Bayesian Inference for Dirichlet-Multinomials

Mark Johnson

Macquarie University Sydney, Australia

MLSS "Summer School"

Random variables and "distributed according to" notation

- A *probability distribution* F is a non-negative function from some set \mathcal{X} whose values sum (integrate) to 1
- A random variable X is *distributed according* to a distribution F, or more simply, X has distribution F, written $X \sim F$, iff:

$$P(X = x) = F(x)$$
 for all x

(This is for discrete RVs).

• You'll sometimes see the notion

$$X \mid Y \sim F$$

which means "X is generated conditional on Y with distribution F" (where F usually depends on Y), i.e.,

$$P(X \mid Y) = F(X \mid Y)$$

Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures

Bayes' rule

$$P(Hypothesis \mid Data) = \frac{P(Data \mid Hypothesis) \ P(Hypothesis)}{P(Data)}$$

- Bayesian's use Bayes' Rule to update beliefs in hypotheses in response to data
- P(Hypothesis | Data) is the *posterior distribution*,
- P(Hypothesis) is the *prior distribution*,
- P(Data | Hypothesis) is the *likelihood*, and
- P(Data) is a normalising constant sometimes called the evidence

Computing the normalising constant

$$\begin{split} P(\mathsf{Data}) &= \sum_{\mathsf{Hypothesis}' \in \mathcal{H}} P(\mathsf{Data}, \mathsf{Hypothesis}') \\ &= \sum_{\mathsf{Hypothesis}' \in \mathcal{H}} P(\mathsf{Data} \mid \mathsf{Hypothesis}') P(\mathsf{Hypothesis}') \end{split}$$

- If set of hypotheses \mathcal{H} is small, can calculate P(Data) by enumeration
- But often these sums are intractable

Bayesian belief updating

- Idea: treat posterior from last observation as the prior for next
- Consistency follows because likelihood factors
 - Suppose $d = (d_1, d_2)$. Then the posterior of a hypothesis h is:

$$P(h \mid d_1, d_2) \propto P(h) P(d_1, d_2 \mid h)$$

$$= P(h) P(d_1 \mid h) P(d_2 \mid h, d_1)$$

$$\propto \underbrace{P(h \mid d_1)}_{\text{updated prior}} \underbrace{P(d_2 \mid h, d_1)}_{\text{likelihood}}$$

Discrete distributions

- A *discrete distribution* has a finite set of outcomes 1, . . . , *m*
- A discrete distribution is parameterized by a vector $\theta = (\theta_1, \dots, \theta_m)$, where $P(X = j | \theta) = \theta_j$ (so $\sum_{j=1}^m \theta_j = 1$)
 - ► Example: An *m*-sided die, where θ_j = prob. of face j
- Suppose $X = (X_1, ..., X_n)$ and each $X_i | \theta \sim \text{DISCRETE}(\theta)$. Then:

$$P(\boldsymbol{X}|\boldsymbol{\theta}) = \prod_{i=1}^{n} \text{Discrete}(X_i; \boldsymbol{\theta}) = \prod_{j=1}^{m} \theta_j^{N_j}$$

where N_j is the number of times j occurs in X.

• Goal of next few slides: compute $P(\theta|X)$

Multinomial distributions

- Suppose $X_i \sim \text{DISCRETE}(\theta)$ for i = 1, ..., n, and N_j is the number of times j occurs in X
- Then $N|n, \theta \sim \text{MULTI}(\theta, n)$, and

$$P(N|n,\boldsymbol{\theta}) = \frac{n!}{\prod_{j=1}^{m} N_j!} \prod_{j=1}^{m} \theta_j^{N_j}$$

where $n! / \prod_{j=1}^{m} N_{j}!$ is the number of sequences of values with occurence counts N

• The vector N is known as a *sufficient statistic* for θ because it supplies as much information about θ as the original sequence X does.

