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Proof Mining: Logical analysis of proofs P

Given: Ineffective proof of some theorem T .

Goal: Additional information on T :

Quantitative information: effective bounds.

Qualitative information: new uniformity results (relevance

pointed out by T. Tao).

Logical methods: Proof Interpretations

interpret the formulas A in P : A 7→ AI ,

interpretation TI contains the additional information,

construct by recursion on P a new proof PI of TI .

Our approach is based on novel forms and extensions of:

K. Gödel’s functional (‘Dialectica’) interpretation!
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Hilbert’s program / ‘unwinding of proofs’

Historically proof interpretations I were used for consistency proofs:

usually TI can be proved an a more elementary quantifier-free system

Tqf , than the system T used to prove T .

If

(0 = 1)I ≡ (0 = 1)

this reduces the consistency problem of T to that of Tqf .

G. Kreisel (1951,. . .): use I to extract new information from

interesting proofs of existential statements.
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Proof interpretations as tool for

generalizing proofs

P
I−→ PI

G ↓ ↓ IG

PG G I

−→ (PI)G = (PG)I

Generalization (PI)G of PI : easy since (PI)G is finitary!

Generalization PG of P: difficult since P is infinitary!

T. Tao: P = ‘soft analysis’, PI = ‘hard or finitary analysis’.
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Example: the monotone convergence principle

Let (an) be a nonincreasing sequence in [0, 1]. Then, clearly, (an) is

convergent and so a Cauchy sequence which we write as:

(1) ∀k ∈ IN∃n ∈ IN∀m ∈ IN∀i, j ∈ [n; n + m] (|ai − aj| ≤ 2−k),

where [n; n + m] := {n, n + 1, . . . , n + m}.

By E. Specker 1949 there exist computable such sequences (an) even in

Q ∩ [0, 1] without computable bound on ‘∃n’ in (1).

Consider the (partial) Herbrand normal form of this statement is

(2) ∀k ∈ IN∀g ∈ ININ∃n ∈ IN∀i, j ∈ [n; n + g(n)] (|ai − aj| ≤ 2−k).
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In contrast to (1), there is a simple (primitive recursive) bound

Φ∗(g , k) on (2) (Kreisel’s no-counterexample interpretation also

referred to as ‘metastability’ by T.Tao):

Proposition (G. Kreisel 1951)

Let (an) be any nonincreasing sequence in [0, 1] then

∀k ∈ IN∀g ∈ ININ∃n ≤ Φ∗(g, k)∀i, j ∈ [n; n+g(n)] (|ai−aj| ≤ 2−k),

where

Φ∗(g, k) := g̃(2k)(0) with g̃(n) := n + g(n).

Moreover, there exists an i < 2k such that n can be taken as g̃ (i)(0).

Proof Interpretations and Current Mathematics



In contrast to (1), there is a simple (primitive recursive) bound

Φ∗(g , k) on (2) (Kreisel’s no-counterexample interpretation also

referred to as ‘metastability’ by T.Tao):

Proposition (G. Kreisel 1951)

Let (an) be any nonincreasing sequence in [0, 1] then

∀k ∈ IN∀g ∈ ININ∃n ≤ Φ∗(g, k)∀i, j ∈ [n; n+g(n)] (|ai−aj| ≤ 2−k),

where

Φ∗(g, k) := g̃(2k)(0) with g̃(n) := n + g(n).

Moreover, there exists an i < 2k such that n can be taken as g̃ (i)(0).

Proof Interpretations and Current Mathematics



In the simple case at hand, a bound on the no-counterexample

interpretation coincides with the (monotone) functional

interpretation.

For more complicated formulas the latter is much more involved

(already for the infinitary pigeonhole principle; compare again Tao).

Proper understanding of functional interpretation requires treatment

of systems based on intuitionistic logic (Brouwer).
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An Example from Ergodic Theory

X Hilbert space, f : X → X linear and ‖f(x)‖ ≤ ‖x‖ for all x ∈ X .

