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Top Ten Algorithms in Data Mining
As voted

1. C4.5 (61 votes)

2. K-Means (60 votes)

3. SVM (58 votes)

4. Apriori (52 votes)

5. EM (48 votes)

6. PageRank (46 votes)

7. AdaBoost (45 votes), kNN (45 votes), Näıve Bayes (45 votes)

8. ” (tie)

9. ” (tie)

10. CART (34 votes)

http://www.cs.uvm.edu/∼icdm/algorithms/index.shtml
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Probabilistic Tools
Recap from previous days

1. Probability space, events, random variables;

mostly discrete spaces;

always benign measurability situations;

ex: petal length 1.234cm or 1.234000001cm?

the difference is about one fourth of the Bohr radius,

the average radius of a hydrogen atom;

2. Conditional probability;

3. Bayes Theorem;

4. Independence;

5. Expectation;

E [
∑

i αi ∗ Xi ] =
∑

i (αi ∗ E [Xi ]);

6. Empirical frequencies as approximate probabilities.
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Partial Implication
Implications with a few exceptions

In propositional logic, A ⇒ B does not allow exceptions.

In Data Mining we need to.

And there is no agreement at all about how to do it.

I Support: number of observations in which event X holds:
supp(X ).

I Normalized support approximates empirically the probability:
Pr(X ) ≈ supp(X )

n .

I Confidence: empirical approximation to the conditional
probability:

conf(X → Y ) =
supp(XY )

supp(X )



Confidence
Pros and cons

In favor:

I Quite natural.

I Easy to explain to an educated user.

Handle with care:

I High confidence is compatible with negative correlation.

I Normalization solves the problem but introduces another one:
symmetry;

I we want confidence to measure an asymmetric notion of
partial implication;

I large repertory of alternative measures.
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Knowledge Discovery in Data
The process (U Fayyad, 1996)



Knowledge Discovery in Data
The process (U Fayyad, 1996)

1. Selection of data to process,

2. Preprocessing,

3. Transformation,

4. Modeling, with the obtention of models o patterns

5. Validation, interpretation, deploy of the models obtained.

Modeling (Data Mining for some) allows for ML algorithmics:
I K-means,
I EM,
I MAP,
I Näıve Bayes. . .
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CRISP-DM
A more common, industry-designed diagram (1996 as well)



Preprocessing and Transformation
Conceptually trivial. . . but. . .

Data formed by n observations:

The choice of algorithm (or even of implementation) will dictate a
data format. . . and an encoding!

I Relational: like an SQL table (arff, csv);

I Transactional: set of sets of items (binary attributes);

I Binary Transactional: idem, as bit-vectors (arff, csv);

I Relational Transactional: a relational form that contains the
same information as the transactional data (csv).

Inequivalent: some transformations lose information.

Tiny stones in your shoes:
I column headers? row identifiers?
I separator: comma? whitespace? semicolon?
I a space or comma somewhere amid the data?
I an end-of-file character amid the data?



Aim
Of a Knowledge Discovery in Data process

Most data has “low sophistication”.

Data Mining

activites attempt at finding “more sophisticated views” of the
available data, which must be

I correct,

I novel, and

I actionable,

by extracting nontrivial information that is implicit in the data.

All three conditions are rather difficult to make precise.

Connections to Machine Learning, Databases, Statistics. . .

Remark:
Eclecticism!

I Data is a sample of something? Data is everything there is!

I Does it sort of looks like it works? Get it on board!
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Human Interpretation versus Reality
Truth has the bad habit of being utterly complicated

Language

Our great advantage!

I Comunication among different persons (or the same person in
different moments),

I Memorization,

I Creation (and, in particular, colective creation),

I Decision making towards a goal. . .

Our linguistic ability gives us an abstraction capability with
important advantages as of the efficiency of our interaction with
reality.

Humans are almost constantly constructing models.



Models
Everywhere!

I Current reality, potential future reality:

This building, an adder (electronic circuit), a symphony, a
software system. . .

I Models:

A building’s blueprints, a circuit diagram, a music score, a set
of UML specifications. . .

Modeling language:

verbal, written, or graphic (or. . . ) convention;

goal-dependent!
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Why Models?
Tools to help human comprehension

Model:
Expression of a

I simplified but

I expectedly useful

description of actual or potential facts.

Ingredients:
I Conceptualization of reality.
I Invention allowed.
I Observations, in varying degree of faithfulness.

