Some Basic Principles of Adaptive Computation

Rudolf F. Albrecht University of Innsbruck, Austria Rudolf.Albrecht@uibk.ac.at

ICANNGA '11

ADAPTATION is a UNIVERSAL PHENOMENON

Illustrations

a ball in a bowl
steering a car

autonomous control
Visualization

oscillates to a stable position
animals

active sensing, grasp, touch

ENVIRONMENT: FEATURES, ACTIONS

ENVIRONMENT

The OBJECT has time dependent STATES and can observe and influence the ENVIRONMENT.
The ENVIRONMENT can time dependent influence the OBJECT.

TIME and PROCESSES

As TIME any (partial) ordered set ($\mathbf{T},<$) can be defined, a single / multiple (=parallel) PROCESS on a set \mathbf{M} is a time indexed family: $\left(\mathrm{M}_{\mathrm{t}} \mid \mathrm{M}_{[\mathrm{t}]} \subseteq \mathbf{M}\right)_{\mathrm{t} \in \mathrm{U} \subseteq \mathrm{T} .}$.

Illustration: $\mathbf{M}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathbf{T}=$ integers, $\mathbf{U}=\{1,2,3,4\}$

same color: is a single part - process, at $t=3$ is $M_{[3]}=\{e, c\}$ A special case is a constant process: $\mathrm{M}_{[t]}=$ const. If $(\mathbf{M},<)$ is an additive group: periodic and time shifted processes can be defined.

For an object OBJ let be \mathbf{S} a set of possible states of OBJ, let ($\mathbf{T},<$) be a time set, let $\varnothing \neq U \subseteq \mathbf{T}$, let $S_{U}=_{\text {def }}\left(S_{t}\right)_{t \in U}$ be a process on pow \mathbf{S} (pow means power set), i.e. $\mathrm{S}_{[t]} \subseteq \mathbf{S}$.

Illustration:

($\mathrm{T},<$)

For existing constraints, requirements, etc. assume $A=\left\{\left(S_{t}(i)\right)_{t \in U} \mid i \in l\right\}$ is a set of admissible processes $\left(\mathrm{S}_{\mathrm{t}}(\mathrm{i})\right)_{\mathrm{t} \in \mathrm{U}}$. By definition, these processes are all equivalent with respect to requirements. A forms itself a process $\left(\overline{\mathbf{S}}_{[t]}\right)_{t \in U}$. A family of "concatenations $K_{[t]}$ " can exist with $S^{*}[t]=$ def $K_{[t]}\left(S_{t}(i), S_{t}(j)\right), i, j \in l . S^{*} u$ can be $\in A$.
Examples: $K_{[t]}=\cup, \cap$, if arithmetic exists: a mean value. K maps parallel processes onto one single process.

TOPOLOGICAL CONCEPTS

Given a non-empty set M and a family $B=\left(B_{[i]} \mid i \in l\right)$ of subsets \varnothing $\neq B_{[i]} \subseteq M$ with the property : for any pair $(i, j) \in|x|$ exists $k \in I$ with $\mathrm{B}_{[j]} \subseteq \mathrm{B}_{[k]}$ and $\mathrm{B}_{[j]} \subseteq \mathrm{B}_{[\mathrm{kk}}$. \mathbf{B} is a "filter base on M", For our purpose we assume $\lim \mathbf{B}==_{\text {def }} \cap \mathbf{B} \in \mathbf{B}$, and $\operatorname{supp} \mathbf{B}=_{\text {def }} \cup \mathbf{B} \in \mathbf{B}$, and say, \mathbf{B} is a "neighborhood system to $\lim \mathbf{B}$ " with support supp B. Visualization: neighborhood system to $\lim B$ with supp $\mathbf{B} \in \mathbf{B}$

a special case: a monotonous neighborhood system

The neighborhood system can be homomorphous valuated by values $\mathrm{v} \in(\mathrm{V},<), \mathrm{V}$ is mostly a linearly ordered set: $\mathrm{B} \rightarrow \mathrm{v}(\mathrm{B})$ The symmetric
difference $D={ }_{\text {der }} B^{\prime} \backslash B^{\prime \prime} \cup B^{\prime \prime} \backslash B^{\prime}$ defines a general distance of B^{\prime} from $B^{\prime \prime}$ which can also be valuated.

a valuated neighborhood system
The simplest case $V=\left\{0, \ldots, 1=\mathrm{v}_{0}\right\} \subseteq[0,1] \subset \mathbf{R}$ is known as "fuzzy set"

An example are concentric circles in the Euclidean plane around a minimum circle, v is the radius of the circles.

