Towards a New Computational Interpretation of Sub-classical Principles

Danko Ilik

University "Goce Delčev" - Štip, Macedonia

28th April, 2011
"New Trends in Logic" Conference Austrian Academy of Sciences

Delimited Control Operators

- Coming from Theoretical Computer Science
- Very abstract way to capture computational effects from the theory of programming languages
- Starting interest: essential ingredient in a likely constructive proof of completeness of intuitionistic logic w.r.t. Kripke models, due to Olivier Danvy
- But, no simple/logical explanation
- Topic of PhD thesis supervised by Hugo Herbelin

Delimited Control Operators

Logical Explanation

- Type-and-effect systems (Danvy-Filinski 1991)
- hard to relate to traditional logic - implication a quaternary connective
- Classical logic
- can be considered as computational contents of classical logic
- but, classical logic does not have the Disjunction and Existence Properties - not nice for a programming language
- also, computationally more powerful than older (non-delimited) control operators that are behind some computational interpretations of classical logic
- Intuitionistic logic (Herbelin 2010)
- one can use them to derive Markov's Principle
- but, one does not lose Disjunction and Existence Properties

Delimited Control Operators

Example 1 - use as "exceptions"
$1+\#(2+\mathscr{S} k .4)$

Delimited Control Operators

Example 1-use as "exceptions"
$1+\#(2+\mathscr{S} k .4)$
$\rightarrow 1+$ \#4

Delimited Control Operators

Example 1-use as "exceptions"

$$
\begin{aligned}
& 1+\#(2+\mathscr{S} k .4) \\
\rightarrow & 1+\# 4 \\
\rightarrow & 1+4 \\
\rightarrow & 5
\end{aligned}
$$

Delimited Control Operators

Example 2 - full use
$1+\#(2+\mathscr{S} k \cdot k(k 4))$

Delimited Control Operators

Example 2 - full use

$$
\begin{aligned}
& 1+\#(2+\mathscr{S} k \cdot k(k 4)) \\
\rightarrow & 1+\#((\lambda a . \#(2+a))((\lambda a . \#(2+a)) 4))
\end{aligned}
$$

Delimited Control Operators

Example 2 - full use

$$
\begin{aligned}
& 1+\#(2+\mathscr{S} k \cdot k(k 4)) \\
& \rightarrow 1+\#((\lambda a \cdot \#(2+a))((\lambda a \cdot \#(2+a)) 4)) \\
& \rightarrow^{+} 1+\#(\#(\# 8))
\end{aligned}
$$

Delimited Control Operators

Example 2 - full use

$$
\begin{aligned}
& 1+\#(2+\mathscr{S} k \cdot k(k 4)) \\
& \rightarrow 1+\#((\lambda a \cdot \#(2+a))((\lambda a \cdot \#(2+a)) 4)) \\
& \rightarrow^{+} 1+\#(\#(\# 8)) \\
& \rightarrow^{+} 9
\end{aligned}
$$

MQC^{+}- Intuitionistic Extension of Intuitionistic Logic

To the natural deduction system of minimal intuitionistic logic, add:

1. A rule marking that a $\{\Rightarrow, \forall\}$-free formula T is being proved:

$$
\begin{array}{ll}
\Gamma \vdash \vdash_{T} & T \\
\hline \Gamma \vdash & T
\end{array}
$$

2. A rule for using classical logic in the delimited derivation sub-tree:

$$
\frac{\Gamma, \quad A \Rightarrow T \vdash_{T} \quad T}{\Gamma \vdash_{T} \quad A}
$$

MQC^{+}- Intuitionistic Extension of Intuitionistic Logic

To the natural deduction system of minimal intuitionistic logic, add:

1. A rule marking that a $\{\Rightarrow, \forall\}$-free formula T is being proved:

$$
\frac{\Gamma \vdash \vdash_{T} p: T}{\Gamma \vdash \# p: T}
$$

2. A rule for using classical logic in the delimited derivation sub-tree:

$$
\frac{\Gamma, k: A \Rightarrow T \vdash_{T} p: T}{\Gamma \vdash_{T} \mathscr{S} k \cdot p: A}
$$

