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Main activities

(1) development of constructive mathematics

(2) actual formalization of constructive mathematics in dependent type theory

I select two main examples for (1) and (2)
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Formalization of constructive mathematics

Part I: Constructive homological algebra

Homological algebra: originates from Hilbert On the theory of algebraic forms
Math. Annalen, vol. 36, 473-534, 1890

From a logical point of view, one would expect most of homological algebra
to be directly expressed in first-order logic

This is not the case: most text books use Noetherian hypotheses

Exception: Northcott’s book on Finite Free Resolutions
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Formalization of constructive mathematics

Constructive homological algebra

In Northcott’s book, the statements are first-order schemas

Most proofs however use existence of prime ideals and minimal prime ideals

According to the Skolem-Gödel completness Theorem, there should be direct
first-order proofs

What are they?
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Formalization of constructive mathematics

Constructive Finite Free Resolution

Hilbert-Burch Theorem

Theorem: If we have an exact sequence

0→ Rn A−−→ Rn+1 → 〈a0, . . . , an〉 → 0

then the elements a0, . . . , an have a GCD, which is a nonzero divisor

For a fixed size, this is a first-order statement
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Formalization of constructive mathematics

Hilbert-Burch Theorem

For n = 2 with A =

 u0 v0
u1 v1
u2 v2


Hypotheses: a0u0 + a1u1 + a2u2 = a0v0 + a1v1 + a2v2 = 0

If a0x0 + a1x1 + a2x2 = 0 then x0, x1, x2 is a linear combination of u0, u1, u2

and v0, v1, v2

Conclusion: ∃g. g|a0 ∧ g|a1 ∧ g|a2 ∧ (∀x. x|a0 ∧ x|a1 ∧ x|a2∧ → x|g)

Question: can we/how do we compute the gcd of a0, a1, a2 from the given
data? Notice that the statement is not a Glivenko statement, so that we cannot
be sure for the direct first-order proof to be intuitionistic
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Formalization of constructive mathematics

Part II: Propositions-as-Types

How to formalize (constructive) mathematics?

Represent and check mathematical proofs on a computer

de Bruijn, Tait, Curry, Howard, Martin-Löf: explicit proof objects

Proofs as programs/propositions as types

Satisfactory in practice, but so far only for discrete structures (work of G.
Gonthier on the 4 color theorem and finite group theory)

Equality types?
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Formalization of constructive mathematics

Propositions-as-Types

Identification of Propositions and Types

A ∧B = A×B A ∨B = A+B A⇒ B = A→ B

E.g. ∅ → X is a singleton

Kolmogorov 1933 explanation of intuitionistic logic

Dependent products
∏
x:A

B(x) correspond to universal quantifications

Dependent sums
∑
x:A

B(x) correspond to existential quantifications
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Equality Proofs as Paths

What should be the rules for equality?

V. Voevodsky (2006)

The equality proofs of two elements a0, a1 : A should form a new type

The elements of this type should be thought of as paths between a0 and a1

Id a0 a1 = Path a0 a1
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The Path Space is contractible

Serre’s use of the path space to compute homotopy groups

(J.P.Serre) when I was working on homotopy groups (around 1950), I
convinced myself that, for a space X, there should exist a fibre space E, with
base X, which is contractible; such a space would allow me (using Leray’s
methods) to do lots of computations on homotopy groups. . . But how to find
it? It took me several weeks (a very long time, at the age I was then) to realize
that the space of “paths” on X had all the necessary properties-if only I dared
call it a “fiber space”. This was the starting point of the loop space method in
algebraic topology.

(Interview in the Matematical Intelligencer, 1986)
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The Path Space is contractible

That the path space is contractible happens to be exactly one key property of
equality as formulated in type theory, which states that∑

x:A

Path a x

has exactly one element for any a : A

New instance of the propositions-as-types principle

Propositions as Types as Spaces
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Voevodsky Stratification

Stratification of types following the complexity of their equality types

contractible (level 0), proposition (level 1),

set (level 2), groupoid (level 3), . . .

This stratification seems to be important for the representation of mathematics
in type theory. For instance, to formalize Yoneda Lemma, we should consider
only types of level 2.

What seems to matter is the complexity of the equality, as much as the “size”
of the type: the collection of all rings (object of level 2) is of level 3

Mathematical model using Kan simplicial sets
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Set theory/type theory

Tarski 1966 What are logical notions

logical statement = a statement invariant under isomorphisms

Is mathematics part of logic?

Lindenbaum and Tarski On the limitations of the means of expression of
deductive theories 1936 formulate and claim the invariance under isomorphism
principle for type theory
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Set theory/type theory

All operations should preserve isomorphisms

This is not the case for set theory: X = {0, 1} and Y = {1, 2} are
isomorphic but X ∪X and X ∪ Y are not

This is the case for type theory
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Voevodsky Univalence Axiom

This axiom states that equality proofs of two types should be isomorphisms

A consequence is that two isomorphic mathematical structures are equal,
which should be important for modularity of formal proof development

Main question: can we justify the univalence axiom?

Analogy with Takeuti-Gandy explanation of the axiom of extensionality

Computational rules for extensionality for simple type theory, computational
rules for the ι symbol

14


