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The Scope of the Contemporary NN Research

Understanding, modelling and curing the brain

Cognition and cognitive modelling

Memory

Learning, development

Neurogenetic modelling

Neuro-informatics

Mathematics of the brain

Brain ontologies

Bioinformatics

Molecular computing

Quantum information processing; Quantum inspired neural networks
Novel methods of soft computing for adaptive modelling and
knowledge discovery; Hybrid NN-, fuzzy-, evolutionary- algorithms;
Methods of evolving intelligence (El);

Evolving molecular processes and their modelling

Evolving processes in the brain and their modelling

Evolving language and cognition

Adaptive integrated/embedded systems
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The Scope of the Contemporary NN Applications:

« Adaptive speech, image and multimodal processing;
« Biosecurity

» Adaptive decision support systems;

« Dynamic time-series modelling; Adaptive control;
« Adaptive intelligent systems on the WWW;

* Medicine,

 Health,

« Information Technologies,

e Horticulture,

» Agriculture,

 Business and finance,

 Process and robot control,

» Arts and Design;

« Space research

« Earth and oceanic research

i
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Content of the talk

Moto: Based on biological evidence, new CNGM can be
developed to solve complex generic and specific tasks of
computational intelligence (ClI).

1) Biological motivations.

2) Spiking neural networks (SNN) and evolving SNN (eSNN).
3) Computational Neuro-Genetic Models (CNGM).

4) Applications

5) Future development
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1. Biological motivations

Primary Motor Inspiration from the brain

Cortex * The brain evolves through

Mntn[r:ﬂrstasuciatinn genetic “pre-wiring” and life-long
ortex

learning
» Evolving structures and functions
« Evolving features
« Evolving knowledge

* Local (e.g. cluster-based)
learning and global optimisation

« Memory (prototype)-based
Auditory Association Area learning, “traceable”

« Multimodal, incremental learning
* Spiking activity

» Genes/proteins involved

* Quantum effects in ion channels

Speech Center

Auditory Cortex
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Rich neurophysiological information about the spiking

activities in the brain is already available
(Singer, Abeles, Freeman, Villa, Grossberg, Kojima, Yamaguchi, ...)

Electric synaptic potentials and axonal ion channels responsible for spike generation
and propagation: EPSP = excitatory postsynaptic potential, IPSP = inhibitory
postsynaptic potential, 9 = excitatory threshold for an output spike generation.

M Spike train

bjﬁ\ \ ..... EPSP-IPSP > § Hm . F
W AV \?‘?‘:iii:::: \\\\\\\\\\\\\\\\ l}
PSP §

Voltage- gated

lon channels _%_
____________ in the neuron @ [

membrane ~—
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Biological neurogenetic processes

Gene information processing

principles:
, « Nature via Nurture
: Neuron _ _
soma, N « Complex interactions
) = ‘2- ) axon J between thousands of genes
7 _ =S — (appr. 6000 expressed in the
dendrites f:-— VLA ' ~_ brain) and proteins (more
-7 2 ‘ P TS than 100,000)
7 TS~ - Different time-scales
55 =+ Stochastic processes
2" messengers Proteins Protein : _
| | DNA mRNA  (receptors, transport to Offer the potential for:
activated in Ja enzymes,...) synapses, |«  Integrating molecular and

\ ) ) .‘.-n-‘u-..’ ,\ . .
synapses affect trynscription fransiation y axon.efc neuronal information

I
I
|
|
I
I
: transcription
I
|
|
|
I
I

[ , (
: : é > 53 g —’?f — £ processing (possibly with
LA () particle level as well)
factors (TFs) 1 ¢ =~
(TFs) W\ ¢ Ribosome g:::::le The challenge:
TFsregulate DNA s Endoplasmic - How do we integrate
iy Nucleus Reticulum molecular and spiking
| venscripon |

neuronal processes in a
SNN?
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Molecular (protein) level of spiking activities

d
A
presynaptic 10° m
terminal
v

synaptic cleft

postsynaptic membrane

Scheme of synaptic transmission:
a) A synapse is ready to transmit a signal.

b) Transmission of electric signal in a chemical synapse upon arrival of action potential into
the terminal.

Abbreviation: NT = neurotransmitter, R = AMPA-receptor-gated ion channel for sodium, N =
NMDA-receptor-gated ion channel for sodium and calcium.
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2. SNN and evolving SNN (eSNN)

integration Information processing principles in neurons
+ leakage \, q“\ _ and neural networks:
P — LTP and LTD;
Prt— _\ ‘/— refractory penod - TrainS Of SplkeS,
Q=3 — Time, frequency and space;

w1 Binary events — Synchronisation and stochasticity;

x4 T — Evolvability...

