Can matrix coherence be efficiently and accurately estimated?

Ameet Talwalkar UC Berkeley

joint with Mehryar Mohri (NYU, Google)

Motivation

- Many modern datasets are large, high-dimensional and can be represented by large matrices
 - e.g., videos, images, documents on the web

- Low-rank approximations are often appropriate
 - e.g., dimensionality reduction, collaborative filtering

Motivation

- Many modern datasets are large, high-dimensional and can be represented by large matrices
 - e.g., videos, images, documents on the web

- Low-rank approximations are often appropriate
 - e.g., dimensionality reduction, collaborative filtering

- Sampling-based methods work with subset of columns
 - tractable when SVD is not
 - interpretability

Key Assumptions

- 1. Good low-rank structure, i.e., $\mathbf{X} \approx \mathbf{X}_r$
- 2. Finding a good subset of columns is possible

$$\mathbf{X} = \begin{bmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_r & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{e}_1 & \dots & \mathbf{e}_r & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{e}_1 \end{bmatrix}$$

- non-uniform sampling, e.g., [Drineas et al., '05]
- uniform sampling often works well in practice [Kumar et al., '09]

 - but, computing matrix coherence is expensive
 - this work: can we estimate matrix coherence?

Outline

- ESTIMATE-COHERENCE algorithm
- Analysis in low-rank setting
- Experiments

Matrix Coherence

Definition: Matrix Coherence, $\mu_0(\cdot)$

- \mathbf{U}_r : top left singular vectors of $\mathbf{X} \in \mathbb{R}^{n imes m}$
- $\mathbf{P}_r = \mathbf{U}_r \mathbf{U}_r^\top$: orthogonal projection matrix

•
$$\mu_0(\mathbf{U}_r) = \frac{n}{r} \max_i \|\mathbf{P}_r \mathbf{e}_i\|^2$$

• Degree to which \mathbf{U}_r corresponds to canonical basis

 $\mathbf{X} = \left| \begin{array}{cccc} \mathbf{e}_1 & \cdots & \mathbf{e}_r & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{e}_1 & \cdots & \mathbf{e}_r & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{e}_1 & \mathbf{0} \end{array} \right|$

- min: 1 (e.g., all matrix entries identical)
- max: n/r (e.g., canonical basis)

• incoherence \longrightarrow uniform sampling

Matrix Coherence

Definition: Matrix Coherence, $\mu_0(\cdot)$

- \mathbf{U}_r : top left singular vectors of $\mathbf{X} \in \mathbb{R}^{n imes m}$
- $\mathbf{P}_r = \mathbf{U}_r \mathbf{U}_r^\top$: orthogonal projection matrix

•
$$\mu_0(\mathbf{U}_r) = \frac{n}{r} \max_i \|\mathbf{P}_r \mathbf{e}_i\|^2$$

- Coherence assumptions used in other lines of work
 - e.g., matrix completion, robust PCA

[Candes and Recht, '09; Candes et al., '09; Keshavan et al. '09]

• We study related quantity: $0 < \gamma(\mathbf{U}_r) = \frac{r}{n} \mu_0(\mathbf{U}_r) \le 1$

Proposed Algorithm

- $\mathbf{X}_1 : n \times l$ matrix containing $l \ll m$ columns of \mathbf{X} sampled uniformly at random
- Idea: $\gamma(\mathbf{X}) \approx \gamma(\mathbf{X}_1)$
- If X is low rank:

ESTIMATE-COHERENCE(\mathbf{X}_1) 1 $\mathbf{U}_{X_1} \leftarrow \text{COMPACTSVD}(\mathbf{X}_1)$ 2 $\gamma(\mathbf{X}_1) \leftarrow \text{CALCULATE-GAMMA}(\mathbf{U}_{X_1})$ 3 return $\gamma(\mathbf{X}_1)$

Proposed Algorithm

- $\mathbf{X}_1 : n \times l$ matrix containing $l \ll m$ columns of \mathbf{X} sampled uniformly at random
- Idea: $\gamma(\mathbf{X}) \approx \gamma(\mathbf{X}_1)$
- For rank r approximation of arbitrary X:

ESTIMATE-COHERENCE (\mathbf{X}_1, r) 1 $\mathbf{U}_{X_1} \leftarrow \text{COMPACTSVD}(\mathbf{X}_1, r)$ 2 $\gamma(\mathbf{X}_1) \leftarrow \text{CALCULATE-GAMMA}(\mathbf{U}_{X_1})$ 3 return $\gamma(\mathbf{X}_1)$

Outline

- ESTIMATE-COHERENCE algorithm
- Analysis in low-rank setting
- Experiments

Low-rank Analysis

Observation I:

• $\gamma(\mathbf{X}_1) \leq \gamma(\mathbf{X})$ and is monotonically increasing as a function of l

•
$$\gamma(\mathbf{X}_1) = \gamma(\mathbf{X})$$
 when $l \ge \tilde{O}(r^2 \mu_0(\mathbf{U}_r) 1/\delta)$ with probability $1 - \delta$

• Quality of estimation depends on coherence itself

Low-rank Analysis

Observation I:

• $\gamma(\mathbf{X}_1) \leq \gamma(\mathbf{X})$ and is monotonically increasing as a function of l

•
$$\gamma(\mathbf{X}_1) = \gamma(\mathbf{X})$$
 when $l \ge \tilde{O}(r^2 \mu_0(\mathbf{U}_r) 1/\delta)$ with probability $1 - \delta$

Proof Sketch:

- Relate projection matrices associated with column spaces of ${\bf X}$ and ${\bf X}_1$
- Utilize coherence analysis of sampling-based approximations

Low-rank Analysis

Observation 2: Fix r, n, m and let $\hat{\gamma} \ll 1$ be a constant. For any γ such that $\hat{\gamma} < \gamma \leq 1$, there exists an X with $\gamma(\mathbf{X}) = \gamma$ such that

• $\gamma(\mathbf{X}_1) \leq \hat{\gamma}$, if \mathbf{X}_1 does not include $\mathbf{X}^{(1)}$

•
$$\gamma(\mathbf{X}_1) = \gamma$$
 , otherwise

- Gap ($\gamma \hat{\gamma}$) is proportional to γ
- Simple construction that makes use of coherence properties of 'random orthogonal model' [Candes and Recht, '09]

Outline

- ESTIMATE-COHERENCE algorithm
- Analysis in low-rank setting
- Experiments

Low-rank Synthetic Data

•
$$n = m = 1000; r = 50$$

• True coherence recovered when $l \geq r$

Full-rank Synthetic Data

- Set remaining n-r singular values equal to $\epsilon \cdot \sigma_r$
- Good recovery when l is a small multiple of r

Real Data

- Good estimates for after sampling ~100 columns

Coherence + Low-Rank

- Normalized Error: $\|\mathbf{X} \widetilde{\mathbf{X}}\|_F / \|\mathbf{X}\|_F$
- Gamma is an excellent predictor of quality of sampling based low-rank approximation

Coherence + Low-Rank

- Normalized Error: $\|\mathbf{X} \widetilde{\mathbf{X}}\|_F / \|\mathbf{X}\|_F$
- Gamma is an excellent predictor of quality of sampling based low-rank approximation

Conclusion

- Novel algorithm to estimate matrix coherence
 - theory: estimate depends on coherence itself
 - practice: accurate estimates across coherence
 - predicts effectiveness of low-rank approximation
- Future work:
 - Analyze estimates in full-rank setting
 - Combine several estimates for better approximation