05]

$$\Pr_{G_s}(\widehat{\Omega}) = \prod_{x \in \Omega} \Pr_{G_s}(x, \widehat{d}_x)$$

 $\rightarrow \forall (A \rightarrow \alpha) \in P$ 

$$\overline{p}(A \to \alpha) = \frac{\sum_{x \in \Omega} N(A \to \alpha, \widehat{d}_x)}{\sum_{x \in \Omega} N(A, \widehat{d}_x)}.$$

 $O(|LT|^3|P|)$ Time complexity:

### 5.4 Probabilistic properties of the estimated PCFG

Theorem [Booth 73] A PCFG is consistent if  $\rho(E) < 1$ , where  $\rho(E)$  is the spectral radius (absolute value of the largest eigenvalue) of matrix E.

Probabilistic expectation matrix:  $E=(e_{ij})$ , expected number of times that the non-terminal  $A_i$  is derived directly from  $A_i$ :

$$e_{ij} = \sum_{(A_i \to \alpha)} p(A_i \to \alpha) N(A_j, \alpha)$$
  $1 \le i, j \le |N|$ 

## Expectation matrix

 $Q = \sum_{i=0}^{\infty} E^i$ . If  $G_s$  is consistent, then the sum converges to:  $Q = (I - E)^{-1}$ 

Theorem [Sánchez 97] Let  $G_s = (G, p)$  be a PCFG and let  $\Omega$  be a sample from L(G). If  $\overline{G}_s = (G, \overline{p})$  is a PCFG obtained from  $G_s$  when applying the previous growth transformation, the  $\overline{G}_s$  is consistent.

## 5.4 Probabilistic properties of the estimated PCFG

## Palindrome language

$$\{ ww^R \mid w \in \{a,b\}^+; R = \text{ reverse string} \}$$

Original model

$$S \rightarrow AC \ 0.4$$
  $S \rightarrow BB \ 0.1$   $C \rightarrow SA \ 1.0$   $A \rightarrow a \ 1.0$   $S \rightarrow BD \ 0.4$   $S \rightarrow AA \ 0.1$   $D \rightarrow SB \ 1.0$   $B \rightarrow b \ 1.0$ 

- > Training set: 1000 strings
- > Initial model to be estimated
  - $\gt$  5 non-terminals and 2 terminals  $\Rightarrow$  130 rules
  - > Random probabilities attached to the rules

| Algorithm | kld  | Palindromes (%) | Non palindromes (%) |
|-----------|------|-----------------|---------------------|
| VS        | 6.00 | 1.9             | 98.1                |
| Ю         | 1.88 | 76.0            | 24.0                |

# Combination of N-Grams and PCFG for LM [Benedi 05]

$$\Pr(w) = \Pr(w_1 \dots w_n) = \prod_{k=1}^n \Pr(w_k | w_1 \dots w_{k-1})$$

$$\Pr(w) = \prod_{k=1}^{n} \Pr(w_k | w_{k-n+1} \dots w_{k-1})$$

$$\Pr(w_k|w_1...w_{k-1}) = \alpha \Pr_N(w_k|w_{k-n+1}...w_{k-1}) + (1-\alpha) \Pr_{M_s}(w_k|w_1...w_{k-1})$$

 $ightharpoonup M_s$ : a PCFG  $G_c$  of categories (PoS tags) and a word-category distribution  $C_w$ 

$$\Pr_{G_c,C_w}(w_k|w_1\ldots w_{k-1})$$

### 5.5 Use of PCFG for LM

# WSJ Experiments

> WSJ characteristics:

| Data set               | Directories | No. of senten. | No. of words    |
|------------------------|-------------|----------------|-----------------|
| Training (full)        | 00-20       | 42,075         | 1,004,073       |
| Training ( $\leq 50$ ) | 00-20       | 41,315 (98,2%) | 959,390 (95,6%) |
| Tuning                 | 21-22       | 3,371          | 80,156          |
| Test                   | 23-24       | 3,762          | 89,537          |