Dirichlet distributions

- *Dirichlet distributions* are probability distributions over multinomial parameter vectors
 - called *Beta distributions* when m = 2
- Parameterized by a vector $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)$ where $\alpha_j > 0$ that determines the shape of the distribution

$$DIR(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) = \frac{1}{C(\boldsymbol{\alpha})} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}$$

$$C(\boldsymbol{\alpha}) = \int_{\Delta} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1} d\boldsymbol{\theta} = \frac{\prod_{j=1}^{m} \Gamma(\alpha_{j})}{\Gamma(\sum_{j=1}^{m} \alpha_{j})}$$

- Γ is a generalization of the factorial function
- $\Gamma(k) = (k-1)!$ for positive integer k
- $\Gamma(x) = (x-1)\Gamma(x-1)$ for all x

Plots of the Dirichlet distribution

0.2

0.4

 θ_1 (probability of outcome 1)

3

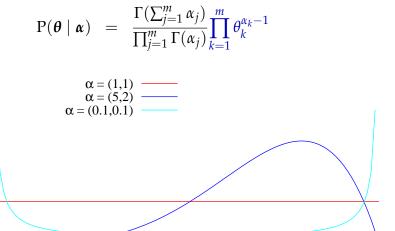
2

1

0

0

 $P(\theta_1|\alpha)$



0.6

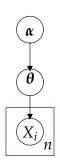
0.8

Dirichlet distributions as priors for θ

Generative model:

$$egin{array}{lcl} oldsymbol{ heta} & oldsymbol{ heta} & oldsymbol{lpha} & \operatorname{DIR}(oldsymbol{lpha}) \ X_i & | & oldsymbol{ heta} & \sim & \operatorname{DISCRETE}(oldsymbol{ heta}), & i=1,\ldots,n \end{array}$$

We can depict this as a Bayes net using *plates*, which indicate replication



Inference for θ with Dirichlet priors

- Data $X = (X_1, ..., X_n)$ generated i.i.d. from DISCRETE(θ)
- Prior is $DIR(\alpha)$. By Bayes Rule, posterior is:

$$\begin{split} \mathbf{P}(\boldsymbol{\theta}|\boldsymbol{X}) & \propto & \mathbf{P}(\boldsymbol{X}|\boldsymbol{\theta}) \; \mathbf{P}(\boldsymbol{\theta}) \\ & \propto & \left(\prod_{j=1}^{m} \theta_{j}^{N_{j}}\right) \left(\prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}\right) \\ & = & \prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1}, \; \text{so} \\ \mathbf{P}(\boldsymbol{\theta}|\boldsymbol{X}) & = & \mathrm{DIR}(\boldsymbol{N}+\boldsymbol{\alpha}) \end{split}$$

- So if prior is Dirichlet with parameters α , posterior is Dirichlet with parameters $N + \alpha$
- \Rightarrow can regard Dirichlet parameters α as "pseudo-counts" from "pseudo-data"

Conjugate priors

- If prior is $DIR(\alpha)$ and likelihood is i.i.d. $DISCRETE(\theta)$, then posterior is $DIR(N + \alpha)$
 - \Rightarrow prior parameters α specify "pseudo-observations"
- A class C of prior distributions P(H) is *conjugate* to a class of likelihood functions P(D|H) iff the posterior P(H|D) is also a member of C
- In general, conjugate priors encode "pseudo-observations"
 - ▶ the difference between prior P(H) and posterior P(H|D) are the observations in D
 - ▶ but P(H|D) belongs to same family as P(H), and can serve as prior for inferences about more data D'
 - \Rightarrow must be possible to encode observations D using parameters of prior
- In general, the likelihood functions that have conjugate priors belong to the *exponential family*

Point estimates from Bayesian posteriors

- A "true" Bayesian prefers to use the full P(H|D), but sometimes we have to choose a "best" hypothesis
- The Maximum a posteriori (MAP) or posterior mode is

$$\widehat{H} = \underset{H}{\operatorname{argmax}} P(H|D) = \underset{H}{\operatorname{argmax}} P(D|H) P(H)$$

• The *expected value* $E_P[X]$ of X under distribution P is:

$$E_P[X] = \int x P(X = x) dx$$

The expected value is a kind of average, weighted by P(X). The *expected value* $E[\theta]$ of θ is an estimate of θ .

