
Towards a New Computational Interpretation of
Sub-classical Principles

Danko Iliḱ

University “Goce Delčev” – Štip, Macedonia

28th April, 2011
“New Trends in Logic” Conference

Austrian Academy of Sciences

Delimited Control Operators

Ï Coming from Theoretical Computer Science

Ï Very abstract way to capture computational effects from the
theory of programming languages

Ï Starting interest: essential ingredient in a likely constructive
proof of completeness of intuitionistic logic w.r.t. Kripke
models, due to Olivier Danvy

Ï But, no simple/logical explanation

Ï Topic of PhD thesis supervised by Hugo Herbelin

Delimited Control Operators
Logical Explanation

Ï Type-and-effect systems (Danvy-Filinski 1991)
Ï hard to relate to traditional logic – implication a quaternary

connective

Ï Classical logic
Ï can be considered as computational contents of classical logic
Ï but, classical logic does not have the Disjunction and Existence

Properties – not nice for a programming language
Ï also, computationally more powerful than older

(non-delimited) control operators that are behind some
computational interpretations of classical logic

Ï Intuitionistic logic (Herbelin 2010)
Ï one can use them to derive Markov’s Principle
Ï but, one does not lose Disjunction and Existence Properties

Delimited Control Operators
Example 1 – use as “exceptions”

1+#(2+S k.4)

→1+#4

→1+4

→5

Delimited Control Operators
Example 1 – use as “exceptions”

1+#(2+S k.4)

→1+#4

→1+4

→5

Delimited Control Operators
Example 1 – use as “exceptions”

1+#(2+S k.4)

→1+#4

→1+4

→5

Delimited Control Operators
Example 2 – full use

1+#(2+S k.k(k4))

→ 1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9

Delimited Control Operators
Example 2 – full use

1+#(2+S k.k(k4))

→ 1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9

Delimited Control Operators
Example 2 – full use

1+#(2+S k.k(k4))

→ 1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9

Delimited Control Operators
Example 2 – full use

1+#(2+S k.k(k4))

→ 1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9

MQC+– Intuitionistic Extension of Intuitionistic Logic

To the natural deduction system of minimal intuitionistic logic,
add:

1. A rule marking that a {⇒,∀}-free formula T is being proved:

Γ`T

p :

T
Γ`

#p :

T

2. A rule for using classical logic in the delimited derivation
sub-tree:

Γ,

k :

A ⇒ T `T

p :

T
Γ`T

S k.p :

A

MQC+– Intuitionistic Extension of Intuitionistic Logic

To the natural deduction system of minimal intuitionistic logic,
add:

1. A rule marking that a {⇒,∀}-free formula T is being proved:

Γ`T p :T
Γ` #p :T

2. A rule for using classical logic in the delimited derivation
sub-tree:

Γ,k :A ⇒ T `T p :T
Γ`T S k.p :A

MQC+– Intuitionistic Extension of Intuitionistic Logic
Extending the λ-Calculus of Proof Terms

Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

MQC+– Intuitionistic Extension of Intuitionistic Logic
Extending the λ-Calculus of Proof Terms

Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

MQC+– Intuitionistic Extension of Intuitionistic Logic
Extending the λ-Calculus of Proof Terms

Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

MQC+– Intuitionistic Extension of Intuitionistic Logic
Extending the λ-Calculus of Proof Terms

Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

MQC+– Examples of Derivations
Deriving the predicate logic version of Markov’s Principle

Markov’s Principle (predicate logic version):

¬¬S ⇒ S, for S a {⇒,∀}-free-formula

λa.#⊥E(a(λb. S k.b))

MQC+– Examples of Derivations
Deriving the predicate logic version of Double-negation Shift

Double Negation Shift (predicate logic version):

∀x(¬¬A(x)) ⇒¬¬(∀xA(x))

λa.λb.#b(λx. S k.axk)

Kripke-CPS Models
The Semantic Side of MQC+

A structure (K ,≤,D,
s
, ⊥⊥), where:

Ï (K ,≤) a preorder of worlds;

Ï w⊥⊥aC a relation labelling a world w as exploding at formula C
and annotation a;

Ï w
s
a A0 a relation of strong forcing of atomic formulae A0, such

that
for all w′ ≥ w,w
s

a A0 → w′
s
a A0,

Ï D(w), a domain of quantification for each world w, such that

for all w′ ≥ w,D(w) ⊆ D(w′).

Ï and, ...