- $\triangleright$  Vocabulary (Training) 10,000 more frequent words
- > 3-Gram model: (linear discounting)
  - Tuning set perplexity: 160.3;
  - Test set perplexity: 167.3;

## 5.5 Use of PCFG for LM

# Test set perplexity

| Model       | Pe      | rplexity     | 0/ :          |
|-------------|---------|--------------|---------------|
| Model       | Trigram | Interpolated | % improvement |
| [Chelba 00] | 167.1   | 148.9        | 10.9          |
| [Roark 01]  | 167.0   | 137.3        | 17.8          |
| IOb         | 167.3   | 142.3        | 14.9          |

## WER

| Model             | Training<br>Size | Vocabulary<br>Size | LM<br>Weight | WER  |
|-------------------|------------------|--------------------|--------------|------|
| [Chelba 00]       | 20M              | 20K                | 16           | 13.0 |
| [Roark 01]        | 1M               | 10K                | 15           | 15.1 |
| Treebank trigram  | 1M               | 10K                | 5            | 16.6 |
| No language model |                  |                    | 0            | 16.8 |
| Current model     | 1M               | 10K                | 6            | 16.0 |

### SYNTACTIC APPROACHES FOR NLP

### Index

- 1 Introduction to the problem
  - 1.1 Introduction
  - 1.2 HMM and PoS Tagging
  - 1.3 PCFG and Parsing
  - 1.4 PCFG for Language Modeling
- 2. Preliminaries on HMM
  - 2.1 Notation and definitions
  - 2.3 Fundamental algorithms
- 3. Probabilistic estimation of HMM
  - 3.1 Introduction
  - 3.2 Baum-Welch algorithm
  - 3.3 Viterbi algorithm
  - 3.4 Use of HMM for PoS tagging

- 4. Preliminaries on PCFG
  - 4.1 Notation and definitions
  - 4.2 Basic probabilistic properties of syntactic models
  - 4.3 CKY-based parsing algorithms
- 5. Probabilistic estimation of PCFG
  - 5.1 Introduction
  - 5.2 Inside-Outside algorithm
  - 5.3 Viterbi algorithm
  - 5.4 Probabilistic properties of the estimated PCFG
  - 5.5 Use of PCFG for LM
- 6. Advanced topics
  - 6.1 On-line learning of syntactic models
  - 6.2 Active learning of syntactic models
  - 6.3 Interactive-predictive parsing: a framework for active learning

### 6.1 On-line learning of syntactic models

# Problem definition |Liang 09|:

 $\triangleright$  Probabilistic model:  $p(\mathbf{x}, \mathbf{z}; \theta)$ 

Input:  $\mathbf{x}$  (a sentence) Hidden output: z (a parse tree) Parameters:  $\theta$  (rule probabilities)

 $\triangleright$  Given a set of unlabeled example  $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ , maxime the marginal log-likelihood:

$$l(\theta) = \sum_{i=1}^{n} \log p(\mathbf{x}^{(i)}; \theta)$$

 $\triangleright$  Evaluation of the trained model  $\widehat{\theta}$ : accuracy

true output 
$$\mathbf{z}^{(i)} \leftrightarrow \arg\max_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}^{(i)};\theta)$$

Training algorithm: EM algorithm [Dempster 77, Neal 98, Cappé 09]

# EM algorithm [Liang 09]:

#### Batch EM

```
\mu \leftarrow \text{initialization}
for each iteration t = 1, \ldots, T:
    \mu' \leftarrow 0
    for each example i = 1, \ldots, n:
        s_i' \leftarrow \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}^{(i)}; \theta(\mu)) \ \phi(\mathbf{x}^{(i)}, \mathbf{z})
       \mu' \leftarrow \mu' + s_i'
\mu \leftarrow \mu'
```

#### Stepwise EM

```
\mu \leftarrow k = 0 initialization
for each iteration t = 1, \ldots, T:
   for each example i = 1, \ldots, n in
   random order:
       s_i' \leftarrow \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}^{(i)}; \theta(\mu)) \ \phi(\mathbf{x}^{(i)}, \mathbf{z})
       \mu \leftarrow (1 - \eta_k)\mu + \eta_k s_i'
       k \leftarrow k+1
```