The posterior mode of a Dirichlet

• The Maximum a posteriori (MAP) or posterior mode is

$$\widehat{H} = \underset{H}{\operatorname{argmax}} P(H|D) = \underset{H}{\operatorname{argmax}} P(D|H) P(H)$$

• For Dirichlets with parameters α , the MAP estimate is:

$$\hat{\theta}_j = \frac{\alpha_j - 1}{\sum_{j'=1}^m (\alpha_{j'} - 1)}$$

so if the posterior is $DIR(N + \alpha)$, the MAP estimate for θ is:

$$\hat{\theta}_j = \frac{N_j + \alpha_j - 1}{n + \sum_{j'=1}^m (\alpha_{j'} - 1)}$$

• If $\alpha = 1$ then $\hat{\theta}_j = N_j/n$, which is also the *maximum likelihood* estimate (MLE) for θ

The expected value of θ for a Dirichlet

• The *expected value* $E_P[X]$ of X under distribution P is:

$$E_{P}[X] = \int x P(X = x) dx$$

• For Dirichlets with parameters α , the expected value of θ_j is:

$$E_{DIR(\boldsymbol{\alpha})}[\theta_j] = \frac{\alpha_j}{\sum_{j'=1}^m \alpha_{j'}}$$

• Thus if the posterior is $DIR(N + \alpha)$, the expected value of θ_j is:

$$E_{DIR(N+\alpha)}[\theta_j] = \frac{N_j + \alpha_j}{n + \sum_{j'=1}^m \alpha_{j'}}$$

• $E[\theta]$ *smooths* or *regularizes* the MLE by adding pseudo-counts α to N

Sampling from a Dirichlet

$$\theta \mid \alpha \sim \operatorname{DIR}(\alpha) \text{ iff } \operatorname{P}(\theta \mid \alpha) = \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1}, \text{ where:}$$

$$C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_{j})}{\Gamma(\sum_{j=1}^{m} \alpha_{j})}$$

- There are several algorithms for producing samples from $DIR(\alpha)$. A simple one relies on the following result:
- If $V_k \sim \mathsf{GAMMA}(\alpha_k)$ and $\theta_k = V_k / (\sum_{k'=1}^m V_{k'})$, then $\theta \sim \mathsf{DIR}(\alpha)$
- This leads to the following algorithm for producing a sample θ from $\mathsf{DIR}(\alpha)$
 - ► Sample v_k from GAMMA(α_k) for k = 1, ..., m

Posterior with Dirichlet priors

$$egin{array}{c|cccc} oldsymbol{ heta} & oldsymbol{lpha} & \sim & \mathrm{DIR}(oldsymbol{lpha}) \ X_i & oldsymbol{ heta} & oldsymbol{lpha} & \sim & \mathrm{DISCRETE}(oldsymbol{ heta}), & i=1,\ldots,n \end{array}$$

• *Integrate out* θ to calculate posterior probability of X

$$P(X|\alpha) = \int P(X, \theta|\alpha) d\theta = \int_{\Delta} P(X|\theta) P(\theta|\alpha) d\theta$$

$$= \int_{\Delta} \left(\prod_{j=1}^{m} \theta_{j}^{N_{j}} \right) \left(\frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_{j}^{\alpha_{j}-1} \right) d\theta$$

$$= \frac{1}{C(\alpha)} \int \prod_{j=1}^{m} \theta_{j}^{N_{j}+\alpha_{j}-1} d\theta$$

$$= \frac{C(N+\alpha)}{C(\alpha)}, \text{ where } C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_{j})}{\Gamma(\sum_{j=1}^{m} \alpha_{j})}$$

ullet Collapsed Gibbs samplers and the Chinese Restaurant Process rely on this result

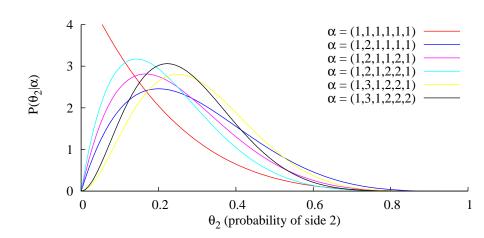
Predictive distribution for Dirichlet-Multinomial

• The *predictive distribution* is the distribution of observation X_{n+1} given observations $X = (X_1, ..., X_n)$ and prior $DIR(\alpha)$

$$P(X_{n+1} = k \mid X, \boldsymbol{\alpha}) = \int_{\Delta} P(X_{n+1} = k \mid \boldsymbol{\theta}) P(\boldsymbol{\theta} \mid X, \boldsymbol{\alpha}) d\boldsymbol{\theta}$$
$$= \int_{\Delta} \theta_k DIR(\boldsymbol{\theta} \mid N + \boldsymbol{\alpha}) d\boldsymbol{\theta}$$
$$= \frac{N_k + \alpha_k}{\sum_{j=1}^m N_j + \alpha_j}$$