The Data Mining process aims at modeling on the basis of
observations (data) about an existing and complicated reality.



Why Models in Data Mining?
It became a business!

Goal:
A (most often) monetary or (sometimes) human advantage.

I Attain it through successful predictions, at least partially.
I Predicting at random does not bring any advantage: anyone

can do it. We want to do better!
I Predict on the basis of “something”.
I Do we happen to have some data available?
I Do we happen to have all the data available?
I Does it suffice to have data?

I Uncertainty is a crucial ingredient!

Many endeavors invented to handle incertitude; here we follow
more or less classical probability theory and statistics.

I Inductive biases are crucial as well.

Data has all rights to mean nothing. Our assumption that
they do influences the process.
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Risks
Let’s be careful about

Main mistake in Data Mining:

Not enough data!

I Analyzing the data or torturing it?
I A misconception that sometimes arises:

If we have less data, we will find less information.

Wrong!
If we have less data, we will find more information!
Just that it will be less true!

I “Let’s just find the algorithm that works for our data.”
I Be careful with “mental overfitting”.
I Find out and learn about Wolpert’s “No free lunch theorem”.
I Trying to work on the data with no explicit biases simply hides

from us our biases.

Nowadays we start having sometimes “decent” dataset sizes...
...and the problem becomes to process them.
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Taxonomy of Modeling Tools in Data Mining
Careful: not universal

I Descriptive Models:
I Clustering,
I Association.

I Predictive Models:
I Classification (Discrimination): non-numeric, unstructured

prediction space
I Categorization and Multiclassification: non-numeric, structured

prediction space
I Ranking: non-numeric prediction on a total ordering
I Regression (Interpolation): numeric prediction space

I Linear,
I Polynomial,
I . . .



Geometry
An important scale

Machine Learning and Data Mining models employ “geometry” to
very varying degrees.

I No geometry at all:
I PAC Learning, most of Query Learning,
I Propositional Logic and variants (association rules),
I Basic probabilistic models.

I Some geometry (somewhat algebraic):
I Parametric views versus parameter-free views;
I Shows up when we indulge in “continuity assumptions”:

“close” observations should be “treated similarly”.
I Brings the great power of linear algebra in:

can perform wonders, such as working in infinite-dimensional
spaces where any single vector would never fit the memory of a
finite computer;

I but: must come up with a sensible notion of distance that
makes the continuity assumption sensible.
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Clustering
Computer-achieved abstraction

Group observations:

Make up your mind about how to “see” the observations in your
dataset grouped together.

I Treat similar cases similarly

(e. g. marketing campaigns);

I Identify “approximately common” characteristics of
population segments;

I Get a more succinct explanation of what is in your data

such as representing each “cluster” by a single point.



Clustering Methods
Starring K-Means and Expectation-Maximization

Besides K-Means and EM, there are many more:

K-medoids, PAM, CLARANS, CobWeb, BIRCH, Chameleon,
DBSCAN, OPTICS . . .

I Spectral Clustering,

I Biclustering and Conceptual Clustering,
I Hierarchical Clustering

I agglomerative
I divisive

But, ¿what is this “clustering” really? Why so many different
algorithms?
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Clustering Intuitions
To keep in mind and keep re-interpreting

Optimize

some sort of objetive function in such a way that we get
I “short distances within” each cluster

(Main condition that observations within the same cluster
“look alike”),

I “long distances between” clusters

(Secondary condition that observations lying in different
clusters “do not look alike”).



A Formal Approach
Trying to define “clustering”

Kleinberg axioms:

A very interesting proposal.

I Scale invariance: Where each observation lies matters, but not
the unit length.

I Richness: No clustering is externally forbidden “a priori”.

I Consistency: Reducing intra-cluster distances and/or enlarging
inter-cluster distances does not change the clustering.
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inter-cluster distances does not change the clustering.

Theorem
No clustering algorithm at all can achieve all three properties.

Choose your favorite target for disbelieving; it is easy now, that is
“afterwards”. . .

¿What are the reasonable axioms then?

(Ben-David and others’ work).
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K-Means: Goal
Minimize the squared error

Geometry (working hypothesis):

Euclidean distance on the reals (parametric in disguise!).

I Data: n real vectors xi , positive integer k;

I want: to split them into k clusters Cj ;

I we will pick a real vector cj representing each cluster Cj

(its centroid);

I we want to minimize the average squared error:
1

n

∑
j

∑
xi∈Cj

d(xi , cj)
2

Note:
We do not require the cj to be among the xi .

