
Information Retrieval II

David Hawking

30 Sep 2010

Machine Learning Summer School, ANU



Session Outline

I Ranking documents in response to a query

I Measuring the quality of such rankings

I Case Study: Tuning 40 parameters at the London School of Economics

I Coffee Break

I Web SearchEngineering

I Field Work: how do Web search engines really work?

I Stretch Break

I Discussion: Other IR problems for machine learning

I Historical context



The Web Search Scene (Sep 10)

1. Google

2. Yahoo!

3. BING - Bing Is Not Google

I These have the vast majority of the market in the USA but
they’re not alone.



Baidu - leader in China



Naver - leader in Korea



Yandex - leader in Russia



Google revenue: US$23.65B in 2009!

Let’s get a share of all this

money!
Let’s build a Search Engine.



*** IMAGE ***



My design parameters for new Web SE

I 500 million queries/day - say peak of 10000 per second.

I Average page revisit frequency - once per month

I 50 billion Web pages
I Average page size is 25KB (2008)
I Average URL length is approx 100 characters (5 terabytes!)

I 1.25 petabyte of data (Plus, at least 100% network overhead)
I 2.5 million gigabytes of network traffic per crawl.

I hundreds of millions of distinct words

I 25 trillion word occurrences



*** IMAGE ***



Design issues for the spider

I Data bandwidth = 9.6 gigabits/sec.
I better not focus the spider on one server (or one country)!
I need a huge degree of parallelism
I a major load balancing problem

I Cache needs 5 terabytes to store just URLs!
I need very efficient lookup methods



Parallel approach to Indexing and Query Processing

I Divide the data across a cluster of PCs
I Node = 2.8 GHz i7 PC, 8 gB RAM, 2 x 1 tB disk,

I $2k per year to lease and operate

I Replicate clusters and use load-balancing network front-end

PC

Docs

PC

Docs

PC

Docs

PC

Docs

PC

Docs

PC

Docs

PC

Docs

PC

Docs

PC

Docs

PC

Docs

NOW



Query processing

I Each node is responsible for 50 million documents (1 tB)
I Therefore need 1000 nodes to handle full collection,

I If each node can process 10 queries/sec
I Need 10000 queries/sec, therefore 1000 clusters.
I Need 1000 x 1000 = 1,000,000 PCs
I $2.0B/year lease cost.

I Say query result page is 25kB long
I 10000 queries/sec - 2.5 gigabits/sec



*** IMAGE ***

(Thanks to Wei-Ying Ma (MSRA) and Mark Sanderson, Sheffield
University)



Electricity

I Say each node consumes 250Watts of electricity.

I Total power draw for 1,001,000 machines = 250 megaWatts

I Plus airconditioning at 1:3 = 83 megaWatts

I Total power = 333 megaWatts



Index structure

Postings (uncompressed).
(2,3)(7,1)(11,2)(17,1)(22,6)

Term count postings
aaaaa 1

oboe 5

oblong 3

zzzzz 2

Term Dictionary

Index

DocID Length QIE Snippet

Document TableAcc.s

doc001

doc002

doc003

doc004

doc005

doc006

5327 0.735 Arist...

2106

4108

2999

101

27111

0.6

0.33

0.1

0.2

0.7

Score
0.145

0.212

0.707

0.009

0.031

0.100



Data structure sizes (per node)

I Term Dictionary – each entry: 12 byte string, 4 byte count, 4
byte offset

I total size: 10M x 20 = 200 MB

I Doc Table – each entry: 50 byte string (name), 4 byte length,
4 byte score, 100 byte string (snippet)

I total size: 50M x 158 = 8.0 gB

I Inverted File – each entry: 4-byte docno, 4-byte count
I total size: 6.5B x 8 = 53 gB

I Compressed text for document summaries
I 100GB?

I It fits easily.

I What about link, anchor text and user behaviour indexes?

I UK-2007 (115M pages) has 4.1 billion links!