Example: rolling a die

• Data d = (2, 5, 4, 2, 6)



Inference in complex models

- If the model is simple enough we can calculate the posterior exactly (conjugate priors)
- When the model is more complicated, we can only approximate the posterior
- Variational Bayes calculate the function closest to the posterior within a class of functions
- Sampling algorithms produce samples from the posterior distribution
 - Markov chain Monte Carlo algorithms (MCMC) use a Markov chain to produce samples
 - ▶ A *Gibbs sampler* is a particular MCMC algorithm
- *Particle filters* are a kind of *on-line* sampling algorithm (on-line algorithms only make one pass through the data)

Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

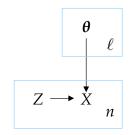
Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures

Mixture models

- Observations X_i are a *mixture* of ℓ source distributions $F(\theta_k), k = 1, ..., \ell$
- The value of Z_i specifies which source distribution is used to generate X_i (Z is like a switch)
- If $Z_i = k$, then $X_i \sim F(\theta_k)$
- Here we assume the Z_i are not observed, i.e., *hidden*

$$X_i \mid Z_i, \boldsymbol{\theta} \sim F(\boldsymbol{\theta}_{Z_i}) \quad i = 1, \dots, n$$

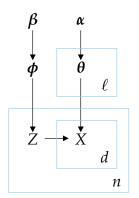


Applications of mixture models

- *Blind source separation*: data X_i come from ℓ different sources
 - ▶ Which X_i come from which source? (Z_i specifies the source of X_i)
 - What are the sources?
 (θ_k specifies properties of source k)
- X_i could be a document and Z_i the topic of X_i
- X_i could be an image and Z_i the object(s) in X_i
- X_i could be a person's actions and Z_i the "cause" of X_i
- These are unsupervised learning problems, which are kinds of clustering problems
- In a Bayesian setting, compute posterior $P(Z, \theta|X)$ *But how can we compute this?*

Dirichlet Multinomial mixtures

$$\begin{array}{c|cccc} \boldsymbol{\phi} & \mid & \boldsymbol{\beta} & \sim & \mathrm{DIR}(\boldsymbol{\beta}) \\ Z_i & \mid & \boldsymbol{\phi} & \sim & \mathrm{DISCRETE}(\boldsymbol{\phi}) & i = 1, \dots, n \\ \boldsymbol{\theta}_k & \mid & \boldsymbol{\alpha} & \sim & \mathrm{DIR}(\boldsymbol{\alpha}) & k = 1, \dots, \ell \\ X_{i,j} & \mid & Z_i, \boldsymbol{\theta} & \sim & \mathrm{DISCRETE}(\boldsymbol{\theta}_{Z_i}) & i = 1, \dots, n; j = 1, \dots, d_i \end{array}$$



- Z_i is generated from a multinomial ϕ
- Dirichlet priors on ϕ and θ_k
- Easy to modify this framework for other applications
- Why does each observation X_i consist of d_i elements?
- What effect do the priors α and β have?

Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures

Why sample?

- Setup: Bayes net has variables X, whose value x we observe, and variables Y, whose value we don't know
 - Y includes any *parameters* we want to estimate, such as θ
- Goal: compute the *expected value* of some function *f*:

$$E[f|X = x] = \sum_{y} f(x,y) P(Y = y|X = x)$$

- ► E.g., f(x, y) = 1 if x_1 and x_2 are both generated from same hidden state, and 0 otherwise
- In what follows, everything is conditioned on X = x, so take P(Y) to mean P(Y|X = x)
- Suppose we can produce n samples $\mathbf{y}^{(t)}$, where $\mathbf{Y}^{(t)} \sim P(\mathbf{Y})$. Then we can estimate:

$$E[f|X = x] = \frac{1}{n} \sum_{t=1}^{n} f(x, y^{(t)})$$

Markov chains

• A (first-order) *Markov chain* is a distribution over random variables $S^{(0)}, \ldots, S^{(n)}$ all ranging over the same *state space* S, where:

$$P(S^{(0)},...,S^{(n)}) = P(S^{(0)}) \prod_{t=0}^{n-1} P(S^{(t+1)}|S^{(t)})$$

 $S^{(t+1)}$ is conditionally independent of $S^{(0)}, \ldots, S^{(t-1)}$ given $S^{(t)}$

