



# KMV-Peer: A Robust and Adaptive Peer-Selection Algorithm

Yosi Mass, Yehoshua Sagiv, Michal Shmueli-Scheuer

IBM Haifa Research Lab Hebrew University of Jerusalem





## Motivation and Problem Statement

#### ■ Motivation

Scale up Indexing and retrieval of large data collections

■ Solution is described in the context of cooperative peers,

each has its own collection

### □ Problem Statement

■ Find a good approximation of a centralized system for answering conjunctive multi-term queries, while keeping at a minimum both the number of peers that are contacted and the communication cost





# Solution Framework - Indexing







## Our Contributions

- □ A novel per-term statistics based on KMV
   (Beyer et el. 2007) synopses and histograms
- A peer-selection algorithm that exploits the above statistics
- □ An improvement of the state-of-the-art by a factor of four





## Agenda

- Collection statistics
- □ Peer-selection algorithm
- Experiments
- Summary and Future Work





## Per-term KMV Statistics

- $\square$  Keep posting list for each term  $t_i$ , sorted by increasing score for  $q=(t_i)$
- $\square$  Divide the documents into M equi-width score intervals
- $\square$  Apply a uniform hash function to the doc ids in each interval and take the l minimal values







## Peer-Scoring Functions

Given a query  $q=(t_1,...,t_n)$  and the statistics of peer  $P_i$  for the query terms, use the histograms to estimate the score of a virtual document that belongs to  $P_i$ .



$$score_q(d) = g_{aggr}(score_{t_1}(d), ..., score_{t_n}(d))$$



$$score_q(p_i) = F?(\sigma_{i1},...,\sigma_{in})$$





# Peer-Scoring Functions - contd

- Consider the set  $C = \{h = (h_1, ..., h_n) | h_j \in \sigma_{ij}\}$  namely all combinations of one KMV synopsis for each query term.
- The score associated with a KMV synopsis  $h_j$ , denoted by  $mid(h_j)$ , is the middle of the interval that corresponds to that synopsis



$$score_q(d) = g_{aggr}(score_{t_1}(d), ..., score_{t_n}(d))$$

$$score(\overset{\rightarrow}{h}) = g_{aggr}(mid(h_1),...,mid(h_n))$$





### KMV-int: The Peer Intersection Score



- Non-emptiness estimator  $\overrightarrow{h}_{\cap}$  is true if the intersection of  $\{h_1, \dots, h_n\}$  is not empty
- Intersection score  $score_q^{\cap}(p_i) = \max_{\substack{h \in C \land h \cap}} (score(h))$
- If  $h_{\cap}$  is true, then we are guaranteed there is a document d with all query terms
- But  $h_{\cap}$  can be an underestimate (false negative) especially for queries with a large number of terms





## KMV-exp: The Peer Expected Score

 $\square$  Measures the expected relevance of the documents of  $P_i$  to the query q



$$score_{q}^{E}(p_{i}) = \mid D_{i} \mid \sum_{\overrightarrow{h} \in C} score(\overrightarrow{h}) \Pr(\overrightarrow{h})$$

$$\Pr(\overrightarrow{h}) = \prod_{j=1}^{n} \frac{e(h_{j})}{\mid D_{i} \mid} \text{All docs in peer P}_{i}$$





# A Basic Peer-Selection Algorithm

- Input:  $q=(t_1,...,t_n)$ , k (top-k results), K (max number of peers to contact)
- □ Locate the peers that are responsible for the query terms
- ☐ Get all their statistics

$$t_1 | (P_1, \sigma_{11}), (P_4, \sigma_{41}) |$$
 $t_2 | (P_1, \sigma_{12}), (P_4, \sigma_{42}) |$ 



$$t_n = (P_1, \sigma_{1n}), (P_5, \sigma_{5n}), (P_9, \sigma_{9n})$$



- Rank the peers using KMV-int and if less than K peers have non-empty intersection then rank the rest by KMV-exp
- □ Select the top-K peers and contact them to get their top-k results
- ☐ Merge the returned results and return the top-k





# Algorithm Improvements – Save Communication Cost

- $\square$  At the query initiating peer  $P_q$ :
  - Locate the two peers that are responsible for the terms with the smallest statistics. Call them  $P^{t_f}$  and  $P^{t_s}$
  - Forward the query to peer  $P^{t_s}$
- $\Box$  At peer  $P^{t_s}$ :
  - Get all statistics from peer  $P^{t_f}$
  - Apply KMV-int on the peers in the two lists and obtain a set of candidate peers P
  - Get the rest of the statistics about q but only for peers in P





# Algorithm Improvements – Adaptive Ranking

- □ Work in rounds
  - In each round contact the next best k' peers  $(k' \le K)$
  - Obtain a threshold score (*min-k*) which is the score of the last (i.e., *k-th*) document among the current top-k
  - Adaptively rank the remaindered peers
    - $\square \quad \text{Define } high(h) = g_{aggr}(high(h_1), ..., high(h_n))$