- $\rightarrow \phi(\mathbf{x}, \mathbf{z})$ : mapping from a labelled example  $(\mathbf{x}, \mathbf{z})$  to a vector of sufficient statistics  $(\mu)$
- $> \theta(\mu)$ : maximum likelihood estimate
- > Stepwise EM: convergence is guaranteed if  $\sum_{k=0}^{\infty} \eta_k = \infty$  and  $\sum_{k=0}^{\infty} \eta_k^2 < \infty$ 
  - $-\eta_k = (k+2)^{-\alpha}$  with  $0.5 < \alpha \le 1$
  - Approach: take m examples at once

# Palindrome language (15 random initializations, $\alpha = 0.5$ )



# Palindrome language (15 random initializations, $\alpha = 0.6$ )



# Palindrome language (15 random initializations, $\alpha = 0.5$ , confidence interval)



# 6.2 ACTIVE LEARNING OF SYNTACTIC MODELS

## Problem definition:

- ightharpoonup Supervised learning: (x, y)
  - x: input data (sentence)y: label (parse tree)



- > Problem: to annotate data is slow and expensive
- > Active learning: to annotate just the necessary data

# Pool-based active learning [Settles 08, Settles 10]:

```
Given: Labeled set \mathcal{L}, unlabeled pool \mathcal{U},
            query strategy \phi(), query batch size B
repeat
       // learn a model using the current {\cal L}
       \theta = \mathsf{train}(\mathcal{L})
       for b = 1 to B do
               // query the most informative instance
               \mathbf{x}_b^* = \arg\max_{\mathbf{x} \in \mathcal{U}} \phi(\mathbf{x})
               // move the labeled query from {\cal U} to {\cal L}
               \mathcal{L} = \mathcal{L} \cup \langle \mathbf{x}_b^*, \mathsf{label}(\mathbf{x}_b^*) \rangle
               \mathcal{U} = \mathcal{U} - \mathbf{x}_h^*
       end
until some stopping criterion
```

> Similar scheme for parsing in [Hwa 04]

## 6.2 ACTIVE LEARNING OF SYNTACTIC MODELS

# Query strategies:

- Uncertainty sampling: to query the instance that is most uncertainty how to label
  - > Sequence entropy:

$$\phi^{SE}(\mathbf{x}) = -\sum_{\widehat{\mathbf{y}}} P(\widehat{\mathbf{y}}|\mathbf{x}; \theta) \log P(\widehat{\mathbf{y}}|\mathbf{x}; \theta)$$

 $\triangleright$  Approach: N-best Sequence entropy:

$$\phi^{\textit{NSE}}(\mathbf{x}) = -\sum_{\widehat{\mathbf{y}} \in \mathcal{N}} P(\widehat{\mathbf{y}}|\mathbf{x}; \theta) \log P(\widehat{\mathbf{y}}|\mathbf{x}; \theta)$$

Information density: to query the instance that is the most "informative" in average

$$\phi^{ID}(\mathbf{x}) = \phi^{NSE}(\mathbf{x}) \times \left(\frac{1}{U} \sum_{u=1}^{U} \text{sim}(\mathbf{x}, \mathbf{x}^{(u)})\right)^{\beta}$$

# 6.2 ACTIVE LEARNING OF SYNTACTIC MODELS

# Query strategies for parsing [Hwa 04]:

- > Problem space:
  - > Based on novelty and frequencies of word pair co-occurrences
  - $\triangleright$  Based on sentence length:  $f_{len}$
- > Performance of the hypothesis:
  - > Error-driven function:

$$f_{\text{err}}(\mathbf{w}, G) = 1 - P(\widehat{d}_{\mathbf{w}} | \mathbf{w}, G)$$

 $\triangleright$  Normalized tree entropy (similar to  $\phi^{SE}(\mathbf{x})$ ):  $f_{\text{unc}}$ 