They offer the potential for:

— Modelling cognitive functions through

uict) : patterns of neuronal spiking activity;

— Modelling neuronal activities based on
genes and proteins;

— Integration of different ‘levels ‘of

9 . . .
° information processing.
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Models of Spiking Neurons

Spiking neuron models incorporate the concept of time and phase in
relation to the neuronal and synaptic states

Microscopic Level: Modeling of ion channels, that depend on
presence/absence of various chemical messenger molecules

» Hodgkin-Huxley’s
> lzhikevich’s

Macroscopic Level: Neuron is a homogenous unit, receiving and emitting
spikes according to defined internal dynamics

» Spike response model (SRM) (Maass)

» Integrate-and-Fire models (IF, LIF) (Maass, Gerstner)

» Thorpe’s model

» A probabilistic spiking neuron model (pSNM)
Integrative

» A quantum inspired optimisation of evolving SNN

» A neuro-genetic evolving SNN (ngeSNN)
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Rank Order Population Encoding

Distributes a single real input value to multiple neurons and may cause
the excitation and firing of several responding neurons

Implementation based on Gaussian receptive fields introduced by
Bothe efa/. 2002
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T 0.6} e N < N '
g 041 RN PR 2 A 1
w 0.2F // \'>" \v/ \-..:’ \"" ]
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T 0.2f| === Input Value - ]
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Neuron
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Learning in SNN

Due to time dependence, learning methods are rather complex in SNN
Recurrent SNN introduce additional difficulties and complexity
Unsupervised Hebbian learning

Spike-timing dependent plasticity (STDP)

Reinforcement learning (e.g. for robotics applications)

SpikeProp — supervised error back-propagation, similar to learning in
classical MLP

(Linear) readout functions for the Liquid State Machines (Maas et al)

ReSuMe — Remote Supervised Learning, capable of learning the
mapping from input to output spike trains

Weight optimization based on evolutionary algorithms (EA)
Combined EA and STDP
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Spike-Time Dependent Plasticity (STDP)

Hebbian form of plasticity in the form of long-term potentiation (LTP)
and depression (LTD)

Effect of synapses are strengthened or weakened based on the timing
of post-synaptic action potentials

Pre-synaptic activity that
precedes post-synaptic
firing can induce LTP,
reversing this temporal
order causes LTD

-0.2 —

0.4 -
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Thorpe’s Model

« Simple but computationally efficient neural model, in which early spikes
are stronger weighted — time to first spike learning

 Model was inspired by the neural processing of the human eye and
introduced by S. Thorpe et. al. 1997

« PSP uy?) of a neuron /:

( 0 if fired

UO =1 Sw,mee  else
Lilf (D=t

* w; is the weight of the connection between neuron jand i, 7(/) is the
firing time of j, m a parameter of the model (modulation factor)

* Function order(j) represents the rank of the spike emitted by neuron /
and receive at neuron /

o
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eSNN

(Kasabov, 2007; Wysoski, Benuskova and Kasabov, 2006-2010)

Creating and merging neurons based on localised information
Uses the first spike principle (Thorpe et al.) for fast on-line training
For each input vector
a) Create (evolve) a new output spiking neuron and its connections
b) Propagate the input vector into the network and train the newly created neuron

P der( ]
0 if fired Awj; = m° e
u. (t) = order(j)
10 | ijimi else Weights change based
It ()<t on the spike time arrival
c) Calculate the similarity between weight vectors of newly created neuron and existing
neurons:

IF similarity > S/Mthreshold THEN Merge newly created neuron with the most similar neuron,
where N is the number of samples previously used to update the respective neuron.

d) Update the corresponding PSP threshold 9:
W, +NW 9 St NI
1+N 1+N

W <

Three main parameters of the eSNN: Modulation factor m; Spiking threshold %, S/Mthreshold

. 1 . #
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Probabilistic spiking neuron model, pSNM
(Kasabov, Neural Networks, Jan. 2010)

ot The information in pSNM is represented as both connection weights and
probabilistic parameters for spikes to occur and propagate. The neuron

(n;) receives input spikes from pre-synaptic neuron n, (j=1,2,...,m). The
state of neuron n, is described by the sum of the inputs received from all m
synapses — the postsynaptic potential, PSPi(t). When PSPi(t) reaches a
py(t), wy(t) firing threshold 3i(t), neuron ni fires, i.e. emits a spike.

pcji(t)

pi(t)
The PSPIi(t) is now calculated using a new formula:

PSP () =2 2 e 9(pg(t-p)) f(pg,(t-p)) w;i(t) + n(t-ty)
p=ty,..t j=1,...m

where: g is 1, if a spike has been emitted from neuron n; and O otherwise; g(p;(t)) is 1 with
a probablllty pC,( ), and 0 otherwise; f(p;(t)) is 1 with a probablllty pgi(t), and O other\lee t,
is the time of the last spike emitted by n; n(t-t;) is an additional term representing decay in
the PSP. As a special case, when all or some of the probability parameters are fixed to “17,

the ipSNM will be simplified and will resemble some already known spiking neuron models,
such as SRM.