□ In the scoring functions ( $\c KMV$ -int and  $\c KMV$ -exp), ignore tuples whose  $\c high(h) < min-k$ 





## KMV-Peer: The Peer-Selection Algorithm

k – top-k results are requested k' – number of peers to contact in each Algorithm 1 KMV-peer iteration Input:  $q = \{t_1, ..., t_n\}, k, k', K \ge 1$ K – max number of peers to contact 1: locate  $p^{t_1}, \ldots, p^{t_n}$  and get the sizes of their statistics; 2: let  $p^{t_f}$  and  $p^{t_s}$  have the two smallest statistics; 3: switch to  $p^{t_s}$ ; 4: get the statistics about  $t_f$  from  $p^{t_f}$ ; 5:  $P \leftarrow \text{all peers s.t. } score_{\bar{q}}^{\cap}(p) > 0, \text{ where } \bar{q} = \{t_f, t_s\};$ 6: get the rest of the statistics about q for all  $p \in P$ ; 7:  $n \leftarrow 0$ ;  $ct \leftarrow 0$ ;  $res \leftarrow \emptyset$ ; Score peers by KMV-int, but 8: repeat if less than k' peers have a  $P_1 \leftarrow \mathbf{get\text{-}next\text{-}real\text{-}peers}(P, k', ct);$ 9: non-zero score then use  $res \leftarrow top-k(P_1, res);$ 10: **KMV-exp**  $ct \leftarrow \min -k(res);$ 11: 12: remove from P all virtual peers  $p_{(i,q)}$  s.t.  $p_i \in P_1$ ; 13:  $n \leftarrow n+1$ ; 14: until  $(nk' \ge K) \lor (|P_1| < k')$ ; 15: return res





## **Experimental Setting**

#### Datasets

- **Trec** 10M web pages from Trec GOV2 collection
- **Blog** 2M Blog posts from Blogger.com

#### □ Setups

- **Trec-10K** 10,000 peers, each having 1,000 documents
- **Trec-1K** 1,000 peers, each having 10,000 documents
- **Blog** 1,000 peers, each having 2,000 documents

#### □ Queries

- Trec 15 queries from the topic-distillation track of the TREC 2003 Web Track benchmark
- Blog 75 queries from the blog track of TREC 2008

#### □ Parameters

l (KMV size), M (num score intervals), G (num groups)

#### □ Evaluation

- Normalized DCG (nDCG), which considers the order of the results in the ground truth (i.e., a centralized system)
- MAP





## KMV-Peer Compared to State-of-the-Art



#### Communication cost (KBytes)

|          | KMV | $_{ m hist}$ | cdf-ctf/cori |
|----------|-----|--------------|--------------|
| Trec-10K | 233 | 632          | 164          |
| Trec-1K  | 198 | 151          | 23           |
| Blog     | 53  | 110          | 24           |





## Tuning The Parameters of KMV-Peer







## Testing Different Variants of KMV-Peer







## Testing Different Scoring Functions

#### nDCG at K=20

|          | score   | KMV  | hist | cdf-ctf | cori | crcs |
|----------|---------|------|------|---------|------|------|
| Trec-10K | Lucene  | 0.77 | 0.22 | 0.12    | 0.03 | 0.24 |
|          | BM25    | 0.81 | 0.14 | 0.12    | 0.04 | 0.16 |
|          | Lucene* | 0.67 | 0.22 | 0.11    | 0.03 | 0.21 |
| Trec-1K  | Lucene  | 0.66 | 0.21 | 0.12    | 0.09 | 0.29 |
|          | BM25    | 0.69 | 0.18 | 0.13    | 0.11 | 0.23 |
|          | Lucene* | 0.58 | 0.17 | 0.12    | 0.09 | 0.20 |
| Blog     | Lucene  | 0.69 | 0.59 | 0.46    | 0.40 | 0.35 |
|          | BM25    | 0.63 | 0.52 | 0.51    | 0.40 | 0.31 |
|          | Lucene* | 0.62 | 0.54 | 0.44    | 0.37 | 0.27 |

- □ Lucene − Apache Lucene score with global synchronization
- □ BM25 Okapi BM25 score with global synchronization
- □ Lucene\* Lucene score with the parameters (e.g., idf) derived by each peer from its own collection





## Conclusions

- We presented a fully decentralized peer-selection algorithm (KMV-peer) for approximating the results of a centralized search engine, while using only a small subset of the peers and controlling the communication cost.
- The algorithm employs two scoring functions for ranking peers. The first is the intersection score and is based on a non-emptiness estimator. The second is the expected score.
- KMV-peer outperforms the state-of-the-art methods and achieves an improvement of more than 400% over other methods
- Regarding communication-cost, we showed how to filter out peers in early stages of the algorithm, thereby saving the need to send their synopses.





### Future Work

- Investigate further reductions in communication cost by using top-k algorithms with a stopping condition
- □ Consider less restrictive non-emptiness estimators (disjunctive queries)





# Thank You!

Questions?