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Motivation and Problem Statement
 Motivation

 Scale up Indexing and retrieval of large data collections

 Solution is described in the context of cooperative peers, 
each has its own collection

 Problem Statement
 Find a good approximation of a centralized system for 

answering conjunctive multi-term queries, while keeping 
at a minimum both the number of peers that are contacted 
and the communication cost
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Solution Framework - Indexing
Create small-size per-term local statistics Make all statistics globally available

Use DHT to assign terms to peers

A peer that is responsible for a term 

has the statistics of all other peers 

for that term
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Our Contributions

 A novel per-term statistics based on KMV 

(Beyer et el. 2007) synopses and histograms

 A peer-selection algorithm that exploits the 

above statistics

 An improvement of the state-of-the-art by a 

factor of four
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Agenda

 Collection statistics

 Peer-selection algorithm

 Experiments

 Summary and Future Work
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Per-term KMV Statistics 
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 Keep posting list for each term tj, sorted by increasing score for q=(tj)

 Divide the documents into M equi-width score intervals

 Apply a uniform hash function to the doc ids in each interval and take the l

minimal values

KMV synopses of 

peer Pi for term tj

KMV synopsis for 

interval 5
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Peer-Scoring Functions

 Given a query q=(t1,…,tn) and the statistics of peer Pi

for the query terms, use the histograms to estimate 
the score of a virtual document that belongs to Pi.  
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Peer-Scoring Functions - contd
 Consider the set                                      namely all 

combinations of one KMV synopsis for each query term. 

 The score associated with a KMV synopsis hj, denoted by 
mid(hj), is the middle of the interval that corresponds to that 
synopsis
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KMV-int: The Peer Intersection Score

 Non-emptiness estimator      is true if the intersection of  {h1,…,hn} is not 
empty

 Intersection score -

 If      is true, then we are guaranteed there is a document d with all query 
terms 

 But     can be an underestimate (false negative) especially for queries with 
a large number of terms
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KMV-exp: The Peer Expected Score

 Measures the expected relevance of the documents 

of Pi to the query q
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 Input: q=(t1,…,tn), k (top-k results), K (max number of peers to contact)

 Locate the peers that are responsible for the query terms

 Get all their statistics

A Basic Peer-Selection Algorithm

 Rank the peers using KMV-int and if less than K peers have non-empty 
intersection then rank the rest by KMV-exp

 Select the top-K peers and contact them to get their top-k results

 Merge the returned results and return the top-k
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Algorithm Improvements – Save 

Communication Cost 

 At the query initiating peer 

 Locate the two peers that are responsible for the terms 

with the smallest statistics. Call them      and 

 Forward the query to peer

 At peer       

 Get all statistics from peer 

 Apply KMV-int on the peers in the two lists and obtain a 

set of candidate peers P

 Get the rest of the statistics about q but only for peers in P 
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 In the scoring functions (KMV-int and KMV-exp), 
ignore tuples whose               < min-k

Algorithm Improvements – Adaptive 

Ranking 
 Work in rounds

 In each round contact the next best k’ peers (k’ < K) 

 Obtain a threshold score (min-k) which is the score of the 

last (i.e., k-th) document among the current top-k

 Adaptively rank the remaindered peers

 Define 
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KMV-Peer: The Peer-Selection Algorithm
k – top-k results are requested

k’ – number of peers to contact in each 

iteration

K – max number of peers to contact

Score peers by KMV-int, but 

if less than k’ peers have a 

non-zero score then use 

KMV-exp
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Experimental Setting
 Datasets

 Trec – 10M web pages from Trec GOV2 collection

 Blog – 2M Blog posts from Blogger.com

 Setups
 Trec-10K – 10,000 peers, each having 1,000 documents

 Trec-1K – 1,000 peers, each having 10,000 documents

 Blog – 1,000 peers, each having 2,000 documents

 Queries
 Trec – 15 queries from the topic-distillation track of the TREC 2003 Web Track 

benchmark

 Blog – 75 queries from the blog track of TREC 2008

 Parameters
 l (KMV size), M (num score intervals), G (num groups)

 Evaluation
 Normalized DCG (nDCG), which considers the order of the results in the ground truth 

(i.e., a centralized system) 

 MAP
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KMV-Peer Compared to State-of-the-Art
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Tuning The Parameters of KMV-Peer

Trec-1K Blog
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Testing Different Variants of KMV-Peer

Trec-1K Blog
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Testing Different Scoring Functions

 Lucene    – Apache Lucene score with global synchronization

 BM25      – Okapi BM25 score with global synchronization

 Lucene*  – Lucene score with the parameters (e.g., idf) derived by 

each peer from its own collection

nDCG at K=20
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Conclusions
 We presented a fully decentralized peer-selection algorithm 

(KMV-peer) for approximating the results of a centralized 
search engine, while using only a small subset of the peers 
and controlling the communication cost.

 The algorithm employs two scoring functions for ranking 
peers. The first is the intersection score and is based on a non-
emptiness estimator. The second is the expected score.

 KMV-peer outperforms the state-of-the-art methods and 
achieves an improvement of more than 400% over other 
methods

 Regarding communication-cost, we showed how to filter out 
peers in early stages of the algorithm, thereby saving the need 
to send their synopses.
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Future Work

 Investigate further reductions in 

communication cost by using top-k algorithms 

with a stopping condition

 Consider less restrictive non-emptiness 

estimators (disjunctive queries)
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Thank You!

Questions ?


