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The Scope of the Contemporary NN Research

Understanding, modelling and curing the brain

Cognition and cognitive modelling

Memory

Learning, development 

Neurogenetic modelling 

Neuro-informatics

Mathematics of the brain

Brain ontologies

Bioinformatics 

Molecular computing

Quantum information processing; Quantum inspired neural networks

Novel  methods  of  soft  computing  for  adaptive modelling and 

knowledge discovery; Hybrid NN-, fuzzy-, evolutionary- algorithms; 

Methods of evolving intelligence (EI);

Evolving molecular processes and their modelling

Evolving processes in the brain and their modelling 

Evolving language and cognition 

Adaptive integrated/embedded systems 



• Adaptive speech, image and multimodal processing; 

• Biosecurity

• Adaptive decision support systems; 

• Dynamic time-series modelling; Adaptive control; 

• Adaptive intelligent systems on the WWW; 

• Medicine, 

• Health, 

• Information Technologies, 

• Horticulture, 

• Agriculture, 

• Business and finance, 

• Process and robot control, 

• Arts and Design; 

• Space research

• Earth and oceanic research
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The Scope of the Contemporary NN Applications:
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Content of the talk

Moto: Based on biological evidence, new CNGM can be

developed to solve complex generic and specific tasks of

computational intelligence (CI).

1) Biological motivations.

2) Spiking neural networks (SNN) and evolving SNN (eSNN).

3) Computational Neuro-Genetic Models (CNGM).

4) Applications

5) Future development
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1. Biological motivations   

Inspiration from the brain

• The brain evolves  through 

genetic “pre-wiring” and life-long 

learning 

• Evolving structures and functions

• Evolving features

• Evolving knowledge 

• Local (e.g. cluster-based) 

learning and global optimisation

• Memory (prototype)-based 

learning,  “traceable”

• Multimodal, incremental learning

• Spiking activity

• Genes/proteins involved

• Quantum effects in  ion channels

nkasabov@aut.ac.nz www.kedri.info

mailto:nkasabov@aut.ac.nz
http://www.kedri.info/


Rich neurophysiological information about the spiking 

activities in the brain is already available 
(Singer, Abeles, Freeman, Villa, Grossberg, Kojima, Yamaguchi, ...)

Electric synaptic potentials and axonal ion channels responsible for spike generation 

and propagation: EPSP = excitatory postsynaptic potential, IPSP = inhibitory 

postsynaptic potential,  = excitatory threshold for an output spike generation.

 

EPSP 
IPSP 

EPSPIPSP   

Spike train 

Na+ K+ 

Voltage-gated 
ion channels 
in the neuron 
membrane 

 
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Biological neurogenetic  processes    

Gene information processing  

principles:

• Nature via Nurture

• Complex interactions 

between thousands of genes 

(appr. 6000 expressed in the 

brain) and proteins (more 

than 100,000)

• Different time-scales 

• Stochastic processes 

Offer the potential for:

• Integrating molecular and 

neuronal information 

processing (possibly with 

particle level as well)

The challenge: 

How do we integrate 

molecular and spiking 

neuronal processes in a 

SNN? 
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Molecular (protein) level of spiking activities 

Scheme of synaptic transmission:

a) A synapse is ready to transmit a signal. 

b) Transmission of electric signal in a chemical synapse upon arrival of action potential into 
the terminal. 

Abbreviation: NT = neurotransmitter, R = AMPA-receptor-gated ion channel for sodium, N = 
NMDA-receptor-gated ion channel for sodium and calcium.
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2. SNN and evolving SNN (eSNN)    

Information processing  principles in neurons 

and neural networks:

– LTP and LTD;

– Trains of spikes; 

– Time, frequency and space;

– Synchronisation and stochasticity; 

– Evolvability…

They offer the potential for: 

– Modelling cognitive functions through 

patterns of neuronal spiking activity;

– Modelling neuronal activities based on  

genes and proteins;

– Integration of different ‘levels ‘of 

information processing.  

