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Spectral Approaches

I Assume data is given in the form of interpoint squared
distances.

di ,j = ‖yi ,: − yj ,:‖2
2 = y>i ,:yi ,: − 2y>i ,:yj ,: + y>j ,:yj ,:.

I Classical MDS: find linear embedding which approximates
distance matrix D (Mardia et al., 1979).

I it provides a linear transformation between X (latent space)
and Y (data space).

I Spectral approaches in machine learning give a nonlinear
relationship between the data and the distances.

I This is done by not computing D directly in the space of Y.

I Example: kernel PCA, where D is computed in a feature space
derived from Y,

di ,j = ki ,i − 2ki ,j + kj ,j .
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Classical MDS and KPCA

I CMDS procedure performs eigenvalue problem on centered
kernel matrix.

B = HKH.

(equivalently B = −1
2HDH)

I This matches the KPCA algorithm (Schölkopf et al., 1998).

I However, for the commonly used exponentiated quadratic
kernel,

k(yi ,:, yj ,:) = exp(−γ ‖yi ,: − yj ,:‖2
2),

KPCA actually expands the feature space (Weinberger et al.,
2004).



Classical MDS and KPCA

I CMDS procedure performs eigenvalue problem on centered
kernel matrix.

B = HKH.

(equivalently B = −1
2HDH)

I This matches the KPCA algorithm (Schölkopf et al., 1998).

I However, for the commonly used exponentiated quadratic
kernel,

k(yi ,:, yj ,:) = exp(−γ ‖yi ,: − yj ,:‖2
2),

KPCA actually expands the feature space (Weinberger et al.,
2004).



Classical MDS and KPCA

I CMDS procedure performs eigenvalue problem on centered
kernel matrix.

B = HKH.

(equivalently B = −1
2HDH)

I This matches the KPCA algorithm (Schölkopf et al., 1998).

I However, for the commonly used exponentiated quadratic
kernel,

k(yi ,:, yj ,:) = exp(−γ ‖yi ,: − yj ,:‖2
2),

KPCA actually expands the feature space (Weinberger et al.,
2004).



Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

I MVU (Weinberger et al., 2004): learn a “kernel matrix” that
will allow for dimensionality reduction.

I Preserve only local proximity relationships in the data.
I Take a set of neighbors.
I Construct a kernel matrix where only distances between

neighbors match data distances.
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Maximum Variance Unfolding

I Optimize elements of K by maximizing tr (K) (total variance
of data).
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I Subject to distance constraints between neighbors

di ,j = ki ,i − 2ki ,j + kj ,j
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Our Contribution

I Maximize entropy instead of variance (Jaynes, 1986): MEU.

I Entropy and variance both measure uncertainty.

I Maximum entropy leads to a probabilistic model.

I The model relates several different spectral approaches.
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Maximum Entropy Unfolding

I Find distribution with maximum entropy subject to constraints
on moments.
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on moments.
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I MEU constraints are on expected distances between neighbors.

di ,j = ki ,i − 2ki ,j + kj ,j

which can be written in terms of the covariance.



Gaussian Random Field

I The maximum entropy probability distribution is a Gaussian
random field

p(Y) =

p∏
j=1

1

|K|
1
2 (2π)

n
2

exp

(
−1

2
y>:,jK

−1y:,j

)
,

I Covariance matrix is

K = (L + γI)−1.

I Where L is the Laplacian matrix associated with the
neighborhood graph.

I Off diagonal elements of the Laplacian are Lagrange
multipliers from moment constraints.

I On diagonal elements given by negative sum of off-diagonal
(L1 = 0).
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Data Feature Independence

I The GRF specifying independence across data features.
I Most applications of Gaussian models are applied

independently across data points.
I Notable exceptions include Zhu et al. (2003); Lawrence (2004,

2005); Kemp and Tenenbaum (2008).

I Maximum likelihood in this model is equivalent maximizing
entropy under distance constraints.
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I Maximum likelihood is consistent: (see e.g. Wasserman, 2003,
pg 126)

I As we increase data points parameters become better
determined.

I Not in this model.
I As we increase data features parameters become better

determined.

I This turns the large p small n problem on its head.

I There is a “Blessing of Dimensionality” in this model.
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Relationship to Laplacian Eigenmaps

I Laplacian eigenmaps (Belkin and Niyogi, 2003): graph
Laplacian is specified across the data points.

I Laplacian has exactly the same form as our matrix L.

I Parameters of the Laplacian are set either as constant or
according to the distance between two points.

I Smallest eigenvectors of this Laplacian are then used for
visualizing the data (discarding constant eigenvector).