Kripke-CPS Models
The Semantic Side of MQC+

Ï and, strong forcing
s is extended from atomic to composite
formulae inductively and by simultaneously defining a new
relation, (non-strong) forcing
:

w
a A =
{ ∀w1 ≥ w.

(∀w2 ≥ w1. w2
s
T A → w2⊥⊥T T

)→ w1⊥⊥T T ,a = T
∀C. ∀w1 ≥ w.

(∀w2 ≥ w1. w2
s A → w2⊥⊥C
)→ w1⊥⊥C ,no a

w
s
a A∧B if w
a A and w
a B

w
s
a A∨B if w
a A or w
a B

w
s
a A ⇒ B if for all w′ ≥ w,w
a A implies w
a B

w
s
a ∀x.A(x) if for all w′ ≥ w and all t ∈ D(w′),w′
a A(t)

w
s
a ∃x.A(x) if w
a A(t) for some t ∈ D(w)

Kripke-CPS Models
Soundness, Completeness, Normalisation, Disjunction and Existence Properties

Theorem (Soundness)
If Γ`a A, then for all w,a′ ≥ a,w
a Γ implies w
a A.

Theorem (Completeness for U)

There is a “universal” model U s.t. for any world Γ ∈U , if Γ
a A,

then Γ`nf
a A.

Corollary (Normalisation of MQC+)

` A 7→ `nf A

Corollary (DP and EP for MQC+)

If ` A∨B, then either ` A or ` B.
If `∃xA(x), then there exists t such that ` A(t).

Extension of Glivenko’s Theorem to Predicate Logic
Other Properties of MQC+

Theorem (Glivenko 1929)
For propositional logic, `i ¬¬A ←→ `c A

Theorem (Gödel 1933)
For predicate logic, `i A⊥ ←→ `c A

Theorem (Glivenko’s Theorem for Predicate Logic)

`+ ¬¬A ←→ DNS `i A⊥ ←→ `c A

Towards a New Computational Interpretation of
Sub-classical Principles
Research Project

Work directions:

1. A system unifying current variants

2. Constructive Reverse Mathematics

3. Constructive proofs of completeness

4. Revisiting Dialectica and Bar Recursion

5. Computational Effects

1. A System Unifying Current Approaches

Ï The shown system can prove DNS (arbitrarily many instances)

Ï But, only one instance of MP

Ï And no instances of MP if DNS is also proved

Ï Herbelin’s system can prove arbitrarily many instances of MP

Ï But, no instance of DNS

2. Constructive Reverse Mathematics

Ï Investigating already existing connections in Intuitionistic
Reverse Mathematics

Ï Solovay-Moschovakis: BI+MP ` DNS

Ï Veldman: Completeness for Kripke models using FAN

Ï Veldman: MP ` OIP ⇔ DNS

Ï Ishihara: variants of MP

3. Constructive proofs of completeness

Ï Gödel’s proof of Completeness is essentially constructive

Ï Proved by Krivine using a double-negation translation

Ï Should be possible to prove it directly: delimited control
operators are precisely a way to unwind double-negation
proofs

Ï No a priori constructive proof of Completeness for
intuitionistic logic w.r.t. Kripke semantics, when one considers
all logical connectives

Ï Proved by Wim Veldman using the Fan theorem

Ï Should be possible to prove it directly: such an algorithm was
already given by Olivier Danvy

3. Constructive proofs of completeness

Ï Gödel’s proof of Completeness is essentially constructive

Ï Proved by Krivine using a double-negation translation

Ï Should be possible to prove it directly: delimited control
operators are precisely a way to unwind double-negation
proofs

Ï No a priori constructive proof of Completeness for
intuitionistic logic w.r.t. Kripke semantics, when one considers
all logical connectives

Ï Proved by Wim Veldman using the Fan theorem

Ï Should be possible to prove it directly: such an algorithm was
already given by Olivier Danvy

4. Revisiting Dialectica and Bar Recursion

Ï Gödel’s Dialectica interpretation validates MP

Ï Spector’s extension validates DNS and thus the
double-negation translation of Countable Choice

Ï More recent version of bar recursion by Coquand, Berger,
Kohlenbach

Ï Can delimited control operators be used as (less complex)
alternative?

5. Computational Effects

Ï Delimited control operators were invented in Semantics of
programming languages

Ï They can express any monadic computational effect (Filinski
1994)

Ï Logical explanation of computational effects an open problem

Ï Also, reduction for delimited control operators so far specified
as weak-head subset

Ï Normalisation via Kripke-CPS models gives a way to find out
the full reduction relation