 

ui(t) 

Time (ms) 

0 
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1 ti

2 

i (t – ti)  
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Models of Spiking Neurons

• Spiking neuron models incorporate the concept  of time and phase in 

relation to the neuronal and synaptic states  

• Microscopic Level: Modeling of ion channels, that depend on 

presence/absence of various chemical messenger molecules

 Hodgkin-Huxley’s

 Izhikevich’s 

• Macroscopic Level: Neuron is a homogenous unit, receiving and emitting 

spikes according to defined internal dynamics

 Spike response model (SRM) (Maass)

 Integrate-and-Fire models (IF, LIF) (Maass, Gerstner)

 Thorpe’s model

 A  probabilistic spiking neuron model (pSNM)

• Integrative

 A quantum inspired optimisation of evolving SNN   

 A neuro-genetic evolving SNN (ngeSNN)
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Rank Order Population Encoding

• Distributes a single real input value to multiple neurons and may cause 

the excitation and firing of several responding neurons

• Implementation based on Gaussian receptive fields introduced by 

Bothe et al . 2002
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Learning in SNN

• Due to time dependence, learning methods are rather complex in SNN

• Recurrent SNN introduce additional difficulties and complexity

• Unsupervised Hebbian learning

• Spike-timing dependent plasticity (STDP)

• Reinforcement learning  (e.g. for robotics applications)

• SpikeProp – supervised error back-propagation, similar to learning in 

classical MLP

• (Linear) readout functions for the Liquid State Machines (Maas et al)

• ReSuMe – Remote Supervised Learning, capable of learning the 

mapping from input to output spike trains

• Weight optimization based on evolutionary algorithms (EA)

• Combined EA and STDP
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Spike-Time Dependent Plasticity (STDP)

• Hebbian form of plasticity in the form of long-term potentiation (LTP) 

and depression (LTD)

• Effect of synapses are strengthened or weakened based on the timing 

of post-synaptic action potentials

Pre-synaptic activity that 

precedes post-synaptic 

firing can induce LTP,

reversing this temporal 

order causes LTD
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Thorpe’s Model

• Simple but computationally efficient neural model, in which early spikes 

are stronger weighted – time to first spike learning

• Model was inspired by the neural processing of the human eye and  

introduced by S. Thorpe et. al. 1997

• PSP ui(t) of a neuron i :

• wji is the weight of the connection between neuron j and i, f (j ) is the 

firing time of j , mi a parameter of the model (modulation factor)

• Function order (j )  represents the rank of the spike emitted by neuron j

and receive at neuron i
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eSNN 
(Kasabov, 2007; Wysoski, Benuskova and  Kasabov, 2006-2010)

• Creating and merging neurons based on localised information

• Uses the first spike principle (Thorpe et al.) for fast on-line training

• For each input vector 

a) Create (evolve) a new output spiking neuron and its connections

b) Propagate the input vector into the network and train the newly created neuron 

c) Calculate the similarity between weight vectors of newly created neuron and existing  

neurons: 

IF similarity > SIMthreshold THEN  Merge newly created neuron with the most similar neuron, 

where N is the number of  samples previously used to update the respective neuron. 

d) Update the corresponding PSP threshold ϑ:

• Three main parameters of the eSNN: Modulation factor m; Spiking threshold ϑ; SIMthreshold
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on the spike time arrival 
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Probabilistic spiking neuron model, pSNM 

(Kasabov, Neural Networks, Jan. 2010)

nj

ni

pj(t)

pcji(t) 

psj,i(t),  wji(t) 

pi(t) 

The PSPi(t) is now calculated using a new formula:

PSPi (t) = ∑ ∑ ej g(pcj,i(t-p)) f(psj,i(t-p)) wj,i(t) + η(t-t0)

p=t0,.,t j=1,..,m

where: ej is 1, if a spike has been emitted from neuron nj, and 0 otherwise; g(pcj,i(t)) is 1 with

a probability pcji(t), and 0 otherwise; f(psj,i(t)) is 1 with a probability psj,i(t), and 0 otherwise; t0
is the time of the last spike emitted by ni; η(t-t0) is an additional term representing decay in

the PSP. As a special case, when all or some of the probability parameters are fixed to “1”,

the ipSNM will be simplified and will resemble some already known spiking neuron models,

such as SRM.

The information in pSNM is represented as both connection weights and 

probabilistic parameters for spikes to occur and propagate. The neuron 

(ni) receives input spikes from pre-synaptic neuron nj (j=1,2,…,m). The 

state of neuron ni is described by the sum of the inputs received from all m
synapses – the postsynaptic potential, PSPi(t). When PSPi(t) reaches a 

firing threshold i(t), neuron ni fires, i.e. emits a spike.  
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3. Computational  Neurogenetic Models

- Functions of neurons and neural networks are influenced by internal networks of 

interacting genes forming an abstract GRN model.