MQC^{+}- Intuitionistic Extension of Intuitionistic Logic

Extending the λ-Calculus of Proof Terms
Proof terms:

$$
\begin{array}{r}
p, q, r::=a\left|\iota_{1} p\right| \iota_{2} p \mid \text { case } p \text { of }(a . q \| b . r)|(p, q)| \pi_{1} p\left|\pi_{2} p\right| \lambda a . p \mid \\
|p q| \lambda x . p|p t|(t, p) \mid \text { dest } p \text { as }(x . a) \text { in } q|\# p| \mathscr{S} k . p
\end{array}
$$

MQC^{+}- Intuitionistic Extension of Intuitionistic Logic

Extending the λ-Calculus of Proof Terms

Proof terms:

$$
\begin{array}{r}
p, q, r::=a\left|\iota_{1} p\right| \iota_{2} p \mid \text { case } p \text { of }(a . q \| b . r)|(p, q)| \pi_{1} p\left|\pi_{2} p\right| \lambda a . p \mid \\
|p q| \lambda x . p|p t|(t, p) \mid \text { dest } p \text { as (x.a) in } q|\# p| \mathscr{S} k . p
\end{array}
$$

Values:

$$
V::=a\left|\iota_{1} V\right| \iota_{2} V|(V, V)|(t, V)|\lambda a . p| \lambda x . p
$$

MQC^{+}- Intuitionistic Extension of Intuitionistic Logic

Extending the λ-Calculus of Proof Terms

Proof terms:

$$
\begin{array}{r}
p, q, r::=a\left|\iota_{1} p\right| \iota_{2} p \mid \text { case } p \text { of }(a . q \| b . r)|(p, q)| \pi_{1} p\left|\pi_{2} p\right| \lambda a . p \mid \\
|p q| \lambda x . p|p t|(t, p) \mid \text { dest } p \text { as (x.a) in } q|\# p| \mathscr{S} k . p
\end{array}
$$

Values:

$$
V::=a\left|\iota_{1} V\right| \iota_{2} V|(V, V)|(t, V)|\lambda a . p| \lambda x . p
$$

Pure evaluation contexts:

$$
\begin{array}{r}
P::=[] \mid \text { case } P \text { of }\left(a_{1} \cdot p_{1} \| a_{2} \cdot p_{2}\right)\left|\pi_{1} P\right| \pi_{2} P \mid \text { dest } P \text { as }(x . a) \text { in } p \mid \\
\\
P q|(\lambda a . q) P| P t\left|\iota_{1} P\right| \iota_{2} P|(P, p)|(V, P) \mid(t, P)
\end{array}
$$

MQC^{+}- Intuitionistic Extension of Intuitionistic Logic

Extending the λ-Calculus of Proof Terms

Proof terms:

$$
\begin{array}{r}
p, q, r::=a\left|\iota_{1} p\right| \iota_{2} p \mid \text { case } p \text { of }(a . q \| b . r)|(p, q)| \pi_{1} p\left|\pi_{2} p\right| \lambda a . p \mid \\
|p q| \lambda x . p|p t|(t, p) \mid \text { dest } p \text { as (x.a) in } q|\# p| \mathscr{S} k . p
\end{array}
$$

Values:

$$
V::=a\left|\iota_{1} V\right| \iota_{2} V|(V, V)|(t, V)|\lambda a . p| \lambda x . p
$$

Pure evaluation contexts:

$$
\begin{array}{r}
P::=[] \mid \text { case } P \text { of }\left(a_{1} \cdot p_{1} \| a_{2} \cdot p_{2}\right)\left|\pi_{1} P\right| \pi_{2} P \mid \text { dest } P \text { as }(x . a) \text { in } p \mid \\
\\
P q|(\lambda a . q) P| P t\left|\iota_{1} P\right| \iota_{2} P|(P, p)|(V, P) \mid(t, P)
\end{array}
$$