• A Markov chain in *homogeneous* or *time-invariant* iff:

$$P(S^{(t+1)} = s' | S^{(t)} = s) = P_{s',s}$$
 for all t, s, s'

The matrix *P* is called the *transition probability matrix* of the Markov chain

- If $P(S^{(t)} = s) = \pi_s^{(t)}$ (i.e., $\pi^{(t)}$ is a vector of state probabilities at time t) then:
 - $\pi^{(t+1)} = P \pi^{(t)}$
 - $\pi^{(t)} = P^t \pi^{(0)}$

Ergodicity

- A Markov chain with tpm *P* is *ergodic* iff there is a positive integer *m* s.t. all elements of *P*^{*m*} are positive (i.e., there is an *m*-step path between any two states)
- Informally, an ergodic Markov chain "forgets" its past states
- Theorem: For each homogeneous ergodic Markov chain with tpm P there is a *unique limiting distribution* D_P , i.e., as n approaches infinity, the distribution of S_n converges on D_P
- D_P is called the *stationary distribution* of the Markov chain
- Let π be the vector representation of D_P , i.e., $D_P(y) = \pi_y$. Then:

$$\pi = P \pi$$
, and $\pi = \lim_{n \to \infty} P^n \pi^{(0)}$ for every initial distribution $\pi^{(0)}$

Using a Markov chain for inference of P(Y)

- Set the state space S of the Markov chain to the range of Y
 (S may be astronomically large)
- Find a tpm *P* such that $P(\mathbf{Y}) \sim D_P$
- "Run" the Markov chain, i.e.,
 - Pick $y^{(0)}$ somehow
 - For t = 0, ..., n 1:
 - sample $y^{(t+1)}$ from $P(Y^{(t+1)}|Y^{(t)}=y^{(t)})$, i.e., from $P_{\cdot,y^{(t)}}$
 - ► After discarding the first *burn-in* samples, use remaining samples to calculate statistics
- *WARNING*: in general the samples $y^{(t)}$ are not independent

Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures

The Gibbs sampler

- The Gibbs sampler is useful when:
 - Y is multivariate, i.e., $Y = (Y_1, ..., Y_m)$, and
 - easy to sample from $P(Y_i|Y_{-i})$
- The *Gibbs sampler* for P(Y) is the tpm $P = \prod_{j=1}^{m} P^{(j)}$, where:

$$P_{y',y}^{(j)} = \begin{cases} 0 & \text{if } y'_{-j} \neq y_{-j} \\ P(Y_j = y'_j | Y_{-j} = y_{-j}) & \text{if } y'_{-j} = y_{-j} \end{cases}$$

- Informally, the Gibbs sampler cycles through each of the variables Y_j , replacing the current value y_j with a sample from $P(Y_j|\mathbf{Y}_{-j}=\mathbf{y}_{-j})$
- There are sequential scan and random scan variants of Gibbs sampling

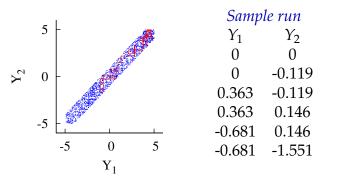
A simple example of Gibbs sampling

$$P(Y_1, Y_2) = \begin{cases} c & \text{if } |Y_1| < 5, |Y_2| < 5 \text{ and } |Y_1 - Y_2| < 1 \\ 0 & \text{otherwise} \end{cases}$$

• The Gibbs sampler for $P(Y_1, Y_2)$ samples repeatedly from:

$$P(Y_2|Y_1) = UNIFORM(max(-5, Y_1 - 1), min(5, Y_1 + 1))$$

 $P(Y_1|Y_2) = UNIFORM(max(-5, Y_2 - 1), min(5, Y_2 + 1))$



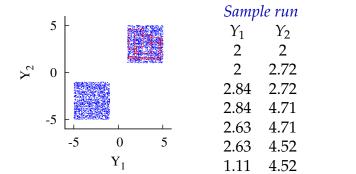
A non-ergodic Gibbs sampler $P(Y_1, Y_2) = \begin{cases} c & \text{if } 1 < Y_1, Y_2 < 5 \text{ or } -5 < Y_1, Y_2 < -1 \\ 0 & \text{otherwise} \end{cases}$

• The Gibbs sampler for $P(Y_1, Y_2)$, initialized at (2,2), samples repeatedly from:

$$P(Y_2|Y_1) = UNIFORM(1,5)$$

 $P(Y_1|Y_2) = UNIFORM(1,5)$

I.e., never visits the negative values of Y_1 , Y_2

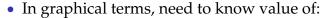


Why does the Gibbs sampler work?