# Experiments on WSJ UPenn Treebank reported in [Hwa 04]:

- Collins' model 2 parser
- Learning algorithm: statistics directly over the treebank
- Data:
  - > Training: sections 02-21
  - > Test: section 23
- > Initial model trained on 500 sentences
- > Batch size: 100
- $\triangleright$  Parsing performance: F score

# Number of labelled samples at the test performance level of 88%:

|                | $f_{ m ran}$ | $f_{ m len}$  | $f_{ m err}$  | func          |
|----------------|--------------|---------------|---------------|---------------|
| # sentences    | 30,500       | _             | 20,500 (33%)  | 17,500 (43%)  |
| # constituents | 695,000      | 625,000 (10%) | 577,000 (17%) | 505,000 (27%) |

#### 6.3 IPP: A FRAMEWORK FOR ACTIVE LEARNING

Problem definition [Sánchez 09, Sánchez 10]: Annotation parse tree is expensive and requires skilled expert humans

- Classical two-step approach:
  - 1 Apply an automatic system
  - 2 Manually validate/correct the output



## 6.3 IPP: A FRAMEWORK FOR ACTIVE LEARNING

- > Interactive Predictive approach:
  - > Formally integrate the user into the recognition process
  - > The system reacts to user feedback



- New opportunities:
  - > Feedback information can be used to create efficient interactive systems
  - > Each interaction step yields ground-truth data, which allows building active learning systems

## Classical parsing

# Interactive predictive parsing

$$\widehat{t} = \arg\max_{t \in \tau} p_G(t|x)$$

$$\widehat{t} = \arg \max_{t \in \mathcal{T}: t_p \in t} p_G(t|x, t_p)$$

 $x \rightarrow \text{input sentence}$ 

 $G \rightarrow \mathsf{mode}$  (e.g. PCFG)

 $\mathcal{T} \rightarrow \text{ set of all possible trees for } x \text{ with } G$ 

 $\widehat{t} \rightarrow \text{ obtained parse tree}$ 

# The tree prefix $t_p$ is:

- > the corrected constituent, plus
- > all its ancestors, plus
- > all the constituents to its left

$$t_p(c_{ij}'^A) = \{c_{mn}^B : m \leq i, n \geq j, \mathsf{depth}(c_{mn}^B) \leq \mathsf{depth}(c_{ij}'^A)\} \cup \{c_{pq}^D : p \geq 1, q < i\}$$

# 6.3 IPP: A FRAMEWORK FOR ACTIVE LEARNING

# IPP parsing

- The system propose a parse tree  $\widehat{t}$
- The user finds an incorrect constituent c and corrects it, implicitly validating the prefix tree  $t_p(c)$
- The system propose a parse tree  $\hat{t}'$  taking into account the prefix tree  $t_p(c)$
- 4. Go to step 2
- The user keeps iterating until an error free parse tree is achieved

# Example:



# Experiments [Sánchez 09]:

- > Experiments were performed using the WSJ Treebank and a modified CYK parser
- Vanilla CNF PCFG obtained from sections 02-21. Test set: section 23
- The system simulates user interaction:
  - 1. Explore the proposed tree and find the first wrong constituent
  - 2. Replace it with the correct gold constituent
  - 3. Perform the predictive step (obtain new tree)
  - n. Repeat until the gold tree is achieved

#### **Evaluation and results:**

- > Tree Constituent Error Rate (TCER): Normalized edit distance between the proposed parse tree and the gold tree
  - → User effort when manually postediting the erroneous tree
- Tree Constituent Action Rate (TCAC): Ration of user constituent corrections performed to obtain the reference tree using the IPP system
  - → User effort when using the IPP system

| PCFG     | Baseline |      | IPP  | RelRed |
|----------|----------|------|------|--------|
|          | $F_1$    | TCER | TCAC | ReiRea |
| h=0,v=1  | 0.67     | 0.40 | 0.22 | 45%    |
| h=0,v=2  | 0.68     | 0.39 | 0.21 | 46%    |
| h=0, v=3 | 0.70     | 0.38 | 0.22 | 42%    |