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i(x) (n ≥ 0).

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS 2010):

in general no computable rate of convergence.

But: Prim.rec. bound on metastable version!

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.
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Based on logical metatheorem to be discussed below:

Theorem (Leu̧stean/K., Ergodic Theor. Dynam. Syst. 2009)

X uniformly convex Banach space, η a modulus of uniform convexity and

f : X → X as above, b > 0.

Then for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all g : IN → IN :

∃n ≤ Φ(ε, g, b, η) ∀i, j ∈ [n; n + g(n)]
(
‖Ai(x) − Aj(x)‖ < ε

)
,

where

Φ(ε, g, b, η) := M · h̃K(0), with

M :=
⌈

16b
ε

⌉
, γ := ε

16
η

(
ε
8b

)
, K :=

⌈
b
γ

⌉
,

h, h̃ : IN → IN, h(n) := 2(Mn + g(Mn)), h̃(n) := maxi≤n h(i).

Special Hilbert case: treated prior by Avigad/Gerhardy/Towsner

(again based on logical metatheorem).
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General logical metatheorems for abstract

(nonseparable) spaces

In the example of the Mean Ergodic Theorem one got bounds on the

metastable version that were

uniform in (i.e. independent of) the choice of the starting

point ‖x‖ except for a norm upper bound b ≥ ‖x‖ although closed

bounded convex sets in X are not compact (except for IRn),

uniform in the nonexpansive operator,

uniform in the choice of the space X (except for a modulus of

uniform convexity).

Question: What is the reason for this strong uniformity and is there a

logical Metatheorem to explain this?

Answers: Crucial: no separability assumption on X was used. Yes,

there are suitable logical metatheorems.
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General logical metatheorems

Many abstract types of metric structures can be added as atoms:

metric, hyperbolic, CAT(0), δ-hyperbolic, normed, uniformly convex,

Hilbert, ... spaces or IR-trees X : add new base type X , all finite types

over IN,X and a new constant dX representing d etc.

Condition: Defining axioms must have a monotone functional

interpretation.

Counterexamples (to extractability of uniform bounds): for the classes

of strictly convex (→ uniformly convex) or separable (→ totally bounded)

spaces!
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A formal system for analysis

Types: (i) IN,X are types, (ii) with ρ, τ also ρ → τ is a type.

Functionals of type ρ → τ map type-ρ objects to type-τ objects.

PAω,X is the extension of Peano Arithmetic to all types over IN,X .

Aω,X :=PAω,X+DC, where

DC: axiom of dependent choice for all types

Implies full comprehension for numbers (higher order arithmetic).

Aω[X , d , . . .] results by adding constants dX , . . . with axioms expressing

that (X , d , . . .) is a nonempty metric, hyperbolic . . . space.
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A novel form of majorization

y , x functionals of types ρ and ρ̂ := ρ[IN/X ]:

xIN &IN yIN :≡ x ≥ y

xIN &X yX :≡ x ≥ ‖y‖.

For complex types ρ → τ this is extended in a hereditary fashion.

Example:

f∗ &X→X f ≡ ∀n ∈ IN, x ∈ X[n ≥ ‖x‖ → f∗(n) ≥ ‖f(x)].

f : X → X is nonexpansive (n.e.) if ‖f(x) − f(y)‖ ≤ ‖x − y‖.

Then λn.n + b &X→X f , if b ≥ ‖f (0)‖. f linear, nonexpansive: Id & f .

Extensional equality based on x =X y := ‖x − y‖ =IR 0.