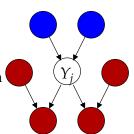
- The Gibbs sampler tpm is $P = \prod_{j=1}^{m} P^{(j)}$, where $P^{(j)}$ replaces y_j with a sample from $P(Y_j | Y_{-j} = y_{-j})$ to produce y'
- But if y is a sample from P(Y), then so is y', since y' differs from y only by replacing y_j with a sample from $P(Y_j|Y_{-j}=y_{-j})$
- Since P^(j) maps samples from P(Y) to samples from P(Y), so does P
- \Rightarrow P(Y) is a stationary distribution for P
 - If P is ergodic, then P(Y) is the unique stationary distribution for P, i.e., the sampler converges to P(Y)

Gibbs sampling with Bayes nets

- Gibbs sampler: update y_j with sample from $P(Y_j|Y_{-j}) \propto P(Y_j,Y_{-j})$
- Only need to evaluate terms that depend on Y_j in Bayes net factorization
 - Y_j appears once in a term $P(Y_j|Y_{Pa_j})$
 - Y_j can appear multiple times in terms $P(Y_k | ..., Y_j, ...)$



- \triangleright Y_i s parents
- \rightarrow Y_i s children, and their other parents



Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures

Dirichlet-Multinomial mixtures

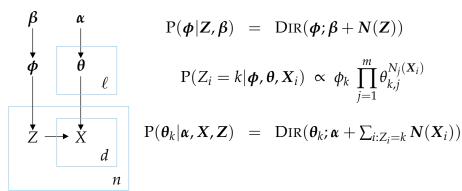
$$oldsymbol{\phi} \mid oldsymbol{\beta} \quad \sim \quad \mathrm{DIR}(oldsymbol{\beta}) \ Z_i \mid oldsymbol{\phi} \quad \sim \quad \mathrm{DISCRETE}(oldsymbol{\phi}) \quad i = 1, \ldots, n \ oldsymbol{\theta}_k \mid oldsymbol{\alpha} \quad \sim \quad \mathrm{DIR}(oldsymbol{\alpha}) \quad k = 1, \ldots, \ell \ X_{i,j} \mid Z_i, oldsymbol{\theta} \quad \sim \quad \mathrm{DISCRETE}(oldsymbol{\theta}_{Z_i}) \quad i = 1, \ldots, n; j = 1, \ldots, d_i$$

$$\begin{array}{cccc}
 & P(\phi, Z, \theta, X | \alpha, \beta) \\
 & \bullet & \bullet \\
 & \ell & = \frac{1}{C(\beta)} \prod_{k=1}^{\ell} \left(\phi_k^{\beta_k - 1 + N_k(Z)} \right) \\
 & \frac{1}{C(\alpha)} \prod_{j=1}^{m} \theta_{k,j}^{\alpha_j - 1 + \sum_{i:Z_i = k} N_j(X_i)} \right)
\end{array}$$

where $C(\alpha) = \frac{\prod_{j=1}^{m} \Gamma(\alpha_j)}{\Gamma(\sum_{i=1}^{m} \alpha_i)}$

Gibbs sampling for D-M mixtures

$$oldsymbol{\phi} \mid oldsymbol{eta} \sim \operatorname{DIR}(oldsymbol{eta}) \ Z_i \mid oldsymbol{\phi} \sim \operatorname{DISCRETE}(oldsymbol{\phi}) \quad i=1,\ldots,n \ oldsymbol{\theta}_k \mid oldsymbol{lpha} \sim \operatorname{DIR}(oldsymbol{lpha}) \quad k=1,\ldots,\ell \ X_{i,j} \mid Z_i, oldsymbol{\theta} \sim \operatorname{DISCRETE}(oldsymbol{ heta}_{Z_i}) \quad i=1,\ldots,n; j=1,\ldots,d_i$$



$$P(Z_i = k | \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{X}_i) \propto \phi_k \prod_{j=1}^m \theta_{k,j}^{N_j(X_i)}$$