# IPP-ANN tool: http://cat.iti.upv.es/ipp/

#### Parser server

- Custom Viterbi implementation
- Using PCFG in CNF
- > Allows requesting subtrees with
  - > a root span
  - > a complete root constituent

#### Parser client

- Light Web-client using Flash plugin
- Decodes user feedback
- Requests subtrees to the parse server based on user corrections

#### Communication

- Client-server communication via sockets
- Using a library specifically tailored for interactive predictive applications

- [Aho 72] A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling. Volumen I: parsing. Prentice-Hall, 1972.
- Baum 72 L.E. Baum. An inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes. Inequalities, 3:1-9, 1972.
- [Benedi 05] J.M. Benedí and J.A. Sánchez. Estimation of stochastic context-free grammars and their use as language models. Computer Speech and Language, 19(3):249-274, 2005.
- Booth 73 T.L. Booth and R.A. Thompson Applying Probability Measures to Abstract Languages. IEEE Transactions on Computers, 22(5):442-450, May 1973.
- [Cappé 09] O. Cappé and E. Moulines. Online Expectation-Maximization Algorithm for Latent Data Models, Journal of the Royal Statistics Society: Series B (Statistical Methodology), 71, 2009
- [Chelba 00] C. Chelba and F. Jelinek. Structured language modeling. Computer Speech and Language, 14:283-332. 2000.
- [Dempster 77] A.P. Dempster, N.M. Laird and D.B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39 (1)::1-38, 1977.
- [Hwa 04] R. Hwa. Sample Selection for Statistical Parsing. Computational Linguistics, 30(3):253-276, 2004.
- [Lari 90] K. Lari and S.J. Young. The Estimation of Stochastic Context-Free Grammars using the Inside-Outside Algorithm. Computer Speech and Language, 4:35-56, 1990.

- [Liang 09] P. Liang and D. Klein. *Online EM for Unsupervised Models*. Proc. 10th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL HLT), June, 2009, 611-619.
- [Maryanski 79] F.J. Maryanski and M.T. Thomason. Properties of stochastic syntax-directed tranlation schemata. Journal of Computer and Information Sciences, 8(2):89-110, 1979.
- [Merialdo 94] B. Merialdo. Tagging English Text with a Probabilistic Model. Computational Linguistics, 20(2):155-171, 1994.
- [Neal 98] R. Neal and G. Hinton A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models, 355-368, 1999.
- [Ney 91] H. Ney. Dynamic Programing Parsing for Context-Free Grammars in Continous Speech Recognition. IEEE Trans. Signal Processing, 39(2):336-340, 1991.
- [Pereira 92] F. Pereira and Y. Schabes. *Inside-outside reestimation from partially bracketed corpora*. Proceedings of the 30th Annual Meeting of the ACL, 128-135, 1992.
- [Roark 01] B. Roark. Probabilistic Top-Down Parsing and Language Modeling. Computational Linguistics, 27(2):249-276, 2001.
- Sánchez 97 J.A. Sánchez and J.M. Benedí. Consistency of Stochastic Context-Free Grammmars from Probabilistic Estimation Based on Growth Transformation. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(2):1052-1055, 1997.

- Sánchez 09 R. Sánchez-Sáez, J.A. Sánchez and J.M. Benedí. *Interactive predictive parsing*. In Proceedings of the 11th International Conference on Parsing Technologies (IWPT'09), 222-225, Paris, France, 2009.
- Sánchez 10a R. Sánchez-Sáez, L. Leiva, J.A. Sánchez and J.M. Benedí. *Interactive Predictive Parsing* using a Web-based Architecture. Proceedings of the NAACL HLT 2010 Demonstration Session, 37-40, Los Angeles, California, 2010.
- Settles 08 B. Settles and M. Craven. An Analysis of Active Learning Strategies for Sequence Labelling Tasks, Empirical Methods in Natural Language Processing (EMNLP), 1069-1078, 2008.
- [Settles 10] B. Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2010.
- Stolcke 95] A. Stolcke. An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities. Computational Linguistics, 21(2):165-200, 1995.
- [Vidal 05a] E. Vidal and F. Thollard and C. de la Higuera, F. Casacuberta and R. Carrasco *Probabilistic* finite-state machines - Part I. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7):1013-1025, 2005.
- [Vidal 05b] E. Vidal and F. Thollard and C. de la Higuera, F. Casacuberta and R. Carrasco *Probabilistic* finite-state machines - Part II. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7):1025-1039, 2005.
- [Wetherell 80] C.S. Wetherell. Probabilistic Languages: A Review and some Open Questions. Computing Surveys, 12(4):361-379, 1980.