- The GRN and the SNN function at different time scales

- The challenge is how to integrate a GRN model into a SNN model. 
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A CNGM is a SNN that incorporates a gene regulatory network (GRN) to capture 

the interaction of genes related to neuronal activities of the SNN.



GRN as a dynamical system 
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A spike response CNGM of a neuron (integrating gene 

activation with neuronal spiking activity)  

(Kasabov, Benuskova, Wysoski, 2005)
Table.  Neuronal Parameters and Related Proteins 

Neuronal parameter 

Amplitude and time constants of 
Protein 

Fast excitation PSP AMPAR 

Slow excitation PSP NMDAR 

Fast inhibition PSP GABRA 

Slow inhibition PSP GABRB 

Firing threshold SCN, KCN, CLC 

Late excitatory PSP  

through GABRA 

PV 
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GA optimization of a GRN model
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SNN 

Properties

Output 

Analysis

Optimization

Real Data

Analysis

Visualization

CNG Simulator (Available from KEDRI, www.kedri.info)



qi  Evolutionary Algorithms 

• QiEA use a q-bit representation of a chromosome of n “genes” at a time 
t: 

• Each q-bit is defined as a pair of numbers (α, β) – probability density 
amplitudes. 

• A  n element q-bit vector can represent probabilistically 2n states at any 
time  

• The output is obtained after the q-bit vector is collapsed into a single 
state

• Changing probability density with quantum gates, e.g.  rotation gate: 

• M. Defoin-Platel, S.Schliebs, N.Kasabov, Quantum-inspired 
Evolutionary Algorithm: A multi-model EDA, IEEE Trans. Evolutionary 
Computation, Dec., 2009.
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Quantum inspired optimisation of features and parameters of 

eSNN 
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1) The principle of quantum probability feature representation:

At any time a feature is both present and not present in a computational model,

which is defined by the probability density amplitudes. When the model computes,

the feature state is ‘collapsed’ in either 0 (not used) or 1 (used ).

2) Quantum probability representation of the connections in eSNN.

3) Quantum probability representation of the eSNN parameters.

N.Kasabov, Integrative connectionist learning systems inspired by Nature: Current models, future trends and 

challenges, Natural Computation, Springer, 2009, 8:199-218.  
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Genes regulate the probability parameters of the 

probabilistic neuronal models in a Evolving Spiking 

Neuro-Genetic Reservoir (eSNGR) 
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4. Applications of eSNN and CNGM

• Spatio- and spectro- temporal data analysis, modeling and 

pattern recognition:

– Audio-visual, 

– EEG,

– fMRI

– Ecological

– Environmental 

• Modelling brain functions, e.g. epilepsy

• Modelling neurodegenerative diseases, e.g. AD 

• Modelling and creation of cognitive and emotional systems 

(e.g. Robots)

• Integrating CNGM with brain-gene ontology systems
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Applications of eSNN and CNGM for spatio- and spectro-

temporal data analysis, modelling and pattern recognition  
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eSNN for integrated audio-visual information processing  

Person authentication based on speech and face data
(Wysoski, Benuskova and Kasabov, Proc. ICONIP, 2007; Neural Networks, 2010) 
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peSNN reservoir for spatio-temporal and spectro-

temporal data modelling
S. Schliebs, N. Nuntalid, and N. Kasabov,Towards spatio-temporal pattern recognition using 

evolving spiking neural networks, Proc. ICONIP 2010, LNCS
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Modelling EEG data 
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eSNN and QiGA for feature selection in ecological 

modelling (insect establishment  prediction)  

Evolution of classification accuracy on the climate data set after 

3,000 generations.

Evolution of the features on the climate data set. The best accuracy model is obtained for 

15 features .  
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Table 1. Single and multiple genes related to some neurodegenerative diseases and brain abnormalities.  

 

 

DISEASE 
MUTATIONS OF 

GENES IDENTIFIED  

SO FAR 

LOCATION  

OF GENES  

ON CHRO 

MOSOMES 

BRAIN  

ABNORMALITY 

 

SYMPTOMS 

 

AGE OF 

ONSET 

Alzheimer disease 

(AD) 

PS2 (AD4) 

PS1 (AD3) 

unknown 

unknown 

1  

14 

19  

21 

plaques made of fragmented 

brain cells surrounded by 

amyloid-family proteins, 

tangles of cytoskeleton 

filaments 

progressive inability to 

remember facts and 

events and later to 

recognize friends and 

family 

71 years 

Amyotrophic lateral 

sclerosis (ALS) 

