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Purpose

Our purpose is to propose how to integrate symbolic logic with
network (neural and argumenation) reasoning

Let us consider the human agent in his daily activity.

We ask: what ‘logic’ does he have in his head?

Current relevant buzz words circulating in the community are,
among others: time, action, knowledge, belief, revision, deduc-
tion, learning, context, neural nets, probabilistic nets, argu-
mentation nets, consistency, etc.

We want to understand what kind of integrated logic engine
the human uses in his daily activity.
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Short Story

Mother goes into her teenage daughter’s bedroom. Her instant
impression is that it is a big mess. There is stuff scattered
everywhere.

Mother’s impression is that it is not characteristic of the girl
to be like this.

What has happened?

Conjecture: The girl has boyfriend problems.

Further Analysis: Mother noticed a collapsed shelf. Did the
girl smash it? Upon further observation, mother notices that
the pattern of chaos shows that a shelf has collapsed because of
excessive weight and scattered everything around, giving the
impression of a big mess. But, actually, it is not a mess, it does
make some (gravitational) sense.



There are several modes of reasoning

1. Neural nets type of reasoning.
She recognises the mess instantly, like we recognise a face.

2. Nonmonotonic deduction.
Mother reasons from context and her knowledge of her
daughter is that the girl is not disorganised like this. She
asks ‘what happened?’.

3. Abduction/conjecture.
She offers a reasonable explanation that the girl has boyfriend
problems. This is common to that age.

4. She then applies a database AI deduction
and recognises that the mess is due to gravity. This de-
duction is no longer a neural net impression. It is a careful
calculation.

5. It could have been a neural net impres-
sion.
For example, a man who sees many shelf collapsing mess
cases may recognise the pattern like it were a face.



How do we model and integrate what is going
on?

How can we view network logic and discrete symbolic logic
from a common point of view?

What are the principles involved?

A unifying view for discrete symbolic logic and networks sys-
tems

neural, argumentation, Bayesian, fuzzy, biological

Transportation networks, flow networks, inheritance nets, math-
ematical graphs, etc.



Monotonic logical systems 

Non monotonic logical systems 

 

                                                                                                                     INTEGRATE ! 

 

Networks 

Mechanisms 
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Neural nets

Mother mess

Neural nets can learn.
Show several examples of mess and train the net.



Nonmonotonic Logic

∆0

∆ = data

! A
common sense

Girl never late
Never forgets homework
Always fussy about how hot morning tea is
Never dresses with clothes not symmetrical
Room always tidy
Pregnant
Boyfriend problems
Pressure at school



Bayesian Net

Late
Homework

Tea
Clothes

Pregnant

Boyfriend

Pressure at School

Mess



Argumentation network
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Loops

a b

a

Evaluate in waves
Result depends on starting set

Starting set Result
a {a}
b {b}
{a, b} ∅



Compare movements in each area

NETS LOGIC

Value propagation substitution
Probabilities hypotheticals
attack defence time
networking strength of proof
feedback deduction sequences

LDS
context
fibring and combining
reactivity



ba

1. Attack the relevance of a to attack b

2. Feedback learning loop

3. Modify probability function

4. Weaken effectiveness of virus

5. Bridge collapse. Salesman problem.

6. Brain
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A set of weights for backpropagation



Higher complexity

a b

ec

ε

Use waves of transmission
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Abduction

∆

$!?A

Add hypothesis H

∆, H ! A

complex mechanisms



y

x1 . . . xn

ε1 εn. . .

new y = f(x1, . . . , xn, ε1, . . . , εn, y)

Propagation function



Fibring

net1 a

b

e

c

net2

x
y

z

net2 can be:

• another argumentation system

• abduction system

• neural net

• same type as net1
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3. ∀(φ, l) ∈ S ∪ D, there exist arguments ε(φ,l), ζ(φ,l) ∈ AX s.t.
• αφ → ε(φ,l), ε(φ,l) → ζ(φ,l), ζ(φ,l) → αl.

4. ∀(φ, l) ∈ S, (φ′, l′) ∈ D, if l = l′:
• ζ(φ,l) → ζ(φ′,l′)

5. ∀(φ, l) ∈ D, (φ′, l′) ∈ D, if l = l′ and (φ, l) ≤ (φ′, l′):
• ζ(φ,l) → ζ(φ′,l′)

6. All ε, ζ and η-arguments are not involved in any attack other than the ones
specified above.

We demonstrate our theory with two examples, shown in figure 4 and 5. The
figures show only part of the logical argumentation framework: the δ nodes are
omitted.

Figure 4 shows the famous non-flying bird example, formalized in a logical
argumentation framework. The focal set consists of p,¬p, f,¬f, b and ¬b (i.e. p
= ‘it is a penguin’, b = ‘it is a bird’ and f = ‘it flies’); there is one fact, namely
p; two strict rules: p→ ¬f and b→ f ; and one defeasible rule: b⇒ f . There is
one extension: {p, b,¬f}.
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Fig. 4. The famous non-flying bird example.

Figure 5 shows the famous nixon diamond scenario, formalized in a logical
argumentation framework. The focal set consists of r,¬r, p,¬p, q and ¬q (i.e. r
= ‘nixon is a republican’, p = ‘nixon is a pacifist’ and q = ‘nixon is a Quaker’);
there are two facts, namely r and q; and two defeasible rules: q ⇒ p (Quakers
are normally pacifists) and r ⇒!p (republicans are normally not pacifists). There
are two extensions: {r, q, p} and {r, q,¬p}.

(note: also add the caminada tandem example, because these examples only
use literals)
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338 M. Abraham, D. Gabbay, and U. Schild

N A P Y H G K

m 0 1 1 0 1 0 0
h 1 ? 0 0 0 0 0
b 1 1 0 1 1 0 1
w 0 1 0 0 0 1 1

Figure 62.

1. Graph for x = 1
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2. Graph for x = 0
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Figure 63.
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332 M. Abraham, D. Gabbay, and U. Schild

We get Figure 52

N A Y

b 1 1 1

h 1 x =? 0

Figure 52.

The graphs we get are in Figure 53

1. Graph for x = 1

Y −→ N = A

2α α

2. Graph for x = 0

A = Y −→ N

2α α

Figure 53.

Clearly they are of equal strength and the answer is undecided.
The proponent now combines both tables to get x = 1 to win(items 6–8

of the text). We get Figure 54

N A P Y

m 0 1 1 0

h 1 x =? 0 0

b 1 1 0 1

Figure 54.