# APPENDICES

A growth transformation can be defined as:

$$\overline{p}(A \to \alpha) = \frac{p(A \to \alpha) \left(\frac{\partial \Pr_{G_s}(\Omega, \Delta_{\Omega})}{\partial p(A \to \alpha)}\right)_p}{\sum_{i=1}^{n_A} p(A \to \alpha_i) \left(\frac{\partial \Pr_{G_s}(\Omega, \Delta_{\Omega})}{\partial p(A \to \alpha_i)}\right)_p}$$

#### Numerator:

$$p(A \to \alpha) \left( \frac{\partial \Pr_{G_s}(\Omega, \Delta_{\Omega})}{\partial p(A \to \alpha)} \right)_p = \Pr_{G_s}(\Omega, \Delta_{\Omega}) \sum_{x \in \Omega} \frac{p(A \to \alpha)}{\Pr_{G_s}(x, \Delta_x)} \left( \frac{\partial \Pr_{G_s}(x, \Delta_x)}{\partial p(A \to \alpha)} \right)_p$$

$$= \Pr_{G_s}(\Omega, \Delta_{\Omega}) \sum_{x \in \Omega} \frac{p(A \to \alpha)}{\Pr_{G_s}(x, \Delta_x)} \sum_{\forall d_x \in \Delta_x} \left( \frac{\partial \Pr_{G_s}(x, d_x)}{\partial p(A \to \alpha)} \right)_p$$

$$= \Pr_{G_s}(\Omega, \Delta_{\Omega}) \sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x, \Delta_x)} \sum_{\forall d_x \in \Delta_x} \Pr(A \to \alpha, d_x) \Pr_{G_s}(x, d_x)$$

#### **Denominator:**

$$\sum_{i=1}^{n_A} p(A \to \alpha_i) \left( \frac{\partial \Pr_{G_s}(\Omega, \Delta_{\Omega})}{\partial p(A \to \alpha_i)} \right)_p =$$

$$= \Pr_{G_s}(\Omega, \Delta_{\Omega}) \sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x, \Delta_x)} \sum_{\forall d_x \in \Delta_x} \sum_{i=1}^{n_A} N(A \to \alpha_i, d_x) \Pr_{G_s}(x, d_x)$$

$$= \Pr_{G_s}(\Omega, \Delta_{\Omega}) \sum_{x \in \Omega} \frac{1}{\Pr_{G_s}(x, \Delta_x)} \sum_{\forall d_x \in \Delta_x} N(A, d_x) \Pr_{G_s}(x, d_x).$$

## Appendix B

ightharpoonup Let  $A \to BC$  in a position delimited by integers i, j, k,  $1 \le i \le k < j \le |x|$ 



- $ightharpoonup \Delta_{x,i,j,k,A\to BC}\subseteq D_x$ : subset of derivations of x in which the rule  $A\to BC$  appears delimited by positions i, j, k
- $\geq \Delta_{x,i,j,A}$ : subset of derivations of x in which the non-terminal A appears delimited by positions i, j

## Appendix B

# Appendix C

# EM algorithm [Neal 98]:

E step: Compute a distribution  $\widetilde{p}^{(t)}$  over the range of **Z** such that  $\widetilde{p}^{(t)}(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \theta^{(t-1)})$ 

M step: Set  $\theta^{(t)}$  to the  $\theta$  that maximizes  $E_{\widetilde{p}^{(t)}}[\log p(\mathbf{x}, \mathbf{z}; \theta)]$