

User Modeling Combining Access Logs, Page Content and Semantics

Blaž Fortuna Dunja Mladenić Marko Grobelnik

Artificial Intelligence Laboratory Jožef Stefan Institute

- System Overview
- Data sources
- Defining segments
- User modeling
- Experiments
- Conclusions

Access Logs

- User interactions with the website
- Each page-view described with:
 - User ID
 - Date and Time
 - Location (from IP address)
 - Requested page
 - Referring page
 - Search query (from Referring page)
 - Browser, Operating System, Device (from User agent)
- Users tracked using cookies
 - Tag with unique ID at the first visit

User ID cookie: 1234567890

IP: 123.123.123 (Beijing, China)

Requested URL:

http://www.nytimes.com/2009/08/23/weekinreview/23baker.html

Referring URL:

http://query.nytimes.com/search/sitesearch?query=obama

Date and time: 2009-08-25 08:12:34

User agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en)

AppleWebKit/526.9 (KHTML, like Gecko) Version/4.0dp1 Safari/526.8 (Safari, Windows, PC)

i

Articles

- Content and Semantics about requested pages
- Each page described with:
 - Content
 - Annotations
 - Named Entities (e.g. Obama, Mount Rushmore, Afghanistan, Vietnam)
 - Topics (e.g. politics, opinion, sports)
 - Content meta-data (e.g. author, publish date, editorial desk)
 - Page meta-data (e.g. article, homepage, section-front)

User Data

- Provided only for registered users
 - ~20% unique users in our case
 - Can generalize to all using machine learning
- Each registered users described with:
 - Gender
 - Year of birth
 - Household income
- Noisy

Gender	💿 Male 🖱 Female
Year of Birth	1965
Zip Code	10017
Country of Residence	United States
Household Income	\$100,000 to \$149,999 💌
Job Industry	Accounting
Job Title	Accountant/Auditor
Company Size	Select One 💌

i

User Segment

User segment:

Subset of website visitors sharing some common characteristics

- Example:
 - [Gender = Male]
 - [Age ≥ 40]
 - [Referring domain = facebook.com]
 - [Requested page topic = Travel]
 - - -

Defining Segments

Must be simple enough so it can be used by domain experts

Our solution

- Index all users using inverted index
- Segment definition equals faceted search query over users
- Ad-hoc segment definitions

Indexed fields:

- Domain
- Sub-domain
- Page URL
- Page Meta Tags Date
- Page Title
- Page Content
- Named Entities
- Referring Search
 Income • Age Term
- Referring Domain
 Gender
- Referring URL

- Country (from IP)
- State (from IP)
- City (from IP)
- Day of the Week

- Hour of the day
- User Agent

Query	Type: 💿 AND 💿 OR 🛛 🛨 🗖
Gender 🔻 == 🕶 F	emale -
Hou Query	Type: O AND O OR + -
Red Job Title	CEO/President/Chairman
Query	Type: AND OR +
Joł Named Entities -	== 👻 Obama
Content -	== 👻 Health care
Referred by Domain -	== 👻 twitter.com
	ailab.ijs.si 🔮

User Modeling

- Feature space
 - Extracted from subset of fields
 - Using vector space model
 - Vector elements for each field are normalized
- Training set
 - One visit = one vector
 - One user = a centroid of all his/her visits
 - Users from the segment form positive class
 - Sample of other users form negative class
- Classification algorithm
 - Support Vector Machine
 - Good dealing with high dimensional data
 - Linear kernel
 - Stochastic gradient descent
 - Good for sampling

Segment visualization

- Using SVM for feature selection
- Visualize a segment by displaying keywords significant for correct classification
- Useful information for the website editors

Experimental setting

- Real-world dataset from a major news publishing website
 - 5 million daily users, 1 million registered
- Tested prediction of three demographic dimensions:
 - Gender, Age, Income
- Three user groups based on the number of visits:
 - ≥2, ≥10, ≥50
- Evaluation:
 - Break Even Point (BEP)
 - 10-fold cross validation

Category	Size	Category	Size	Category	Size
Male	250,000	21-30	100,000	0-24k	50,000
Female	250,000	31-40	100,000	25k-49k	50,000
		41-50	100,000	50k-74k	50,000
		51-60	100,000	75k-99k	50,000
		61-80	100,000	100k-149k	50,000
				150k-254k	50,000

Combining Features

- Context features that can be obtained from access logs, such as time, referring page, location and device.
- Content features:
 - Text Features keywords extracted from the articles
 - Named Entities automatically extracted named entities
 - All Metadata –assigned to the article by the authors and editors
 - byline; topics; main keywords; people, organization and countries mentioned in the article; publish date.
- All Content combination of text features, named entities and metadata features.
- All Features combination of all above features.

Gender

Age (all features)

Age (≥10 visits)

Income (≥10 visits)

i

Conclusions

- Modeling user segments
 - User friendly way to define complex segments
- Combining several data sources
 Usage logs, content and semantics
- Tomorrow (related work):
 SemSearch "Learning to Rank for Semantic Search"
 Using Wikipedia usage data for ranking in RDF datasets
 LDOW "Automatically Annotating Text with Linked Open Data"

Thank you

Questions?

