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• Many modern datasets are large, high-dimensional and 

can be represented by large matrices

• e.g., videos, images, documents on the web

• Low-rank approximations are often appropriate

• e.g., dimensionality reduction, collaborative filtering

Motivation

≈

n× r

X =

n×m r ×m

r � n,m



• Many modern datasets are large, high-dimensional and 

can be represented by large matrices

• e.g., videos, images, documents on the web

• Low-rank approximations are often appropriate

• e.g., dimensionality reduction, collaborative filtering 

• Sampling-based methods work with subset of columns

• tractable when SVD is not

• interpretability

Motivation



Key Assumptions
1. Good low-rank structure, i.e., 

2. Finding a good subset of columns is possible

   

 

• non-uniform sampling, e.g., 

• uniform sampling often works well in practice

• incoherence         uniform sampling

• but, computing matrix coherence is expensive

• this work: can we estimate matrix coherence?
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X ≈ Xr

[Drineas et al., ’05]

[Talwalkar & Rostamizadeh, ’10]

[Kumar et al., ’09]



Outline

• ESTIMATE-COHERENCE algorithm

• Analysis in low-rank setting

• Experiments



Matrix Coherence
Definition:  Matrix Coherence,                                         

•      : top left singular vectors of

•                   : orthogonal projection matrix

•      

• Degree to which      corresponds to canonical basis
• min:    (e.g., all matrix entries identical)

• max:         (e.g., canonical basis)

• incoherence         uniform sampling 
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µ0(·)
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Ur

X =





���
���

���
���

e1 . . . er 0 . . . 0���
���

���
���





n/r

µ0(Ur) =
n

r
max

i
�Prei�2

Pr = UrU
�
r



Matrix Coherence

• Coherence assumptions used in other lines of work

• e.g., matrix completion, robust PCA

• We study related quantity: 

[Candes and Recht, ’09; Candes et al., ’09; Keshavan et al. ’09]

0 < γ(Ur) =
r

n
µ0(Ur) ≤ 1

Definition:  Matrix Coherence,                                         

•      : top left singular vectors of

•                   : orthogonal projection matrix

•      
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•      :          matrix containing           columns of      

sampled uniformly at random

• Idea:

• If      is low rank:

Estimate-Coherence(X1)

1 UX1 ← CompactSVD(X1)
2 γ(X1) ← Calculate-Gamma(UX1)
3 return γ(X1)

Proposed Algorithm
XX1 n× l

γ(X) ≈ γ(X1)

X

l � m



•      :          matrix containing           columns of      

sampled uniformly at random

• Idea:

• For rank    approximation of arbitrary    :

Proposed Algorithm
XX1 n× l

γ(X) ≈ γ(X1)

Xr

Estimate-Coherence(X1, r)

1 UX1 ← CompactSVD(X1, r)
2 γ(X1) ← Calculate-Gamma(UX1)
3 return γ(X1)

l � m
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• ESTIMATE-COHERENCE algorithm

• Analysis in low-rank setting

• Experiments



Low-rank Analysis

Observation 1:

•                       and is monotonically increasing as 
a function of 

•                       when                                 with 
probability            

• Quality of estimation depends on coherence itself

γ(X1) ≤ γ(X)
l

γ(X1) = γ(X)
1− δ

l ≥ Õ(r2µ0(Ur)1/δ)



Low-rank Analysis

Observation 1:

•                       and is monotonically increasing as 
a function of 

•                       when                                 with 
probability            

Proof Sketch:

• Relate projection matrices associated with column spaces 
of      and                                       

• Utilize coherence analysis of sampling-based approximations

γ(X1) ≤ γ(X)
l

γ(X1) = γ(X)
1− δ

l ≥ Õ(r2µ0(Ur)1/δ)

X X1

[Talwalkar & Rostamizadeh, ’10]



Low-rank Analysis
Observation 2:  Fix            and let          be a 
constant.  For any     such that                , there 
exists an     with                 such that                 

•                  ,  if        does not include 

•                  , otherwise

• Gap (          ) is proportional to

• Simple construction that makes use of coherence 
properties of  ‘random orthogonal model’

X

X1 X(1)

[Candes and Recht, ’09]

r, n,m γ̂ � 1
γ

γ(X) = γ

γ(X1) ≤ γ̂

γ(X1) = γ

γ − γ̂ γ

γ̂ < γ≤1
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Low-rank Synthetic Data 

•  

• True coherence recovered when  
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Full-rank Synthetic Data 

• Set remaining            singular values equal to  

• Good recovery when    is a small multiple of 
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Real Data

• Good estimates for after sampling ~100 columns

• High coherence         slower convergence, higher variance
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Coherence + Low-Rank
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• Gamma is an excellent predictor of quality of 
sampling based low-rank approximation



Coherence + Low-Rank
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• Gamma is an excellent predictor of quality of 
sampling based low-rank approximation
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Conclusion

• Novel algorithm to estimate matrix coherence

• theory: estimate depends on coherence itself

• practice: accurate estimates across coherence

• predicts effectiveness of low-rank approximation

• Future work:

• Analyze estimates in full-rank setting

• Combine several estimates for better approximation