The set union of neighborhood systems forms again a neighborhood system; an example is a metric space in $\mathbf{R}^{\mathbf{2}}$. If all neighborhood systems are uniformly valuated, the topology is "uniform". A particular case is a metric space.

A neighborhood system $B=\left(B_{[j]} \mid i \in l\right)$ on a set M with $M \in B$ defines a topology on M : Let be
$B \cup\{\varnothing\}$ closed sets,
arbitrary intersections \cap and finite unions \cup of closed sets are closed sets
set complements with respect to M of closed sets are open sets

ADAPTATION of a STATE PROCESS to the ADMISSIBLE DOMAIN

A process $\mathrm{s}_{\mathrm{U}}=_{\text {def }}\left(\mathrm{s}_{\mathrm{t}}\right)_{t \in \mathrm{U}}$, is admissible if it satisfies all constraints, requirements, limitations, properties etc. imposed on it bat U. In general, the admissible domain forms a process A_{U}, to which we consider a neighborhood system $N=\left\{D_{n} \mid n \in N\right\}$, lim $N=A_{u}$.

In the illustration, s_{u} has distance $\mathrm{D}^{\prime \prime} \mathrm{u}$ from A_{u}, (adaptation degree), s_{u} to be in A_{u} is the "goal". A process of processes s_{u} passing trough a neighborhood system N towards limN adapts limN. If N is homomorphous valuated, the adaptation process tends to a minimal/maximal value (class of gradient methods).

STATE- and CONTROL-PROCESSES in R^{n} and R^{m}

Dual incremental eqs. for same \mathbf{T}, s states, c control, $\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{c})$ elapsed s-process-, c-process times, $\mathrm{T}(\mathrm{s})<\tau, \mathrm{T}(\mathrm{c})<\sigma ; \tau, \sigma \in \mathrm{T}$, with $\Delta\left(\mathrm{S}_{\mathrm{T}(\mathrm{s})}\right)_{\tau}, \Delta\left(\mathrm{C}_{\mathrm{T}(\mathrm{c})}\right)_{\tau}$ variables on predefined domains. If assigned
$\Delta\left(\mathrm{S}_{\mathrm{T}(\mathrm{s})}\right)_{\tau}=\mathrm{F}\left(\mathrm{S}_{\mathrm{T}(\mathrm{s})}, \mathrm{C}_{\mathrm{T}(\mathrm{c})}, \Delta\left(\mathrm{C}_{\mathrm{T}(\mathrm{c})}\right)_{\mathrm{c}}\right), \sigma<\tau, \Delta\left(\mathrm{S}_{\mathrm{T}(\mathrm{s})}\right)_{\mathrm{T}}$ has to be admissible, depends on (parts of) past s - and c - processes
$\Delta\left(\mathrm{C}_{\mathrm{T}(\mathrm{c})}\right)_{\tau}=\mathrm{G}\left(\mathrm{S}_{\mathrm{T}(\mathrm{s})}, \mathrm{C}_{\mathrm{T}(\mathrm{c})}, \Delta\left(\mathrm{S}_{\mathrm{T}(\mathrm{s})}\right)_{\tau}\right) \sigma>\tau, \Delta\left(\mathrm{C}_{\mathrm{T}(\mathrm{c})}\right)_{\sigma}$ has to be admissible, depends on (parts of) past s-and c- processes

Illustration

$\Delta s / \Delta t$ corresponds c, branching marks possible choices

C
continuation of s by $\Delta \mathrm{s}$ such that the resulting process is admissible
dual for c

Feedback Based Control and Corrections

corrected and still not admissible!
Feed Back Synchronization Problem

IMPROVEMENTS
shorten time step
for Δs
shorten time step
for deviation
measurements
shorten operation
time for correction
by feed back
admission process
look ahead
state/control
process look ahead

$\pi>0$ duration of \mathbf{f} $\varphi-\pi>0$ duration of back feeding ($\mathrm{x}_{\mathrm{t}+\varphi}, \mathrm{x}_{{ }^{*}{ }^{*}+\varphi}$) combined to $\mathrm{x}^{*{ }_{\mathrm{t}+\varphi}}$ cases:
$\mathrm{X}^{* *}{ }_{\mathrm{t}+\varphi}=,<,>\mathrm{X}_{\mathrm{t}+\varphi}$ $\tau \neq \varphi$, influences input/ output frequency, enables