Indexing - Use one cluster

I Index 50M pages in about 2.5 days.

I Dirt cheap



Two ways of query processing: TAAT and DAAT
Query: lpg vehicle subsidy

1. [lpg; 27,000] - (2,7) (2,9) (2,100) (173,5) (2005, 19)
(2005,178) (9999, 1) ...

2. [vehicle; 112,000] - (13,31) (18,25) (173,6) (5006,88) (9999,
18) ....

3. [subsidy; 11,000] - (99,108) (173,7) (173,99) (7798,13)
(9999,205) ...

I TAAT (Term at a time)
I Process all postings for lpg, then all for vehicle, then subsidy.
I Non-zero scores for every doc containing one or more of the

terms
I DAAT (Document at a time)

I Scan three postings lists in ‘parallel’
I Only count matches which meet a criterion. e.g. AND or

WAND (Broder et al, CIKM, 2003)

(Use skipping)



DAAT Ranking

I Fewer results to sort (full matches only)
I Can stop when we have required number of matches (or so)

I Assign document numbers in order of descending static score.
I Compression techniques relying on doc-number diffs still work
I Ensure that unscanned matches are not likely to be good.
I Use limited document accumulators (better memory residency)

I Can apply local ranking heuristics to candidate set.
I Terms in proximity, terms in headings etc.



ClueWeb09 Demo



Cutting costs

I Answer Caching
I Pre-compute answers to popular queries (manually if nec.)
I Top X queries account for 30% of query load
I One PC can serve answers for all X queries.
I Save 300 clusters, $600M per year!

I Process Queries on Partial Data, eg. document titles, anchor
text.

I Shorten results page

I Make spidering adaptive, continuous

I Avoid crawling spam and low value content
I Make query processing more efficient

I more data per node
I less time per query

I (but 10 queries/sec is already good going)



General Efficiency Observations

I Two types of efficiency technique:
I A. No loss of effectiveness

I fast algorithms

I B. Trade-off efficiency/effectiveness
I use heuristics to reduce work

I Memory management is critical – Can reduce memory
demand by

I careful design/layout of data structures
I compression

I Disk accesses very slow = 5M instructions
I Avoid as much as possible

I Disk transfers negligible except for very common terms
I compression pays off in reduced transfer costs



Hardware Issues

1. Choose cheap, low-heat-output, reliable servers

2. Build in fault tolerance. Can’t allow a whole cluster to be
down because one node has failed!

3. Efficient fault diagnosis and repair procedures.



Speeding up query processing

1. Use a limited number of score accumulators

2. Process term lists in parallel, not sequentially

3. Assign document numbers according to descending ”value”

4. Stop early

5. Seek perfect load balance across clusters. The cluster is as
slow as the slowest node.



Result Presentation

I For each top-ranked doc, print DOCID, snippet etc.
I How to generate summaries

I Canned summaries - query independent
I Query biased summaries - quite a computational challenge



Other Issues

I Privacy
I David Hawking
I 687 897 255
I 02 6161 7777
I 5163 9999 9999 9999
I 85 Smith St, Nowhere 2586

I Masses of query and click data – what can we use it for?
I Search quality tuning – machine learning
I Ranking evidence
I Spelling corrections.
I Query suggestions

I Legal issues with advertisers, copyright owners, ...



Doing More with Queries

I Maintaining Quality - Are we really Better?



Side-by-side comparisons









Summary of this Section

I The Web search engine business model is very risky
I Starting a new Web search engine requires:

I Lots of hardware (intelligently chosen and operated.)
I Huge capital
I Very large bandwidth network connections
I Clever engineering (CE)

I save huge amounts of network traffic during spidering
I save vast amounts of query processing hardware

I CE during QP relies on
I caching / pre-computation
I clever parallelism
I memory residency / avoidance of disk accesses
I smart algorithms



BTW - What’s the role of a
Chief Scientist?