Bad news: Utterly infeasible

Complexity theorists say: NP-hard.
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K-Means: Partial Approach
Let’s think a bit more about it

If heavens would give us the centroids:

Then, constructing the clusters is easy: each point to its closest
centroid, as otherwise the error increases.

If heavens would give us the clusters:

Then, finding the centroids is easy: minimize
∑

xi∈C d(xi , c)2, by
forcing the derivative to zero; each centroid is set at the mass
center of its cluster, as otherwise the error increases.
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K-Means: HowTo
Stage-wise approximation

We alternate
among the two things we know how to do, starting from k initial
centroid candidates:

I recompute the clusters,

I recompute the centroids,

I repeat.

Initial candidates:

I Random?

I One random, then further data points each as far as possible
from the previous ones?

I Often advisable: try several runs!

We will be revisiting K-Means in the afternoon.
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Probabilistic Prediction
Probability-based predictive models

Context:
Classification.

I Relational data:
I structured in tuples of attribute/value pairs.

I To predict: the value of one chosen “class” attribute.

I Probabilistic prediction in a merely frequentist sense:
counting;

I when is the prediction to be issued?

I before seeing anything? “a priori” predictor: the most common
value for the class (ZeroR predictor);

I after seeing all values for all non-class attributes?
“a posteriori” predictor: the most common value for the class,
conditioned to the values seen
(MAP predictor, for “maximum a posteriori”).

arg maxC{Pr(C |A1 . . .An)}
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MAP Prediction
Unfortunately infeasible

A small case:
Task of binary classification:

I Assume ten attributes with four values each;

I Then we need to store 220 conditional probabilities;

I and we need to estimate 220 conditional probabilities.

Rule of thumb:
Ten or more observations per parameter to estimate might be still
far from sufficient, but are necessary anyway; with less, don’t even
dream.

However,
we will see in the lab a successful application of MAP.
(But I will be cheating!)
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Conditional Independence Assumption
One way out

Bayes rule

Applied to arg maxC{Pr(C |A1 . . .An)}:

Pr(C |A1 . . .An) =

Pr(A1 . . .An|C ) ∗ Pr(C )/Pr(A1 . . .An)

We can forget about the divisor, as it is the same for all values of
C and does not modify the max.

Now we assume independence conditioned to the class value:

Pr(A1 . . .An|C ) ∗ Pr(C ) =

Pr(A1|C ) ∗ . . . ∗ Pr(An|C ) ∗ Pr(C )



Näıve Bayes
Rather good for such a simple approach

Precompute Pr(Ai |C ) for each value of each attribute conditioned
to the class value; do it through the empirical frequency.

Instead of predicting

arg maxC{Pr(C |A1 . . .An)},

we predict

arg maxC{Pr(A1|C ) ∗ . . . ∗ Pr(An|C ) ∗ Pr(C )}

Variant: the “Laplace correction” makes up for cases that might
be potentially missing; some tools (like Weka) apply it (without
warning).



Predictor Evaluation
Simplest case first: binary accuracy

Confusion matrix
(also known as Contingency matrix):

I True positives (positive prediction, hit)

I False positives (positive prediction, fail: false alarm)

I True negatives (negative prediction, hit)

I False negatives (negative prediction, fail)

Warning:
Note that our reference to the true label is only indirect.

Simple generalization to an n × n confusion matrix if the problem
at hand consists of n class values.

Accuracy, hit ratio:

Number of hits divided by total number of predictions.

We see the accuracy of Näıve Bayes on some examples.



Further Predictor Evaluation
Sometimes accuracy is insufficient

Alternative quantities:

I Confidence of “positive label” ⇒ “positive prediction”:

Sensitivity (recall in IR): ratio of true positives to all positively
labeled cases;

I Confidence of “positive prediction” ⇒ “positive label”:

Precision: ratio of true positives to all positively predicted
cases;

I Confidence of “negative label” ⇒ “negative prediction”:

Specificity: ratio of true negatives to all negatively labeled
cases.

Exercise:
Express accuracy as a linear combination of sensitivity and
specificity, and interpret the weights.



ROC Space
Predictors lead to points in ROC space

Consider the unit square:

Top left will mean performing quite well.
I The x coordinate is the false positive rate: the ratio of false

positives to negative labels (1 minus the specificity).