I This operation is equivalent to taking largest eigenvectors of
HKH.

I Laplacian eigenmaps do not preserve distances between
neighbors.
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Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we can constrain M>1 = 0 giving
L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).



Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we can constrain M>1 = 0 giving
L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).



Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we can constrain M>1 = 0 giving
L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).



Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we can constrain M>1 = 0 giving
L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).



Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we can constrain M>1 = 0 giving
L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).



Locally Linear Embedding

I Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, mi,i , are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of the

data.
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I ignoring the partition function removes the need to invert to

recover the covariance matrix.
I LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not match
that used in the Laplacian for the other algorithms due to the
factorized representation.
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I LLE is motivated by considering local linear embeddings of the
data.

I Interestingly, as we increase the neighborhood size to
K = n − 1 we do not recover PCA.

I But PCA is the “optimal” linear embedding!!

I LLE is optimizing a pseudolikelihood: in contrast the MEU
algorithm, which LLE approximates, does recover PCA when
K = n − 1.
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I Fill in graph for non-neighbors with a shortest path algorithm.

I MVU and MEU can be start with a sparse graph of (squared)
distances.

I Fill in other distances by maximizing the total
variance/entropy.
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Relation to GP-LVM

I Both MEU and GP-LVM (Lawrence, 2004, 2005) specify a
similar Gaussian density over the training data.

I Gauss Markov random field can easily be specified by a
Gaussian process through an appropriate covariance.

I e.g. the O-U covariance in a 1-D latent space
k(x , x ′) = exp(−‖x − x ′‖1) gives a sparse inverse with only
neighbors connected.

I In GP-LVM neigborhood is optimized as part of the training
procedure.
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Simple Experiments

I Consider two real data sets.

I We apply each of the spectral methods we have reviewed.

I Apply the MEU framework.

I Follow the suggestion of Harmeling (Harmeling, 2007) and use
the GPLVM likelihood (Lawrence, 2005) for embedding
quality.

I The higher the likelihood the better the embedding.



Motion Capture Data

I Data consists of a 3-dimensional point cloud of the location of
34 points from a subject performing a run.

I 102 dimensional data set containing 55 frames of motion
capture.

I Subject begins the motion from stationary and takes
approximately three strides of run.

I Should see this structure in the visualization: a starting
position followed by a series of loops.

I Data was made available by Ohio State University.

I The two dominant eigenvectors are visualized in following
figures.



Laplacian Eigenmaps and LLE

-2

-1

0

1

2

3

-1 0 1 2
(a) Laplacian Eigenmaps

-2

-1

0

1

-2 -1 0 1 2 3
(b) Locally Linear Embedding

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Robot Navigation Example

I Second data set: series of recordings from a robot as it traces
a square path in a building.

I It records the strength of WiFi signals (see Ferris et al., 2007,
for an application).

I Robot only in two dimensions, the inherent dimensionality of
the data should be two.

I Robot completes a single circuit after entry: it is expected to
exhibit “loop closure”.

I Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.
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Figure: Models show loop closure but smooth the trace to different
degrees.



Isomap and MVU

-2

-1

0

1

2

-3 -2 -1 0 1 2
(a) Isomap

-3
-2
-1
0
1
2
3

-3-2-10123
(b) MVU

Figure: Models show loop closure but smooth the trace to different
degrees.



MEU

-1

0

1

2

-2 -1 0 1 2
(a) MEU

Figure: Models show loop closure but smooth the trace to different
degrees.



Robot Navigation: Model Scores

LE

LLE

isomap

MVU

MEU

DRILL

-6000 -1000 4000

Figure: Model score for the different spectral approaches.



Outline

Maximum Entropy Unfolding

Relations to Other Spectral Methods

GP-LVM

Experiments

Discussion and Conclusions



Discussion

I New perspective on dimensionality reduction algorithms based
around maximum entropy.

I Start with MVU and end with GRFs.

I Hope that this perspective on dimensionality reduction will
encourage new strands of research at the interface of these
areas.



Discussion

I New perspective on dimensionality reduction algorithms based
around maximum entropy.

I Start with MVU and end with GRFs.

I Hope that this perspective on dimensionality reduction will
encourage new strands of research at the interface of these
areas.



Discussion

I New perspective on dimensionality reduction algorithms based
around maximum entropy.

I Start with MVU and end with GRFs.

I Hope that this perspective on dimensionality reduction will
encourage new strands of research at the interface of these
areas.



Stages of Spectral Dimensionality Reduction

I Our perspective shows there are three separate stages used in
existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally
k-nearest neighbors or similar algorithms are used.