@
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3. Computational Neurogenetic Models

= Functions of neurons and neural networks are influenced by internal networks of
interacting genes forming an abstract GRN model.

- The GRN and the SNN function at different time scales

- The challenge is how to integrate a GRN model into a SNN model.

A CNGM is a SNN that incorporates a gene regulatory network (GRN) to capture
the interaction of genes related to neuronal activities of the SNN.

Computational

Neurogenetic
Modeling

°
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GRN as a dynamical system

P,(t)=P;(0)g; (1)

g;(t+1) :G[anwjk (t)gk(t)j
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A spike response CNGM of a neuron (integrating gene
activation with neuronal spiking activity)

(Kasabov, Benuskova, Wysoski, 2005)

Table. Neuronal Parameters and Related Proteins
Neuronal parameter

Protein

o\ > Amplitude and time constants of
ui(t) : S —t7) Fast excitation PSP AMPAR
=Y PSP b E\‘ threshold Slow excitation PSP NMDAR
I Fast inhibition PSP GABRA
Slow inhibition PSP GABRB
Firing threshold SCN, KCN, CLC

Late excitatory PSP PV
through GABRA

>
Time (Ims)

t—t, — AV t—t. — A
PSPYPe(t—t, —AT) = A" exp ———— |—exp —————
J! J 1) type type
Z-decay Trise

type = fast excitation, slow_excitation, fast_inhibition, slow_inhibition
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GA optimization of a GRN model
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g/ Evolutionary Algorithms

* QIEA use a g-bit representation of a chromosome of n “genes” at a time
t:
QM) ={a;,9;,---, dn}

« [Each g-bit is defined as a pair of numbers (a, §) — probability density
amplitudes. o |2 ny: |2 _q

A nelement g-bit vector can represent probabilistically 2" states at any
time

 The output is obtained after the g-bit vector is collapsed into a single
state

« Changing probability density with quantum gates, e.g. rotation gate:

| cos(Af) —sin(Af) || a4
[ﬂ}_[sin(AH) cos(AB) || B,

M. Defoin-Platel, S.Schliebs, N.Kasabov, Quantum-inspired
Evolutionary Algorithm: A multi-model EDA, IEEE Trans. Evolutionary
Computation, Dec., 2009.

@
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Quantum inspired optimisation of features and parameters of

data feature recept. input neuron [ Induction Method
sample masi fields nNneurons repos.
/ / /4}/_ > / .
o6 |— 1 % — [
o.1L|—— O - Class 1 3__—_r
; [ve]
=1
- - - e > =
- - - = —
= z = Fe =
= = =
= = - m
0.9 |——— 1 T — [~ Class 2 =
— (O -
e =—— =S ]
1 T

I— Feature | Parameter

Subset
Solution

4 Select Adapt
Solution Search

Optimizer |

1) The principle of quantum probability feature representation:

At any time a feature is both present and not present in a computational model,
which is defined by the probability density amplitudes. When the model computes,
the feature state is ‘collapsed’ in either O (not used) or 1 (used ).

2) Quantum probability representation of the connections in eSNN.

3) Quantum probability representation of the eSNN parameters.

N.Kasabov, Integrative connectionist learning systems inspired by Nature: Current models, future trends and
challenges, Natural Computation, Springer, 2009, 8:199-218.
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Genes regulate the probability parameters of the
probabilistic neuronal models in a Evolving Spiking
Neuro-Genetic Reservoir (eSNGR)
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4. Applications of eSNN and CNGM

« Spatio- and spectro- temporal data analysis, modeling and
pattern recognition:
— Audio-visual,
- EEG,
— fMRI
— Ecological
— Environmental
« Modelling brain functions, e.g. epilepsy
 Modelling neurodegenerative diseases, e.g. AD
« Modelling and creation of cognitive and emotional systems
(e.g. Robots)

« Integrating CNGM with brain-gene ontology systems

i
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Applications of eSNN and CNGM for spatio- and spectro-
temporal data analysis, modelling and pattern recognition
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eSNN for integrated audio-visual information processing

Person authentication based on speech and face data
(Wysoski, Benuskova and Kasabov, Proc. ICONIP, 2007; Neural Networks, 2010)

Visual frame; (greyscale pixel)
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peSNN reservoir for spatio-temporal and spectro-
temporal data modelling

S. Schliebs, N. Nuntalid, and N. Kasabov,Towards spatio-temporal pattern recognition using
evolving spiking neural networks, Proc. ICONIP 2010, LNCS
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Modelling EEG data
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eSNN and QiGA for feature selection in ecological
modelling (insect establishment prediction)

Evolution of Feature Number
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Evolution of classification accuracy on the climate data set after
3,000 generations.
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CNGM for modelling and understanding brain diseases

Table 1. Single and multiple genes related to some neurodegenerative diseases and brain abnormalities.