(Specificity backwards.)

I The y coordinate is the true positive rate: ratio of true
positives to positive labels (the sensitivity).

Exercise:
Find the intuitive meaning of various regions of ROC space:

I Half-square below the main diagonal,

I around the center,

I near the corners...



ROC space and ROC curves
The curve is formalized in a minute



Towards ROC Curves
Some predictors provide further information

Ranked predictions:

Predictors that may “bet” on pairs of observations, effectively
sorting them.

I For instance, MAP and Näıve Bayes have several options:
I Higher probability for the “positive” class value;
I Larger difference of probabilities with respect to other class

values;

I Regression-based predictors inherit the real line ordering;

I Information Retrieval algorithms are often able to order
observations according to the expected relevance.



The ROC Curve
For predictors that are able to rank their observations

Tweak the predictor (usually by thresholding or by sorting all the n
observations), so as to classify as negative exactly k points.

ROC curve:
(Receiver/Relative Operating Characteristics).

for each k from 0 to n,

plot the ROC space point corresponding to predicting
negatively to the k lowest-ranked observations.

We get a curve from (0,0), where we reject everything and there
are no false positives, all the way to (1,1) where we accept
everything and there are no false negatives.



Examples of ROC curves
Source: Wikipedia, 2009



The Area Under the ROC Curve, AUC
Fashionable but dangerous

Motivation:
ROC Curves often do not lead to a clear winner among several
choices of a classifier.

I AUC reduces each classifier’s performance on a dataset to a
single number.

I Thus allowing us to compare classifiers.

I However, it corresponds to weighting differently the false
positive errors than the false negative errors,

I and the weights depend on the classifier.

I Thus, we should avoid that usage.

I See Hand (Machine Learning Journal, 2009) for further
explanations and alternatives.
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(Definite) Horn Formulas
Definiteness issues glossed over

Propositional world

Boolean-valued variables.

I Models (binary strings): a Boolean value per variable;
equivalently: the set of variables true in it.

I (Definite) Horn Clause: one single positive disjunct, like
¬a ∨ ¬b ∨ c .

I Equivalent form as implication, like a ∧ b ⇒ c .

I Horn Formula: conjunction of Horn Clauses.

I Implications: (a ∧ b ⇒ c) ∧ (a ∧ b ⇒ c) ≡ (a ∧ b ⇒ c ∧ d).

Main Property

A set of models can be axiomatized by a Horn Formula if and only
if it is closed under intersection.
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Implications, I
A real-life example

Logs from a virtual learning platform

Transactions on propositional variables:

one for each “area” of the course.

announcements, assessments, assignments, contents,
forum, organizer, . . .

I Student’s sessions are logged;

I for each session, we know whether each “area” was visited in
that session;

I therefore each session is a transaction,

I or, equivalently, a propositional model.

Example of an implication:
announcements ∧ assignments ⇒ assessments ∧ organizer

It is again the conjunction of two Horn clauses.
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Implications, II
As a data analysis tool

Implications are a “classic” in the Data Mining field.

Examples from a “Machine Learning abstracts” dataset

descent ⇒ gradient
hilbert ⇒ space

carlo ⇒ monte
monte ⇒ carlo

Example from a “census” dataset

Exec-managerial Husband ⇒ Married-civ-spouse

Algorithms

extract frequent (or frequent closed) sets by either breadth-first
search (apriori), or depth-first search (eclat, charm), or other
schemes to find association rules in them.
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The Logic of Implications, I
A Deductive Calculus

Implications obey the Armstrong inference schemes, originally from
functional dependency analysis in Databases:

I Reflexivity: if Y ⊆ X , infer X ⇒ Y ;

I Augmentation: from X ⇒ X ′ and Y ⇒ Y ′, infer XY ⇒ X ′Y ′;

I Transitivity: from X ⇒ Y and Y ⇒ Z , infer X ⇒ Z .

Soundness and completeness

Using these schemes, one can infer from a set of implications
exactly those implications that become logically entailed by them:
any dataset in which the premises are satisfied must satisfy as well
the conclusions.



The Logic of Implications, II
Optimal Axiomatizations

Given all the implications that hold for a set of models,

I some of them may be redundant (logically entailed);

I taking these out would give an irredundant basis;

I but there may be various ways to reach irredundant bases,

I and they may be of very different sizes.

