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The Π1
2-statement OCA∗

Corollary (Todorčević, 1989)

Assume P ⊆ R2 \∆ is an open symmetric set. Then exactly one of the
following holds:

1 There is a closed uncountable set C such that C 2 ⊆ P,

2 R =
⋃

n∈N Cn where each Cn is a closed set and C 2
n ∩ P = ∅.

∆ = {(x , x) : x ∈ R} is the diagonal,

P is symmetric if (a, b) ∈ P ⇐⇒ (b, a) ∈ P,

Symmetric sets which do not intersect the diagonal are determined by
their intersection with the half plane

H = {(x , y) ∈ R2 : x > y}
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Open partitions of H . I
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Open partitions of H . II
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Open partitions of H . III
A trivial example of case 1
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Open partitions of H . IV
An example of case 2
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Open partitions of H . V
A non trivial example example of case 1
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Corollary of what???

Theorem (Todorčević)

Assume the proper forcing axiom PFA.
Then for every X ⊆ R and every open and simmetryc P ⊆ R2 exactly one
of the following holds:

1 There is a closed set C such that C 2 ⊆ P and C ∩ X is uncountable,

2 There is a countable family of closed sets Cn such that X ⊆
⋃

n∈N Cn

and C 2
n ∩ P = ∅ for all n.
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Theorem (Shoenfield, 1961)

Assume φ is a Π1
2-statement. If there is an uncountable transitive model

M of ZFC such that M |= φ, then φ holds in all transitive uncountable
models of ZFC.

Most of mathematics occurs in the realm of Π1
2-problems, for example:

Riemann’s hypothesis,

Poincaré’s conjecture,

P 6= NP,

Fermat’s last theorem,

. . .

In general differential and algebraic geometry are usually concerned with
Π1

2-problems, the same occurs for large portions of analysis and number
theory.
On the other hand non Π1

2-problems may show up with more frequency in
general topology, functional analysis, homological algebra, category
theory. . .
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M. Viale (Torino) Three aspects of Gödel’s program 28th April 2011 Wien 9 / 31



Theorem (Shoenfield, 1961)

Assume φ is a Π1
2-statement. If there is an uncountable transitive model

M of ZFC such that M |= φ, then φ holds in all transitive uncountable
models of ZFC.

Most of mathematics occurs in the realm of Π1
2-problems, for example:

Riemann’s hypothesis,
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M. Viale (Torino) Three aspects of Gödel’s program 28th April 2011 Wien 9 / 31



Theorem (Shoenfield, 1961)

Assume φ is a Π1
2-statement. If there is an uncountable transitive model

M of ZFC such that M |= φ, then φ holds in all transitive uncountable
models of ZFC.

Most of mathematics occurs in the realm of Π1
2-problems, for example:

Riemann’s hypothesis,
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Theorem (Baumgartner, 1984)

Assume there is a model of ZFC with a supercompact cardinal. Then there
is a model of ZFC + PFA.
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OCA∗

For every open and simmetryc partition P of the plane R2 exactly one of
the following holds:

1 There is an uncountable closed set C such that C 2 ⊆ P,

2 There is a countable family of closed sets Cn such that R =
⋃

n∈N Cn

and C 2
n ∩ P = ∅ for all n.

is the Π1
2-property

∀Pφ(P)→ (∃Cψ(P,C ) ∨ ∃~Cθ(P, ~C ))

where φ(P), ψ(P,C ), θ(P, ~C ) are the ∆1-statements:

φ(P) ≡ P ⊆ ω is a Borel code for an open and symmetric partition of
the plane,

ψ(P,C ) ≡ C 2 ⊆ ω is Borel code for a closed uncountable ”square”
subset of the plane and φ(P) and the set Borel coded by C 2 is
contained in the set Borel coded by P,

θ(P, (C 2
n : n ∈ ω)) ≡ . . .
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M. Viale (Torino) Three aspects of Gödel’s program 28th April 2011 Wien 11 / 31



OCA∗

For every open and simmetryc partition P of the plane R2 exactly one of
the following holds:

1 There is an uncountable closed set C such that C 2 ⊆ P,

2 There is a countable family of closed sets Cn such that R =
⋃

n∈N Cn

and C 2
n ∩ P = ∅ for all n.

is the Π1
2-property

∀Pφ(P)→ (∃Cψ(P,C ) ∨ ∃~Cθ(P, ~C ))

where φ(P), ψ(P,C ), θ(P, ~C ) are the ∆1-statements:

φ(P) ≡ P ⊆ ω is a Borel code for an open and symmetric partition of
the plane,

ψ(P,C ) ≡ C 2 ⊆ ω is Borel code for a closed uncountable ”square”
subset of the plane and φ(P) and the set Borel coded by C 2 is
contained in the set Borel coded by P,

θ(P, (C 2
n : n ∈ ω)) ≡ . . .
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”Platonistic” proof of the Corollary

If we assume a platonistic stand-point and accept large cardinals axioms,
the corollary is an immediate consequence of the three theorems since:

1 By Baumgartner’s theorem:
If there is a supercompact cardinal, then we can ”safely” assume that
there is an uncountable transitive model M of PFA.

2 By Todorcevic’s theorem:
If PFA holds in M, then OCA∗ holds in M.

3 By Shoenfield’s absoluteness:
If OCA∗ holds in some transitive uncountable model M of ZFC, then
it holds in all uncountable transitive models M of ZFC.

Thus OCA∗ is true.
A posteriori an ”ordinary” proof of OCA∗ has been found.
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1 Forcing axioms.

2 Ω-logic and absoluteness

3 Large cardinals and forcing axioms
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Forcing axioms solve problems!

Take a mathematical problem which is likely to be independent of ZFC,
then there are great hopes that PFA will decide it.
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M. Viale (Torino) Three aspects of Gödel’s program 28th April 2011 Wien 14 / 31



Some examples from cardinal arithmetic:

The continuum hypothesis CH:

2ℵ0 = ℵ1.

Theorem (Todorčević-Veličković (1992), many others and many
proofs afterwards)

PFA→ 2ℵ0 = ℵ2.

M. Viale (Torino) Three aspects of Gödel’s program 28th April 2011 Wien 15 / 31



Some examples from cardinal arithmetic:

The continuum hypothesis CH:

2ℵ0 = ℵ1.
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The singular cardinal hypothesis SCH:

∀κ(κcf(κ) = κ+ + 2cf(κ))

Theorem (V. (2006))

PFA→ SCH
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Some examples from general topology:

Souslin’s Hypothesis SH:

There are no Souslin lines

Theorem (Solovay-Tennenbaum (1971))

PFA→ SH (In fact MA→ SH).
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The S-space problem:

Is there a regular Haussdorff space which is hereditarily separable
but not hereditarily Lindelöf?

Theorem (Todorčević (1989))

Assume PFA. Then the answer is no.

The L-space problem:

Is there a a regular Haussdorff space which is hereditarily
Lindelöf but not hereditarily separable?

Theorem (Moore (2006))

Yes, there is.
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Theorem (Todorčević (1989))

Assume PFA. Then the answer is no.

The L-space problem:

Is there a a regular Haussdorff space which is hereditarily
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The five element basis for the uncountable linear orders:

Theorem (Moore (2006), culminating the work of Baumgartner,
Shelah, Todorčević and others)

Assume PFA. Then there are five uncountable linear orders such that any
other uncontable linear order contains an isomorphic copy of one of these
five.
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Examples from functional analysis and algebra:

Whitehead’s problem: Is every Whitehead group free?

Theorem (Shelah (1974))

Assume PFA (MA suffices). Then there is a Whitehead group which is not
free.

Is every automorphism of the Calkin algebra an inner automorphism?

Theorem (Farah, 2011, culminating researches by himself, Shelah,
Veličković and many others)

Assume PFA. Then all automorphisms of the Calkin algebra are inner.
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How far can one transfer Shoenfield’s absoluteness result
for Π1

2-properties to more complex ones?

Woodin has shown that this can be pushed very far.

As of now there is essentially one efficient method to produce
independence results in set theory: Forcing.