Collapsed Dirichlet Multinomial mixtures

$$\begin{array}{c|c}
\beta & 1 \alpha \\
\downarrow & \downarrow \\
Z & X \\
d \\
n
\end{array}$$

$$P(\mathbf{Z}|\boldsymbol{\beta}) = \frac{C(N(\mathbf{Z}) + \boldsymbol{\beta})}{C(\boldsymbol{\beta})}$$

$$Z \longrightarrow X$$

$$d \qquad P(X|\alpha, Z) = \prod_{k=1}^{\ell} \frac{C(\alpha + \sum_{i:Z_i=k} N(X_i))}{C(\alpha)}, \text{ so}$$

$$P(Z_{i} = k | \mathbf{Z}_{-i}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto \frac{N_{k}(\mathbf{Z}_{-i}) + \beta_{k}}{n - 1 + \beta_{\bullet}}$$

$$\frac{C(\boldsymbol{\alpha} + \sum_{i' \neq i: Z_{i'} = k} N(X_{i'}) + N(X_{i}))}{C(\boldsymbol{\alpha} + \sum_{i' \neq i: Z_{i'} = k} N(X_{i'}))}$$

- $P(Z_i = k | \mathbf{Z}_{-i}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is proportional to the prob. of generating:
 - ▶ $Z_i = k$, given the other \mathbf{Z}_{-i} , and
 - X_i in cluster k, given X_{-i} and Z_{-i}

Gibbs sampling for Dirichlet multinomial mixtures

- Each X_i could be generated from one of several Dirichlet multinomials
- The variable Z_i indicates the source for X_i
- The *uncollapsed sampler* samples Z, θ and ϕ
- The *collapsed sampler* integrates out θ and ϕ and just samples Z
- Collapsed samplers often (but not always) converge faster than uncollapsed samplers
- Collapsed samplers are usually easier to implement

Outline

Introduction to Bayesian Inference

Mixture models

Sampling with Markov Chains

The Gibbs sampler

Gibbs sampling for Dirichlet-Multinomial mixtures

Topic modeling with Dirichlet multinomial mixtures

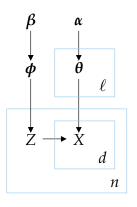
Topic modeling of child-directed speech

 Data: Adam, Eve and Sarah's mothers' child-directed utterances

```
I like it .
why don't you read Shadow yourself?
that's a terribly small horse for you to ride .
why don't you look at some of the toys in the basket .
want to ?
do you want to see what I have ?
what is that ?
not in your mouth .
```

• 59,959 utterances, composed of 337,751 words

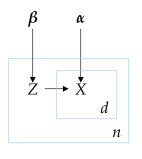
Uncollapsed Gibbs sampler for topic model



- Data consists of "documents" X_i
- Each X_i is a sequence of "words" $X_{i,j}$
- Initialize by *randomly* assign each document X_i to a topic Z_i
- Repeat the following:
 - Replace ϕ with a sample from a Dirichlet with parameters $\beta + N(Z)$
 - For each topic k, replace θ_k with a sample from a Dirichlet with parameters $\alpha + \sum_{i:Z_i=k} N(X_i)$
 - For each document i, replace Z_i with a sample from

$$P(Z_i = k | \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{X}_i) \propto \phi_k \prod_{j=1}^m \theta_{k,j}^{N_j(X_i)}$$

Collapsed Gibbs sampler for topic model



- Initialize by *randomly* assign each document X_i to a topic Z_i
- Repeat the following:
 - For each document i in 1, ..., n (in random order):
 - Replace Z_i with a random sample from $P(Z_i|\mathbf{Z}_{-i},\boldsymbol{\alpha},\boldsymbol{\beta})$

$$P(Z_{i} = k | \mathbf{Z}_{-i}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$\propto \frac{N_{k}(\mathbf{Z}_{-i}) + \beta_{k}}{n - 1 + \beta_{\bullet}} \frac{C(\boldsymbol{\alpha} + \sum_{i' \neq i: Z_{i'} = k} N(X_{i'}) + N(X_{i}))}{C(\boldsymbol{\alpha} + \sum_{i' \neq i: Z_{i'} = k} N(X_{i'}))}$$

Topics assigned after 100 iterations

- 1 big drum?
- 3 horse.
- 8 who is that ?9 those are checkers .
- 3 two checkers # yes .
- 1 play checkers?
- big horn?
- 2 get over # Mommy.
- 1 shadow?
- 9 I like it .
- 1 why don't you read Shadow yourself?
- 9 that's a terribly small horse for you to ride.
- 2 why don't you look at some of the toys in the basket.
- 1 want to?
- 1 do you want to see what I have?

that's not Daddy # that's Colin

- 8 what is that?
- 2 not in your mouth.
- 2 let me put them together.
- 2 no # put floor.
- 3 no # that's his pencil.