2. Interpoint distances between neighbors are fed to the
algorithms which provide a similarity matrix. The way the
entries in the similarity matrix are computed is the main
difference between the different algorithms.

3. The relationship between points in the similarity matrix is
visualized using the eigenvectors of the similarity matrix.
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I Each step is somewhat orthogonal.

I Neighborhood relations need not come from nearest
neighbors: can use structure learning.

I Main difference between approaches is how similarity matrix
entries are determined.

I Final step attempts to visualize the similarity using
eigenvectors. This is just one possible approach.

I There is an entire field of graph visualization proposing
different approaches to visualizing such graphs.
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Advantages of Existing Approaches

I Conflating the three steps allows faster complete algorithms.

I E.g. mixing 2nd & 3rd allows speed ups by never computing
the similarity matrix.

I We still can understand the algorithm from the unifying
perspective while exploiting the computational advantages
offered by this neat shortcut.
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LLE: Point One

I For unit diagonals we have M = I−W.

I Here the off diagonal sparsity pattern of W matches M.

I Thus
(I−W)>1 = 0.

I LLE proscribes that the smallest eigenvectors of

(I−W)(I−W)> = MM> = L

(like Laplacian Eigenmaps).

I Equivalent to CMDS on the GRF described by L.
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LLE: Second Point

I Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

p(Y) ≈
n∏

i=1

p(yi ,:|Y\i ),

Y\i represents data other than the ith point.

I True likelihood is proportional to this but requires
renormalization.

I In pseudolikelihood normalization is ignored.
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Consistency of Model

I Deeper lesson on interpretation of consistency:
I for “sampled points” parameters better determined with

increasing n
I for “sampled features” parameters better determined with

increasing p.

I In the large p small n domain, the “sampled features”
formalism is attractive.

I For computing the likelihood of an out we need to estimate
parameters associated with that point.
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Final Experiment: Structure Learning

I Test the ability of L1 regularization of the random field to
learn the neighborhood.

I Considered the motion capture data and used the DRILL with
a neighborhood size of 20 and full connectivity.

I L1 regularization on the parameters: vary regularization size
and seek a maximum under the GPLVM.
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Different Neighborhood Scores
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Discussion of 
“Spectral Dimensionality 

Reduction via Maximum Entropy”

Laurens van der Maaten



 First manifold learners were instantiations of Kernel 
PCA that use hand-crafted “kernels”:

 Examples: Isomap, Laplacian Eigenmaps, LLE, etc.

 Recently, interest shifted to learning a “good” kernel:

 Maximize some rank-minimizing objective subject to 
linear constraints that preserve local structure

 Examples: Maximum Variance Unfolding, Structure 
Preserving Embedding, Maximum Entropy Unfolding

Timeline

(Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; Weinberger & Saul, 2005; Shaw & Jebara, 2010)



 Interesting connection between MEU and GPLVM:

 Both model P(Y) as a GRF in which a data point is a node

 Key difference is in how the GRF covariance is obtained

 GPLVM:

 MEU:

 MEU unifies two seemingly very different 
approaches:

 Manifold learning

 Generative modeling

Manifold learning vs. generative modeling



 Manifold learning:

 Smooth mapping from data space to latent space

 Similar data points should be close together in the 
embedding: preserving local structure!

 Generative modeling:

 Smooth mapping from latent space to data space

 Dissimilar points may not be close together in the 
embedding: preserving global structure!

Manifold learning vs. generative modeling



 MEU is the first to combine the best of both worlds:
 It preserves local data structure in the embedding

 Probabilistic framework allows for natural extensions to 
missing data, hierarchical models, etc.

 Current formulation still has a peculiarity:
 In MEU, the embedding does not appear as latent 

variable in the generative model

 One could use any MDS technique to embed K

Manifold learning vs. generative modeling



 The rank of the kernel matrix controls what we do 
with dissimilar data points when preserving local data 
structure:

 Maximum Variance Unfolding

 Maximizes the sum of the kernel eigenvalues

 Maximum Entropy Unfolding

 Maximizes the sum of the log-eigenvalues

 Which one is better?

Rank minimization



 How you deal with dissimilar data makes a difference:

 Stochastic Neighbor Embedding is Laplacian Eigenmaps 
with a different covariance constraint (Carreira-Perpinan, 2010)

 How to deal with dissimilar data may be more important 
than how to deal with similar data in manifold learning

 Recent successes push away dissimilar data as far as 
possible (Weinberger & Saul, 2005; van der Maaten & Hinton, 2008)

 Perhaps MEU can lead to new insights here?

Rank minimization
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