Forcing is an algorithmic procedure which takes as inputs

a model V of ZFC

a boolean algebra B ∈ V .

From these inputs the forcing method produce a new model V B of ZFC.

Truth in V B is ”computable” and depends from the combinatorial
properties of B and from the first order theory of V .
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Ω-Logic.

Ω-logic is devised in order to make set theory resilient to the forcing
method.

Definition

V |=Ω φ iff V B |= φ for all complete Boolean algebras B ∈ V .
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Let ZFC∗ stands for the theory

ZFC+ there are class many measurable Woodin cardinals.

Theorem (Woodin, late eighties (in print 1999))

Assume V is a transitive model of ZFC∗. Then for all complete Boolean
algebras B ∈ V and all statements φ:

V |=Ω φ ⇐⇒ V B |= (“V |=Ω φ′′)

If one is eager to accept large cardinal axioms as true, Ω-truth is absolute
with respect to the forcing method.
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Theorem (Woodin, late eighties)

Assume φ is a Π1
n-property. Then ZFC∗ |=Ω φ or ZFC∗ |=Ω ¬φ.

More generally:

Theorem (Woodin, unpublished)

Assume φ is a mathematical statement such that

ZFC ` “φ is expressible as a ∆2
1-property.

′′

Then ZFC∗ |=Ω φ or ZFC∗ |=Ω ¬φ.

Theorem (Woodin, late eighties)

ZFC∗ |=Ω “L(Pω1 Ord) |= φ′′ or ZFC∗ |=Ω “L(Pω1 Ord) |= ¬φ′′.

In the presence of large cardinals any problem which can be formulated in
the theory of L(R) or even in the theory of L(Pω1 Ord) cannot be shown
independent with respect to ZFC∗ using forcing.
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Why large cardinals settle the theory of L(R)?

Theorem (Martin, Steel (1988))

Assume ZFC∗. Then the axiom of determinacy AD holds in L(R).

It is well known that any mathematical problem which is expressible as a
Π1

n-property has very high chances to be settled by AD.
For example:

Theorem

Assume AD. Then every set of reals has the Baire property and is either
countable or contains a closed uncountable set.
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What about mathematical problems which are not
∆2

1-expressible or cannot be properly formulated in
L(Pω1

Ord)?

The first such example is CH which is Σ2
1 but not ∆2

1 if AC holds (AC fails
in L(Pω1 Ord) assuming ZFC∗).
To settle CH, even in Ω-logic, large cardinals are not enough.

We need other axioms:

1 Generic large cardinals?

2 Forcing axioms?

3 Diamond or CH?

4 . . . ?

We also need good criteria to accept them.
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My research project focuses on the second option, forcing axioms.

Problem

Assume PFA (or the strongest forcing axiom MM).

Can we effectively compute the theory of L(Pω2 Ord)?

For example: does L(Pω2 Ord) |= AC?

Is the theory of L(Pω2 Ord)) invariant with respect to Ω-logic?.
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We have seen that large cardinals are crucial to introduce forcing axioms
and to justify Ω-logic. To what extent the converse is true?

The following is currently my favorite problem:

Problem

Assume PFA holds in a transitive model V . Is there a transitive inner
model of V with a supercompact cardinal?
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With Christoph Weiß we have promising positive partial answers to this
problem.

This is strictly related to Woodin’s search for a canonical inner model for a
supercompact cardinal.
It is plausible to conjecture that

There is a ”canonical” inner model for a supercompact cardinal if and only
if such a canonical model can be built assuming PFA.
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M. Viale (Torino) Three aspects of Gödel’s program 28th April 2011 Wien 29 / 31



The relevance of this problem is not only purely mathematical.

Currently the most convincing argument to justify forcing axioms is that
they have fruitful mathematical consequences, so if not true, they are at
least useful.
If it were possible to show that inner models for large cardinals are simply
definable assuming strong forcing axioms this would give more ground to
accept them as a reasonable strengthening of the notion of large cardinal
or even as ”generic large cardinals axioms”.
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THANK YOU FOR YOUR ATTENTION
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