EXAMPLE: ARTIFICIAL NEURAL NETS

nature

engineer

variable data $\mathrm{x}=\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i}=1,2, \ldots \mathrm{n}}$; variable control parameters $\mathrm{c}=$ $\left(c_{k}\right)_{k=1,2, \ldots n+1}$; given x, c is the "program for processing $y=L(x, c)=\Sigma_{1 \ldots n} c_{i} x_{i}+c_{n+1}$, let c be such that for all $x \in M \quad L(x, c) \geq 0$ Visualization for $\mathrm{n}=2, \mathrm{~L}$ in Hessian form:

$$
L(x, \alpha, p)=(\cos \alpha) x_{1}+(\sin \alpha) x_{2}-p
$$

$L \geq 0, L^{*} \geq 0, L^{* *} \geq 0, \ldots$ are all admissible half planes forming a neighborhood system with lim containing M

more L's for finer discrimination

$\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \Rightarrow$	$L_{1} \geq 0$	V_{1}
$\left(x_{1}, x_{2}\right) \Rightarrow$	$L_{2} \geq 0$	V_{2}
$\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \Rightarrow$	$L_{3} \geq 0$	V_{3}
$\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \Rightarrow$	$L_{1} L_{2} L_{3} \geq 0$	y

$K=L_{1} L_{2} L_{3}$ is a cubic fct. M is enclosed by triangle, a convex neighborhood of M

Generalization: any neighborhood system N with $\mathrm{M} \subseteq \lim \mathrm{N}$ Examples for N : circles, ellipses, polygons

Architectural generalizations: multiple layers $x \Rightarrow f(x)=y \Rightarrow g(y)=z \Rightarrow h(z)=w$, and so on, any $\mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots$; e.g. $\mathrm{h}=\mathrm{g}$ (reuse of operations at later time possible)

compare

 with computer architecture: control, layers algorithmic time

EXAMPLE: "GENETIC ALGORITHMS" (sketch of personal view)

$S=\left\{s_{j} \mid j \in J\right\}, J=\{1,2, \ldots m\}$ individuals,
$E=\left\{e_{i} \mid i \in l\right\}, I=\{1,2, \ldots n\}$ properties e_{j} of each individual s_{i}
$W \subset R, s_{j}$ has property e_{i} with weight $W_{[j \mathrm{j}} \in \mathrm{W}$, weight function $\mathrm{w}_{\mathrm{j}}=$ $\left(w_{i j}\right)_{i \in l}$, for all j let uniform upper and lower bounds for $w_{[j]}$ be given: $\bar{b}_{[i]}$ and $\underline{b}_{[j]}$ respectively, $\underline{\mathrm{b}}_{[i]} \leq \mathrm{w}_{[i j]} \leq \overline{\mathbf{b}}_{[\mathrm{ij}}$.

Concatenation κ of pairs $\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{k}}\right)$, gives next level objects, for simplicity sake: 1 "child" only, generated objects on next level only.
$S^{(1)}==_{\text {def }}\left\{S_{j k}{ }^{(1)}==_{\text {def }} K\left(S_{j}, S_{k}\right) \mid(j, k) \in J \times J, j \neq k\right\}$, level 1, valuation of $\kappa\left(\mathrm{s}_{\mathrm{j}}, \mathrm{s}_{\mathrm{k}}\right)$ is defined by $\left(\mathrm{w}\left(\mathrm{s}_{[\mathrm{ij}]}\right) \kappa_{\mathrm{i}}\left(\mathrm{s}_{[\mathrm{k}]}\right)\right)_{\mathrm{i} \in 1}$,
κ_{i} for example min, max, convex mean $=a \alpha+(1-\alpha) b, 0 \leq \alpha \leq 1$, these κ_{i} are associative. For this case and for pairs with all elements distinct, levels form a hierarchy up to level $L=$ "least integer $\geq \mathrm{ld} \mathrm{n}$ ". The valuations tend to $\left(\kappa_{i}\left(W_{[i j}\right)_{j \in J}\right)_{i \in I}$

Adaptation Problem (breeder's problem)
For given set of individuals, properties and weight relation $\left(w_{i j}\right)_{j \in \mid x J}$, and for given adaptation domain $A=\left\{\left[a_{i}, b_{i}\right] \subset W \mid a_{i}<b_{i}, i \in l\right\}$ find within object generation $0,1, \ldots$ an object which (approximately) fits A

May have no solution, or approximations only. Is polynomial complex