WARNING: Already for f : X → X only weak rule of extensionality!
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As special case of general logical metatheorems due to

Gerhardy/K. (Trans. Amer. Math. Soc. 2008) one has (K a compact

metric space, A∃ an existential property):

Theorem (Gerhardy/K., TAMS 2008)

If Aω[X , 〈·, ·〉] proves

∀α ∈ ININ ∀y ∈ K ∀x ∈ X ∀f : X → X
(
f n.e. → ∃v ∈ IN A∃

)
,

then monotone functional interpretation extract a computable

functional Φ : ININ × IN → IN s.t. for all α, b

∀y ∈ K ∀x ∈ X ∀f : X → X(
f n.e. ∧ ‖x‖, ‖f(0)‖ ≤ b → ∃v ≤ Φ(α, b)A∃

)
holds in all nonempty (real) Hilbert space X .

Uniformly convex case: bound Φ depends on modulus of convexity η.
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Tao also established (without bound) a uniform version (in a special

case) of the Mean Ergodic Theorem as base step for a generalization to

commuting families of operators.

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques,

reminiscent of those used in [Green-Tao]...’ ‘The main advantage of

working in the finitary setting ... is that the underlying dynamical system

becomes extremely explicit’...‘In proof theory, this finitisation is known as

Gödel functional interpretation...which is also closely related to the

Kreisel no-counterexample interpretation’

(T. Tao: Norm convergence of multiple ergodic averages for commuting

transformations, Ergodic Theor. and Dynam. Syst. 28, 2008)
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Since 2000 more than 40 papers with applications of proof theory in

nonlinear analysis (Avigad, Briseid, Gerhardy, K., Kreuzer, Lambov,

Leustean, Oliva, Safarik, Towsner) published in journals such as:

Nonlinear Analysis, J. Math. Anal. Appl., J. of Nonlinear and

Convex Analysis, Fixed Point Theory, Numer. Funct. Anal. Optimiz.

and general math journals such as Advances in Mathematics,

Fundamenta Mathematicae, J. European. Math. Soc., Trans. Amer.

Math. Soc.

Many new results on the proof theoretic side (Ann. Pure Appl.

Logic, Notre Dame J. Logic, Math. Log. Quart., J. Symb. Logic).
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New Frontiers: Nonlinear Ergodic Theorems

Treatment of weak compactness via bar recursion (K. 2010).

Elevates complexity by 2 levels T0 7→ T2 in Gödel’s T .

Optimal by recent result of A. Kreuzer.

Uniform metastable version of Baillon’s weak nonlinear ergodic

theorem (1975) in Hilbert space (Bound in T4, K.2010).

Uniform metastable version on a strong nonlinear ergodic

theorem due to Wittmann 1992

(Prim.rec. (T0) bound, K., Adv. in Math. 2011).

Unifom metastable version on another strong nonlinear ergodic

theorem for odd operators due to Baillon (1976) and Wittmann

(1990). (Prim.rec.bound, P. Safarik 2011).
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Planned extensions of current proof mining

The work on Baillon’s and Wittmann’s weak resp. strong ergodic

theorems indicates: quantitative treatment of weak compactness can

be eliminated in strong convergence results (Wittmann) but

apparently not in weak convergence results.

True? Is there a general metatheorem explaining this?

Treatment of proofs based on Banach limits (needs AC)!

Used to extend nonlinear ergodic theorems to uniformly convex and

CAT(0) spaces.

Current research (with L. Leuştean) indicates that such proofs can

be treated via a ‘finitary version’ of Banach limits.

General metatheorem for this?
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Treatment of proofs based on ultrapowers of metric structures:

current research (with A. Kreuzer) points to a novel metatheorem

covering this.

In certain cases full rates of convergence could be extracted e.g.

in cases of monotonicity (Leuştean, K.), uniqueness (Briseid, Oliva,

K.) and for pseudocontractions (Körnlein, K.).

Find new classes where this is possible!

Finding of new areas for proof mining: e.g. geometric group

theory, PDE’s, C∗-algebras.
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A big question

Is there any mathematical principle other than
extensionality that puts a limitation to the proof mining
program, i.e. that does not preserve any finitary
combinatorial content?
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