Most probable words in each cluster P(Z=4) = 0.4334P(Z=9) = 0.3111P(Z=7) = 0.2555P(Z=3) = 5.003e $P(X \mid Z)$ $P(X \mid Z)$ Χ $P(X \mid Z)$ Χ Χ $P(X \mid Z)$ Χ 0.12526 0.19147 0.2258 quack 0.85 # 0.045402 0.062577 # 0.15 0.0695 you 0.040475 what 0.061256 that's 0.034538 you the 0.030259 that 0.034066 0.022295 а it 0.024154 the 0.022126 0.02649 no 0.021848 # 0.021809 oh 0.023558 0.018473 is 0.021683 yeah 0.020332 to don't 0.015473 do 0.016127 the 0.014907 0.013662 it 0.015927 0.014288 XXX a 0.013459 0.015092 0.013864 not it's in 0.011708 to 0.013783 0.013343 0.011064 did 0.012631 0.013033 on 0.011795 0.010145 0.011427 your are yes what's and 0.009578 0.011195 right 0.0094166 alright that 0.0093303 0.0098961 0.0088953 your 0.0087975 have 0.0088019 huh 0.0082591 is

0.0057673

47 / 50

0.0082514 0.0076782you're 0.0076571 want no 0.0067486 where 0.0072346 0.006647 put one

0.0070656

0.0064239

147h 17

know

Remarks on cluster results

- The samplers cluster words by clustering the documents they appear in, and cluster documents by clustering the words that appear in them
- Even though there were $\ell = 10$ clusters and $\alpha = 1$, $\beta = 1$, typically only 4 clusters were occupied after convergence
- Words x with high marginal probability P(X = x) are typically so frequent that they occur in all clusters
- ⇒ Listing the most probable words in each cluster may not be a good way of characterizing the clusters
 - Instead, we can Bayes invert and find the words that are most strongly associated with each class

$$P(Z = k \mid X = x) = \frac{N_{k,x}(Z, X) + \epsilon}{N_x(X) + \epsilon \ell}$$

Purest words of each cluster P(Z=9) = 0.3111P(Z=7) = 0.2555 $P(Z \mid X)$ $P(Z \mid X)$ Χ Χ

P(Z=4) = 0.4334Χ I'll 0.97168 d(o) 0.97138 0

0.96486

0.95319

0.95238

0.94845

0.94382

0.93645

0.93588

0.93255

0.93192

0.93082

0.9124

0.9058

0.89922

0.947

we'll

c(o)me

you'll

may

let's

thought

won't

come

(h)ere

stay

later

thank

them

can't

never

ρm

let

what's 0.95242 mmhm 0.94348 www

what're 0.93722 happened

0.93343 hmm whose 0.92437

what 0.9227

where's doing

where'd

0.92241 don't] whyn't

0.90196

0.9009 0.89157 0.89157 0.88527

0.875

0.85068

0.85047

0.84783

0.82963

0.8125

oh+boy

m:hm

uhhuh

uh(uh)

uhuh

that's

yep

um

sorry

o:h

hi

nope

d@l goodness s@l

thank+you

0.72603 0.7234 0.72

0.6875

0.67857

0.67213

0.68

 $P(Z \mid X)$

0.94715

0.90244

0.83019

0.81667

0.78571

0.77551

0.7755

0.76531

0.76282

0.73529

0.944

0.70588

P(Z=3) = 5.0

P(Z)

0.64

0.00

Χ

quack

49 / 50

0.92073 who 0.91964 how's 0.91667 who's 0.90762 matter

what'd

Summary

- Complex models often don't have analytic solutions
- Approximate inference can be used on many such models
- Monte Carlo Markov chain methods produce samples from (an approximation to) the posterior distribution
- Gibbs sampling is an MCMC procedure that resamples each variable conditioned on the values of the other variables
- If you can sample from the conditional distribution of each hidden variable in a Bayes net, you can use Gibbs sampling to sample from the joint posterior distribution
- We applied Gibbs sampling to Dirichlet-multinomial mixtures to cluster sentences