Reduction: (Call-by-value strategy)

$$
\begin{array}{rlrl}
(\lambda a . p) V & \rightarrow p\{V / a\} & \text { case } \iota_{i} V \text { of }\left(a_{1} \cdot p_{1} \| a_{2} \cdot p_{2}\right) & \rightarrow p_{i}\left\{V / a_{i}\right\} \\
(\lambda x . p) t & \rightarrow p\{t / x\} & \text { dest }(t, V) \text { as }(x . a) \text { in } p & \rightarrow p\{t / x\}\{V / a\} \\
\pi_{i}\left(V_{1}, V_{2}\right) & \rightarrow V_{i} & \# P[\mathscr{S} k \cdot p] & \rightarrow \# p\{(\lambda a . \# P[a]) / k\} \\
\# V & \rightarrow V & E[p] & \rightarrow E\left[p^{\prime}\right] \text { when } p \rightarrow p^{\prime}
\end{array}
$$

MQC^{+}- Examples of Derivations

Deriving the predicate logic version of Markov's Principle

Markov's Principle (predicate logic version):

$$
\begin{gathered}
\neg \neg S \Rightarrow S, \quad \text { for } S \mathrm{a}\{\Rightarrow, \forall\} \text {-free-formula } \\
\lambda a . \# \perp_{E}(a(\lambda b . \mathscr{S} k . b))
\end{gathered}
$$

MQC^{+}- Examples of Derivations

Deriving the predicate logic version of Double-negation Shift

Double Negation Shift (predicate logic version):

$$
\forall x(\neg \neg A(x)) \Rightarrow \neg \neg(\forall x A(x))
$$

$\lambda a . \lambda b . \# b(\lambda x . \mathscr{S}$ k.axk)

Kripke-CPS Models

The Semantic Side of MQC ${ }^{+}$

A structure ($K, \leq, D, \| S \Perp$), where:

- (K, \leq) a preorder of worlds;
- $w \Perp^{a} C$ a relation labelling a world w as exploding at formula C and annotation a;
- $\left.w\right|_{a} ^{S} A_{0}$ a relation of strong forcing of atomic formulae A_{0}, such that

$$
\text { for all } w^{\prime} \geq w, w\left\|_{a}^{s} A_{0} \rightarrow w^{\prime}\right\|_{a}^{s} A_{0},
$$

- $D(w)$, a domain of quantification for each world w, such that

$$
\text { for all } w^{\prime} \geq w, D(w) \subseteq D\left(w^{\prime}\right)
$$

- and, ...

Kripke-CPS Models

The Semantic Side of MQC ${ }^{+}$

- and, strong forcing \Vdash^{S} is extended from atomic to composite formulae inductively and by simultaneously defining a new relation, (non-strong) forcing \Vdash :

$$
w \Vdash_{a} A= \begin{cases}\forall w_{1} \geq w .\left(\forall w_{2} \geq w_{1} \cdot w_{2} \Vdash_{T}^{s} A \rightarrow w_{2} \Perp^{T} T\right) \rightarrow w_{1} \Perp^{T} T & , a=T \\ \forall C . \forall w_{1} \geq w .\left(\forall w_{2} \geq w_{1} \cdot w_{2} \Vdash^{s} A \rightarrow w_{2} \Perp C\right) \rightarrow w_{1} \Perp C & , \text { no } a\end{cases}
$$

$$
w \Vdash_{a}^{s} A \wedge B \text { if } w \vdash_{a} A \text { and } w \Vdash_{a} B
$$

$$
w \Vdash_{a}^{s} A \vee B \text { if } w \vdash_{a} A \text { or } w \vdash_{a} B
$$

$$
w \Vdash_{a}^{s} A \Rightarrow B \text { if for all } w^{\prime} \geq w, w \Vdash_{a} A \text { implies } w \Vdash_{a} B
$$

$$
w \Vdash_{a}^{s} \forall x . A(x) \text { if for all } w^{\prime} \geq w \text { and all } t \in D\left(w^{\prime}\right), w^{\prime} \Vdash_{a} A(t)
$$

$$
w \Vdash_{a}^{s} \exists x . A(x) \text { if } w \Vdash_{a} A(t) \text { for some } t \in D(w)
$$

