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Motivation

® Many modern datasets are large, high-dimensional and
can be represented by large matrices

® e.g.,videos,images, documents on the web

® [ow-rank approximations are often appropriate

® e.g., dimensionality reduction, collaborative filtering
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Motivation

® Many modern datasets are large, high-dimensional and
can be represented by large matrices

® e.g.,videos,images, documents on the web

® [ow-rank approximations are often appropriate

® e.g., dimensionality reduction, collaborative filtering

® Sampling-based methods work with subset of columns

® tractable when SVD is not

® interpretability



Key Assumptions

|. Good low-rank structure,ie., X ~ X..

2. Finding a good subset of columns is possible

X =

® non-uniform sampling, e.g., [Drineas et al.,’05]

® uniform sampling often works well in practice xumar ecal, 09
® incoherence = uniform sampling (rawaiar & Rostamizaden, 10}
® but, computing matrix coherence is expensive

® this work: can we estimate matrix coherence!?




Qutline

® ESTIMATE-COHERENCE algorithm
® Analysis in low-rank setting

® Experiments




Matrix Coherence

Definition: Matrix Coherence, p(-)

-

® U, :top left singular vectors of X € R"*™

e P, =U,U, :orthogonal projection matrix

T
o 1o(U;) = L max|[Prei|?

\_ J

® Degree to which U, corresponds to canonical basis
® min: 1 (e.g., all matrix entries identical)
® max: n/r (e.g.,canonical basis)
X =

® incoherence —» uniform sampling
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e P, =U,U, :orthogonal projection matrix
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® Coherence assumptions used in other lines of work

® e.g., matrix completion, robust PCA
[Candes and Recht, ’09; Candes et al.,, ’09; Keshavan et al.’09]

® Ve study related quantity:

o
0 <~(U,) = ;MO(U ) <1




Proposed Algorithm

® X, :n X[ matrix containing [ < m columns of X

sampled uniformly at random
® |dea:v(X) =~ v(X4)

® |[f X islow rank:

-

ESTIMATE-COHERENCE(X )

1 Uy, < CoMPACTSVD(X;)
) V(Xl) <— CALCULATE—GAMMA(UX1)
3 return v(X;)




Proposed Algorithm

® X, :n X[ matrix containing [ < m columns of X

sampled uniformly at random
® |dea:v(X) =~ v(X4)

® For rank r approximation of arbitrary X:

-

ESTIMATE-COHERENCE(X{, 1)

1 UX1 < COMPACTSVD(Xl, ’I“)
2 7(X;) < CALCULATE-GAMMA (U, )
3 return v(X;)
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Low-rank Analysis

-

Observation I:

® 7(X;) < v(X) and is monotonically increasing as
a function of [

o v(X1) =v(X) when | > O(r?uo(U,)1/6) with
brobability 1 — ¢

® Quality of estimation depends on coherence itself




Low-rank Analysis

-

\_

Observation I:

® 7(X;) < v(X) and is monotonically increasing as
a function of [

o v(X1) =v(X) when | > O(r?uo(U,)1/6) with
brobability 1 — ¢

Proof Sketch:

® Relate projection matrices associated with column spaces

of X and X;

® Utilize coherence analysis of sampling-based approximations

[Talwalkar & Rostamizadeh,’10]



Low-rank Analysis

~

Observation 2: Fix ,n,m and let4 < 1be a
constant. For any 7 such that ¥ < v <1, there
exists an X with v(X) = v such that

o v(X1)<#%, if X; does not include X(1)
o 7(X1) =7, otherwise

® Gap (v — 4 ) is proportional to v

® Simple construction that makes use of coherence
properties of ‘random orthogonal model’ icandes and Reche, 09]




Qutline

® ESTIMATE-COHERENCE algorithm
® Analysis in low-rank setting

® Experiments




Low-rank Synthetic Data

Exact Gamma of Synthetic Datasets Gamma Estimation Error
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e n—=m = 1000:r = 50

® True coherence recovered when [ > r




Full-rank Synthetic Data

Gamma Estimation Error, Noise = SMALL Gamma Estimation Error, Noise = LARGE
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® Set remaining n — 7 singular values equal to € - 0,

® Good recovery when [ is a small multiple of r




Real Data

Exact Gamma of Real Datasets Gamma Estimation Error
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® Good estimates for after sampling ~100 columns

® High coherence = slower convergence, higher variance




Coherence + Low-Rank

Exact Gamma of Real Datasets Spectral Reconstruction Error
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e Normalized Error: || X — )AiHF/HXHF

® Gamma is an excellent predictor of quality of
sampling based low-rank approximation




Coherence + Low-Rank

Exact Gamma of Real Datasets Matrix Projection Error
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e Normalized Error: || X — )AiHF/HXHF

® Gamma is an excellent predictor of quality of
sampling based low-rank approximation




Conclusion

® Novel algorithm to estimate matrix coherence
® theory: estimate depends on coherence itself
® practice: accurate estimates across coherence

® predicts effectiveness of low-rank approximation

® Future work:
® Analyze estimates in full-rank setting
® Combine several estimates for better approximation