LOCATION
DISEASE IC\E/IIlEJl;lrEASTII[?ENS'IEDIEIED OF GENES BRAIN SYMPTOMS AGE OF
SO FAR ON CHRO ABNORMALITY ONSET
MOSOMES
Alzheimer disease PS2 (AD4) 1 plagues made of fragmented progressive inability to |71 years
(AD) PS1 (AD3) 14 brain cells surrounded by remember facts and
unknown 19 amyloid-family proteins, events and later to
unknown 21 tangles of cytoskeleton recognize friends and
filaments family
Amyotrophic lateral |SOD1 (codes for 21 roaressive degeneration of loss of motor control between 55 and
sclerosis (ALS) enzyme removing brog gener . which ultimately results |75 years
. motor neuron cells in the spinal |. .
dangerous superoxide . in paralysis and death
. cord and brain
radicals)
Fragile X syndrome |FMR1 (codes for X failure of the glutamate the most common 1 year
FMRI protein with synapse formation and inherited form of mental
unknown function) elimination retardation
Huntington disease  |HD gene (codes for the |4 dilatation of ventricles and degenerative between 30 and

(HD)

protein huntingtin that
stimulates expression

atrophy of caudate nucleus and
striatum

neurological disease that
leads to dementia

50 years

of BDNF)
Rett syndrome MeCP2 X generalized brain atrophy, loss of purposeful use of |6 to 18 months
(codes for a protein decrease in neuronal cell size, |hands and speech,
which controls gene increased cell packing density, |wringing hand
expression in the cell) reduction in cholinergic movements, seizures,
neurons mental retardation
Williams syndrome  |LIM kinase and elastin |7 unknown high competence in At birth

coding sequences

language, music and
interpersonal relations,
with low 1Q

nkasabov@aut.ac.nz
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CNGM for modelling epilepsy data
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Through optimisation of a GRN within a SNN to match epilepsy data, a GRN
model is discovered that points to new gene interactions (with A.Villa and

L.Benuskova).
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CNGM for Alzheimer’s Disease (AD)
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CNGM for Modelling and Creation of Cognitive, Emotional
Systems

* The CNGM framework allows to represent the complex interaction between parameters and
functions at different cognitive levels as follows.

* The lowest (‘molecular’) level represents sensory information, such as temperature, pressure,
odour, sound, image pressure, distance, etc. These ‘molecules’ can affect the ‘genes’ in a GRN.

* The GRN model includes parameters that represent neuromodulators (serotonin, dopamine,
noradrenalin and acetylcholine) and many other relevant parameters corresponding to the
cognitive functions at the highest SNN level. The lowest, sensory information level, can modify
the level of the neurotransmitter parameters and other ‘genes’, but they can be modified also
directly through external inputs or through a feedback from the higher cognitive level of SNN.

* The spiking patterns of the pSNN are analysed and recognised as a state of cognitive behaviour.

* The structure of the multi-scale CNGM is evolving in both space and time thus allowing for the
cognitive system to develop, adapt, learn new functions, change its behaviour and express
emotions.

» One of the main features of such pPCNGM-based cognitive systems is the integration of several
dynamical systems that function at different time scales. All these processes will be modelled
together in a probabilistic, stochastic way.
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Integrated CNGM and brain-gene ontology systems.
The KEDRI BGO (
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5. Future developments

Modelling evolving connectivity in a large scale CNGM - synaptic
ontogenesis;

Integrated brain-gene ontology with CNGM

Methods and algorithms for generic tasks of a large scale: finite automata;
associative memories;

Neurogenetic robots;

Medical decision support systems for personalised risk and outcome
prediction of brain diseases:

- AD;

— Clinical depression;

— Stroke and TBI;

— Bipolar disease (data from the Welcome Trust UK - );

New hardware and software realisations;
Large scale applications for cognitive function modelling;

Large scale engineering applications , e.g. cyber security, environmental
disaster prediction, climate change prediction, ....

New Brain- Computer Interfaces (BCI)
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KEDRI: The Knowledge Engineering and Discovery
Research Institute (www.kedri.info)
Auckland University of Technology (AUT), New Zealand

« Established June 2002
* 4 senior research fellows and post-dogs
« 25PhD and Masters students;
« 25 associated researchers

. Both fundamental and applied researdft "'
(theory + practice) ’

« 320 refereed publications

« 5 patents

»  Multicultural environment (10 ethnic
origins)

« Strong national and international
collaboration

« New PhD students are welcome to
apply.
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