Kripke-CPS Models

Soundness, Completeness, Normalisation, Disjunction and Existence Properties

Theorem (Soundness)
If $\Gamma \vdash_{a} A$, then for all $w, a^{\prime} \geq a, w \nvdash_{a} \Gamma$ implies $w \nvdash_{a} A$.
Theorem (Completeness for \mathscr{U})
There is a "universal" model \mathscr{U} s.t. for any world $\Gamma \in \mathscr{U}$, if $\Gamma \nVdash_{a} A$, then $\Gamma \vdash{ }_{a}^{n f} A$.

Corollary (Normalisation of MQC^{+})
$\vdash A \mapsto \vdash^{n f} A$
Corollary (DP and EP for MQC^{+})
If $\vdash A \vee B$, then either $\vdash A$ or $\vdash B$.
$I f \vdash \exists x A(x)$, then there exists t such that $\vdash A(t)$.

Extension of Glivenko's Theorem to Predicate Logic

 Other Properties of MQC ${ }^{+}$Theorem (Glivenko 1929)
For propositional logic, $\vdash^{i} \neg \neg A \longleftrightarrow \vdash^{c} A$
Theorem (Gödel 1933)
For predicate logic, $\vdash^{i} A^{\perp} \longleftrightarrow \vdash^{c} A$
Theorem (Glivenko's Theorem for Predicate Logic)
$\vdash^{+} \neg \neg A \longleftrightarrow D N S \vdash^{i} A^{\perp} \longleftrightarrow \vdash^{c} A$

Towards a New Computational Interpretation of Sub-classical Principles

Research Project

Work directions:

1. A system unifying current variants
2. Constructive Reverse Mathematics
3. Constructive proofs of completeness
4. Revisiting Dialectica and Bar Recursion
5. Computational Effects

1. A System Unifying Current Approaches

- The shown system can prove DNS (arbitrarily many instances)
- But, only one instance of MP
- And no instances of MP if DNS is also proved
- Herbelin's system can prove arbitrarily many instances of MP
- But, no instance of DNS

2. Constructive Reverse Mathematics

- Investigating already existing connections in Intuitionistic Reverse Mathematics
- Solovay-Moschovakis: BI + MP \vdash DNS
- Veldman: Completeness for Kripke models using FAN
- Veldman: MP \vdash OIP \Leftrightarrow DNS
- Ishihara: variants of MP

3. Constructive proofs of completeness

- Gödel's proof of Completeness is essentially constructive
- Proved by Krivine using a double-negation translation
- Should be possible to prove it directly: delimited control operators are precisely a way to unwind double-negation proofs

3. Constructive proofs of completeness

- Gödel's proof of Completeness is essentially constructive
- Proved by Krivine using a double-negation translation
- Should be possible to prove it directly: delimited control operators are precisely a way to unwind double-negation proofs
- No a priori constructive proof of Completeness for intuitionistic logic w.r.t. Kripke semantics, when one considers all logical connectives
- Proved by Wim Veldman using the Fan theorem
- Should be possible to prove it directly: such an algorithm was already given by Olivier Danvy

4. Revisiting Dialectica and Bar Recursion

- Gödel's Dialectica interpretation validates MP
- Spector's extension validates DNS and thus the double-negation translation of Countable Choice
- More recent version of bar recursion by Coquand, Berger, Kohlenbach
- Can delimited control operators be used as (less complex) alternative?

5. Computational Effects

- Delimited control operators were invented in Semantics of programming languages
- They can express any monadic computational effect (Filinski 1994)
- Logical explanation of computational effects an open problem
- Also, reduction for delimited control operators so far specified as weak-head subset
- Normalisation via Kripke-CPS models gives a way to find out the full reduction relation