Minimum-size axiomatizations: the Guigues-Duquenne basis

I a canonical, minimum-size basis for implications;

I equivalent notion in functional dependencies;

I the Horn Query Learning algorithm AFP constructs it.
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Towards Standard Association Rules, I
A relaxed notion of “correctness”

There are reasons to be satisfied with an implication even in the
presence of counterexamples.

I Transmission or keying errors;

I mistakes in filling up forms;

I mixed populations;

I . . .

Partial “approximate” implications that allow for exceptions.



Towards Standard Association Rules, II
Confidence-based framework

“Census” dataset:
Some facts found:

I Husband ⇒ Male

. . . does not hold! (see tuple 7110)

I Similarly, Wife ⇒ Female does not hold either: there are two
tuples declaring Male and Wife.

I Consequence: over sixty full-confidence rules of the form
Husband, SomethingElse ⇒ Male.

I Confidence (and support) thresholds seem insufficient!
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The Danger Of Absolute Confidence Thresholds
But, how to convince everyone else?

Dataset CMC (Contraceptive Method Choice)

A rule of over 10% support and 90% confidence:

near-low-wife-education no-contraception-method

−→
good-media-exposure

But the support of “good-media-exposure” is over 92%.

I The most natural normalization to avoid this problem
(deviation from independence, also called lift) is symmetric.

I Many alternative definitions of X → Y , almost all on the
basis of the supports of X , Y , XY , and X ∩ Y .

I Rich and complex landscape, leading to an “axiomatic” study
of all these alternatives.
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Redundancy in Association Rules, I
A Logic-based view

Standard Association Mining Process

User provides dataset and thresholds for support and confidence,
and gets all rules that hold in the dataset at those levels or higher.

Huge set of rules, growing further for lower thresholds. How to
offer the user a smallish set of output rules?

I Our (rather obvious) proposal of “plain” redundancy: X → Y
is redundant with respect to X ′ → Y ′ if
conf(X → Y ) ≥ conf(X ′ → Y ′) in every dataset.

I A natural variant, closure-based redundancy, reads the same,
but under a condition to share the same closure space.

I That variant offers a way to treat separately implications from
partial rules; implications “sneak in” anyway, and they allow
better summarization through the GD basis.



Redundancy in Association Rules, II
Minimum-Size Bases

Basic antecedent X of Y (with X ⊆ Y ):

I work only among closures: both X and Y must be closed;

I “representative rules” variant: X not necessarily closed;

I confidence of X → Y must be at least γ;

I but falls below γ if either we enlarge Y , or we reduce X .

Basis B∗: X → Y −X for all closed Y and all basic antecedents X
of Y , provided Y − X 6= ∅.

Facts

1. These rules hold with confidence γ,

2. All the rules that hold with confidence γ can be inferred from
these rules plus the implications, and

3. Any alternative set of rules with the same properties has at
least as many rules as this one.



Irredundant Rules for Dataset FIMI pumsb-star
In a couple of alternative formulations



Quantifying absolute novelty
Confidence Width: one of four related notions

For a given support and confidence thresholds

Assume we have run an “association miner”:

Discard redundant rules: we are left just with the basis.

Discarded rules are entailed by the basis.

Each rule left, say R, is not entailed by the others.

This means that the other rules would not suggest that R
passes the confidence threshold, say γ.

But maybe R becomes redundant at a lower confidence!

Let γ′ be the tightest confidence at which R is redundant,
and let’s consider the quotient γ/γ′.
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Low Novelty
Novel, but barely

Suppose:

I The confidence of R is γ.

I Other rules of confidence γ do not entail it.

I Thus, it is irredundant with respect to the rest of the rules
found at confidence γ.

I But, if we had run the process at a confidence slightly lower,
say γ′ < γ, maybe some R ′ would have been found that
entails R.

R only belongs to the basis during the short interval (γ′, γ] of
values for the confidence threshold; γ/γ′ is low.

At its own confidence, it is novel, but really not too much.

Conversely, if any such γ′ is considerably lower, R states novel
information: we only can make it redundant with rules of much
lower confidence, and γ/γ′ is high.
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Confidence Boost
A somewhat more sophisticate variant of confidence width

Counts of association rules from the Adult dataset again, mined at
2.5% support and 75% confidence, with or without a confidence
boost bound.
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Bias and Variance: Intuition
Two sources of prediction error

Variance:
Risk arising from the data.

