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Delimited Control Operators

» Coming from Theoretical Computer Science

» Very abstract way to capture computational effects from the
theory of programming languages

» Starting interest: essential ingredient in a likely constructive
proof of completeness of intuitionistic logic w.r.t. Kripke
models, due to Olivier Danvy

» But, no simple/logical explanation

» Topic of PhD thesis supervised by Hugo Herbelin



Delimited Control Operators

Logical Explanation

» Type-and-effect systems (Danvy-Filinski 1991)

» hard to relate to traditional logic - implication a quaternary

connective
» Classical logic

» can be considered as computational contents of classical logic

> but, classical logic does not have the Disjunction and Existence
Properties — not nice for a programming language

» also, computationally more powerful than older
(non-delimited) control operators that are behind some
computational interpretations of classical logic

» Intuitionistic logic (Herbelin 2010)

> one can use them to derive Markov’s Principle
» but, one does not lose Disjunction and Existence Properties
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Delimited Control Operators

Example 2 - full use
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MQC*- Intuitionistic Extension of Intuitionistic Logic

To the natural deduction system of minimal intuitionistic logic,
add:

1. Arule marking that a {=, V}-free formula T is being proved:

Ty T
I'- T
2. Arule for using classical logic in the delimited derivation

sub-tree:
I, A>TFHpr T
I'r A
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Extending the A-Calculus of Proof Terms

Proof terms:
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Extending the A-Calculus of Proof Terms

Proof terms:

pgra=alupliplcasepof (aqlb.r)|(p,@|miplaplAa.pl
| pg| Ax.p| pt|(t,p) | dest pas (x.a) in q|#p| FLk.p

Values:
Vi=aluVIipVI(V, V)| V)| dapl Ax.p

Pure evaluation contexts:

P:=[]|case Pof (a1.p1llaz.p2) | m1P| m2P| dest Pas (x.a) in p|
Pq| (Aa.q)P| Pt|uP|wP| (P,p) | (V,P)|(t,P)
Reduction: (Call-by-value strategy)
(Aa.p)V — piVia} case;Vof (ar.pillaz.p2) — pilV/ai
Ax.p)t— pit/x} dest (¢, V) as (x.a) in p— pit/x}{V/a}
(W, Vo) — V; #P[S k.p) — #p{(Aa#Pla)) | k}
#V -V El[pl — E[p/] when p— p!



MQC*- Examples of Derivations

Deriving the predicate logic version of Markov’s Principle

Markov’s Principle (predicate logic version):
11S=> S, forSa{=,V}-free-formula

Aa#Llg(a(Ab. #k.b)



MQC*- Examples of Derivations

Deriving the predicate logic version of Double-negation Shift

Double Negation Shift (predicate logic version):
Vx(=—A(x) = 1 (VXA(X))

AaAb#b(Ax. L k.axk)



Kripke-CPS Models

The Semantic Side of MQC*

Asstructure (K, <, D,IF L), where:
» (K, <) a preorder of worlds;

» wl?C arelation labelling a world w as exploding at formula C
and annotation q;

» wlk, Ay arelation of strong forcing of atomic formulae Ay, such
that
forall W' = w, wlk, Ay — W' IE, Ay,

» D(w), a domain of quantification for each world w, such that
for all W' = w, D(w) < D(W).

» and, ...



Kripke-CPS Models

The Semantic Side of MQC*

» and, strong forcing IV is extended from atomic to composite
formulae inductively and by simultaneously defining a new
relation, (non-strong) forcing|-:

whA:{ Yurzw. Yur 2wy up B, A= wp L' T) - wn I'T ,a=T
VCYwi zw. (Yurzwy. un FA— up LC)— wy LC ,noa
wlE, AABif wlk; Aand wit, B
wlE,Av Bif wik; Aor wik, B
wlF, A= Biffor all W > w, wlk, Aimplies wl, B
wlk, Yx.A(x) if for all w' = wand all r€ D), W' Ik, A(9)
wlk 3x.A(x) if wlt, A(t) for some t € D(w)



Kripke-CPS Models

Soundness, Completeness, Normalisation, Disjunction and Existence Properties

Theorem (Soundness)
IfT 4 A, then forall w,d = a,wlt-,T implies w4 A.

Theorem (Completeness for %)
There is a “universal” model % s.t. for any worldT € %, ifT |-, A,
thenT F A.

Corollary (Normalisation of MQC™)
FA— FYA

Corollary (DP and EP for MQC™)

If- Av B, then either - Aort B.
Ift 3xA(x), then there exists t such that - A(t).



Extension of Glivenko’s Theorem to Predicate Logic
Other Properties of MQC™

Theorem (Glivenko 1929)
For propositional logic, F' ~—A — F°A

Theorem (Godel 1933)
For predicate logic, ' A+ — F°A

Theorem (Glivenko’s Theorem for Predicate Logic)
F*-2A «— DNSH AL — F°A



Towards a New Computational Interpretation of
Sub-classical Principles

Research Project

Work directions:

1.

SARE S

A system unifying current variants
Constructive Reverse Mathematics
Constructive proofs of completeness
Revisiting Dialectica and Bar Recursion

Computational Effects



1. A System Unifying Current Approaches

v

The shown system can prove DNS (arbitrarily many instances)

v

But, only one instance of MP

v

And no instances of MP if DNS is also proved

v

Herbelin’s system can prove arbitrarily many instances of MP

v

But, no instance of DNS



2. Constructive Reverse Mathematics

» Investigating already existing connections in Intuitionistic
Reverse Mathematics

Solovay-Moschovakis: BI + MP - DNS
Veldman: Completeness for Kripke models using FAN
Veldman: MP + OIP & DNS

Ishihara: variants of MP

v

v

v

v



3. Constructive proofs of completeness

» Godel’s proof of Completeness is essentially constructive
» Proved by Krivine using a double-negation translation

» Should be possible to prove it directly: delimited control
operators are precisely a way to unwind double-negation
proofs



3. Constructive proofs of completeness

» Godel’s proof of Completeness is essentially constructive
» Proved by Krivine using a double-negation translation

» Should be possible to prove it directly: delimited control
operators are precisely a way to unwind double-negation
proofs

» No a priori constructive proof of Completeness for
intuitionistic logic w.r.t. Kripke semantics, when one considers
all logical connectives

» Proved by Wim Veldman using the Fan theorem

» Should be possible to prove it directly: such an algorithm was
already given by Olivier Danvy



4. Revisiting Dialectica and Bar Recursion

» Godel’s Dialectica interpretation validates MP

» Spector’s extension validates DNS and thus the
double-negation translation of Countable Choice

» More recent version of bar recursion by Coquand, Berger,
Kohlenbach

» Can delimited control operators be used as (less complex)
alternative?



5. Computational Effects

» Delimited control operators were invented in Semantics of
programming languages

» They can express any monadic computational effect (Filinski
1994)

» Logical explanation of computational effects an open problem

» Also, reduction for delimited control operators so far specified
as weak-head subset

» Normalisation via Kripke-CPS models gives a way to find out
the full reduction relation