SOD1 (codes for 

enzyme removing 

dangerous superoxide 

radicals) 

21 
progressive degeneration of 

motor neuron cells in the spinal 

cord and brain 

loss of motor control 

which ultimately results 

in paralysis and death 

between 55 and 

75 years 

Fragile X syndrome  FMR1 (codes for 

FMRI protein with 

unknown function) 

X failure of the glutamate 

synapse formation and 

elimination 

the most common 

inherited form of mental 

retardation 

1 year 

Huntington disease 

(HD) 

HD gene (codes for the 

protein huntingtin that 

stimulates expression 

of BDNF) 

4 dilatation of ventricles and 

atrophy of caudate nucleus and 

striatum 

degenerative 

neurological disease that 

leads to dementia 

between 30 and 

50 years 

Rett syndrome MeCP2 

(codes for a protein 

which controls gene 

expression in the cell) 

X generalized brain atrophy, 

decrease in neuronal cell size,  

increased cell packing density, 

reduction in cholinergic 

neurons 

loss of purposeful use of 

hands and speech, 

wringing hand 

movements, seizures, 

mental retardation  

6 to 18 months 

Williams syndrome LIM kinase and elastin 

coding sequences 

7 unknown high competence in 

language, music and 

interpersonal relations, 

with low IQ 

At birth 

 

CNGM for modelling and understanding brain diseases
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CNGM for modelling epilepsy data 

 

                                                                                                                                                     
 

 

 

W = ? 

GABRA GABRA 
 

SCN AMPAR 
 

KCN 

CLC 

NMDAR 
 

PV 

 ANN  output GRN 

Through optimisation of a GRN within a SNN to match epilepsy data, a GRN 

model is discovered that points to new gene interactions (with A.Villa and 

L.Benuskova).  
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CNGM for Alzheimer’s Disease (AD) 
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CNGM for Modelling and Creation of Cognitive, Emotional 

Systems

• The CNGM framework allows to represent the complex interaction between parameters and

functions at different cognitive levels as follows.

• The lowest (‘molecular’) level represents sensory information, such as temperature, pressure,

odour, sound, image pressure, distance, etc. These ‘molecules’ can affect the ‘genes’ in a GRN.

• The GRN model includes parameters that represent neuromodulators (serotonin, dopamine,

noradrenalin and acetylcholine) and many other relevant parameters corresponding to the

cognitive functions at the highest SNN level. The lowest, sensory information level, can modify

the level of the neurotransmitter parameters and other ‘genes’, but they can be modified also

directly through external inputs or through a feedback from the higher cognitive level of SNN.

• The spiking patterns of the pSNN are analysed and recognised as a state of cognitive behaviour.

• The structure of the multi-scale CNGM is evolving in both space and time thus allowing for the

cognitive system to develop, adapt, learn new functions, change its behaviour and express

emotions.

• One of the main features of such pCNGM-based cognitive systems is the integration of several

dynamical systems that function at different time scales. All these processes will be modelled

together in a probabilistic, stochastic way.



Integrated CNGM and brain-gene ontology systems. 

The KEDRI BGO (www.kedri.info)
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5. Future developments

• Modelling evolving connectivity in a large scale CNGM – synaptic 

ontogenesis; 

• Integrated brain-gene ontology with CNGM  

• Methods and algorithms for generic tasks of a large scale: finite automata; 

associative memories; 

• Neurogenetic robots;

• Medical decision support systems for personalised risk and outcome 

prediction  of brain diseases:

– AD;

– Clinical depression;

– Stroke and TBI;

– Bipolar disease (data from the Welcome Trust UK – www.wtccc.org.uk);

• New hardware and software realisations; 

• Large scale applications for cognitive function modelling; 

• Large scale engineering applications , e.g. cyber security, environmental 

disaster prediction, climate change prediction, …. 

• New Brain- Computer Interfaces (BCI)
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KEDRI: The Knowledge Engineering and Discovery 

Research Institute (www.kedri.info)

Auckland University of Technology (AUT), New Zealand

• Established June 2002

• 4 senior research fellows and post-docs

• 25PhD and Masters   students;

• 25 associated researchers 

• Both fundamental and applied research  

(theory + practice)

• 320 refereed publications 

• 5 patents 

• Multicultural environment (10  ethnic 

origins) 

• Strong national and international 

collaboration

• New PhD students are welcome to 

apply.
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