I Data is seen as a sample;

I different samples may lead to different predictions;

I one cannot rule out the risk that the sample is a particularly
bad one, just due to sheer bad luck;

I it is modeled by variance in the good old statistics sense.

Bias:
Risk arising from your family of hypotheses.

I In a poor family of hypothesis,

even the best one might not be very good.
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Bias and Variance: Formalization
Just a tiny bit

Context:
A prediction task, say regression.

I Value we want to predict, y ;

I Sample s which reveals some information about y ;

I Estimator e(s) that tries to pinpoint y after seeing s.

Variance:
Quadratic average error of e(s) used as estimator of its own
average E [e(s)]: E [(e(s)− E [e(s)])2].

Bias:
Absolute expected error of e with respect to the true target:
|E [e(s)]− y |. (It is independent of s.)

Note the different “scale”:
we will square the bias to compensate for this.
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Error Descomposition
Error is made of bias and variance

Let’s add up variance and bias squared:

E [(e(s)− E [e(s)])2] +

(E [e(s)]− y)2 =

E
[
e(s)2 − 2E [e(s)]e(s) + E [e(s)]2

]
+

E [e(s)]2 − 2yE [e(s)] + y2 =

E [e(s)2]− 2E [e(s)]E [e(s)] + E [e(s)]2 +

E [e(s)]2 − 2yE [e(s)] + y2 =

E [e(s)2]− 2yE [e(s)] + y2 =

E [e(s)2]− E [2y e(s)] + E [y2] = E [e(s)2 − 2y e(s) + y2] =

E [(e(s)− y)2]

They add up to the average quadratic error!

The consequence is that it becomes difficult to “tune manually”
the flexibility of our inductive bias (the hypothesis class).
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Uncertainty Sources
What is really the relationship between data and prediction?

Prediction:
On the basis of the given data, but:

I the data might truly determine the value to be predicted, just
that we don’t know in what way;

I the data might not determine the value to be predicted: case
of extra, inaccessible latent variables;

I the data might not repeat exactly (e.g. reals).

Option: explicit or implicit continuity assumption.

For instance: Näıve Bayes on floats?
Replace the discrete conditional distribution by “something else”.
(Usually a Gaussian — lab later).
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Probability and Likelihood
Two sides of the same coin

Leads to a “heavily parametric” point of view.

Write a function thus:

(m, d , ~y) 7→
∏
i

1

d
√

2π
e−

1
2
(

yi−m

d
)2

1. If you know the parameters, what is the probability?

PrN(m,d)(~y) =
∏
i

1

d
√

2π
e−

1
2
(

yi−m

d
)2

2. If you know instead the data, what can you say about the
likelihood of the parameters? (Does it look like N(m, d) for
“these” m and d?):

L(m, d |~y) =
∏
i

1

d
√

2π
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Nearest Neighbors
The data is the model

Assumption:

Similar observations lead to similar responses.

I Keep all the data in an appropriate data structure;

I Predict the most common response among the k nearest
neighbors of a new observation to predict on.

I Often, the continuity assumption is correct.

I Often, it is not.

I In high dimensions, finding out the k nearest neighbors is
computationally nontrivial.
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Decision Trees
Can you imagine explaining your NB predictor to your boss?

Can we make do by checking a single attribute?

If not. . .

recurse!

I Measure somehow the “heterogeneity” of the observations,
and

I Pick one “test” of the value of an attribute so that the split
reduces the “joint heterogeneity”.

Several variants of this idea (ID3, C4.5, C5.0, CART):

I the prediction follows a decomposition of the input space in
“axis-parallel cuboids”, but

I “tests” can be made in different ways, and

I there are several possible notions of “heterogeneity”.
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Heterogeneity
Shannon information versus Gini index (2-valued case)



Classifier Border Repertory
Class-separaton shapes

I Decision Stumps:
I axis-parallel hyperplanes,

I Decision Trees:
I unions thereof,

I kNN, NB:
I complex shapes. . .

I Linear predictors:
I Separating hyperplanes (not necessarily in the same space!)

I Hard threshold,
I Soft threshold
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A linear separator
In R3: 2x + y − 1



Modern Linear Predictors
SVM

Slogan: maximal margin; don’t get closer to any of the classes
more than absolutely necessary.

Optimization rendering:

Maximize m, under the constraints: yi
(wT x+b)

||w || ≥ m.

(Plus a funny trick on the scaling!)

I Hard margin,

I Soft margin.

Karush/Kuhn/Tucker conditions

from optimization theory tell us valuable info about our predictors.



Maximal-Margin Hyperplane
Intuition of convex hulls fully correct and useful



Kernels
Switch to a richer space

Reproducing Kernel Hilbert Spaces:

Can be obtained through scalar products.

A two-dimensional conic:

w1x
2
1 + w2x

2
2 + wsx1x2 + w4x1 + w5x2 + w6

is the scalar product of the weights (w1,w2,w3,w4,w5,w6) with a
“transformed” input point (x1, x2) a R6:

f (x1, x2) = (x2
1 , x2

2 , x1x2, x1, x2, 1)

(Please compute ((x1, x2)(y1, y2) + 1)2.)



AdaBoost, I
Intent on Improving

One of the two eponyms of ensemble methods

(The other one being bagging).
Both predictors and observations are weighted.

I Construct a weak, simple predictor,

I assign a weight to it,

I update the weights of the observations by increasing it on the
mistakes,

I repeat while the process actually improves.



AdaBoost, II
Some details

For a new predictor h:

I find its weighted error ε

(adding up the weights of the “mistake” observations)

I if ε ≥ 1
2 , discard h and stop;

I reweigh the observations:
I d = 1−ε

ε ;
I multiply by d the weight of correctly predicted observations,
I divide by d the weight of incorrectly predicted observations,

I assign to h weight log d .

Error bound:

e−2
P

( 1
2
−εt)2
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Conclusions
A field full of beautiful and useful ideas

The design and understanding of methods to extract descriptive or
predictive models from data is a difficult but fascinating task.

Main message:

If you join in, try to understand beyond where ideas work.
I Make as many assumptions as you need to do useful work,

as no data analysis process will conceivably work without an
inductive bias,

I but try to be aware of which ones are actually at work,

as sometimes data analysis processes are assuming further than
explicitly assumed,

I and be permanently ready to challenge each and every one of
them.
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Lab Session
Let’s stop talking and start doing

Activities:
Some of them wide open. . .

I Online demos of algorithms, simplified:
I K-Means 2D,
I K-Means “3D”,
I Various predictors 2D.

I Dataset formats.

I Interactive decision trees on Orange; workflows.
I Näıve Bayes alone; Näıve Bayes versus MAP: ROC curves.

I (One example of something not to do!)

I Brief demo of workflow-based Data Mining open source tools.

I Association rules: state of the art and an experimental new
system.



Click Places, then Downloads
Two files

Unzip the two zipped files in different folders.
(Feel free to copy the zipped files to your pendrive.)
Knime can be called by double-clicking on the icon of the binary.
The other folder contains

I a Windows version of Knime,

I example datasets to play with,

I simple python implementations of ROC curves from NB and
MAP,

I the yacaree association rule miner,

I a book on statistical learning,

I these slides,

I and some further materials that could be useful.



Online Demos of Algorithms
Simplified

(Copy and paste from file onlineDemoLinks.txt)

Links to some demo webpages

(You do not need to follow all of them.)
I K-means 2D (two of them, there are quite a few more):

I http://home.dei.polimi.it/matteucc/ . . .
I http://www.paused21.net/off/kmeans/bin/

I K-means 3D in RGB space:
I http://www.leet.it/home/lale/ . . .

I Quadratic kernel idea:
I http://www.youtube.com/watch?v=3liCbRZPrZA (search for

svm on youtube)

I LibSVM (including toy):
I http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

I Locboost demo of 2D predictors on top of Weka:
I http://www.cs.technion.ac.il/˜rani/LocBoost/



Dataset Formats
Relational or Transactional

1. Compare files weather.*

2. Compare files weather.nominal.*

3. Compare files eprints.*

4. Compare files haireyescolor.*

5. Compare files basket*.txt



Open Source Tools
And decision tree demo on Orange

See file toolList.

We demonstrate the Interactive Decision Tree to illustrate the
notion of data mining workflow, pioneered by the commercial tool
Clementine (now IBM’s SPSS).



NB versus MAP
A negative howto

We open program roc.py and adjust the predictor, the dataset file,
and the value of the class attribute.



Open House
Launch KNIME

Re-do on yourself variants of the exercises we made so far,
and/or
pick one or more example datasets and explore them with Knime
at your leisure.
You can also try yacaree on transactional datasets.
Keep calling me when in doubt.
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