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Introduction

Motivation

 Knowledge workers in modern work environments often
suffer from information overload;

e (Can we learn from their behaviour and assist them with
retrieving information that they need in that point in time?

Goal

* Proactively assist knowledge workers with their workflows
by suggesting relevant information resources by learning
their knowledge process.
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Introduction

Knowledge workers:

People whose work consists of manipulating information
resources

Information resources:

Atomic information objects of the work domain

Knowledge process:

A model that describes what kind of knowledge resources a
user could need given his current situation
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Knowledge work domain
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Situation
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Problem description

Provide relevant ranking of information resources

* Given that we are monitoring the user's workstation and
know what information resources were accessed when;

Constraints:

 Learn only from usage logs, without explicit user supervision

 Asopposed to classic process models, actions are not well-
defined.
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Knowledge process

A model that describes what kind of information resources a
user could need given his current situation;

How can we use it?

e Given a user's current sessions of resource usage, provide a
probability distribution on which information resource d
would be used next:

P(d,|d

cu rrentsesionj)

d

currentsesionQ ™ **

 There are several possible ways on how to estimate that
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Data

* Every manipulation of an information resource isa TNT
event, having these basic properties:

e Text content of the resource
 Network (social network context —i.e. e-mail recipients)
e Time of occurrence

* Events are partitioned into sessions.
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Knowledge process framework

We separate the concerns into three sub-models:

 Event model: how to represent event features?

 Action model: how to represent individual steps within a
process?

* Process model: how to represent the transition probabilities
between actions?
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Event representation model

 We represent events in a vector space model;

e Feature construction:

 Each property of event is a feature

* Event type (send, receive, save, .. )
* Media type (document, e-mail, web site)

* Social roles of participants (inside or outside of organization,
manager, developer, researcher, private or mutiple people,
single or multiple organizations)

* Bag-of-words of resource content
* Weighed using the TF-IDF scheme.
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Event representation model (2)

* Alternative representation: we can also encode the
features of events in the same session within an event;

e Feature-based with session information

* Along with its own features, concatenate features of events
within the same session.

* Crude but efficient way to encode the knowledge process
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Action model

* How to efficiently represent the actions in the knowledge
process so that is provides relevant feedback and is easy to
compute?

* Problem: We have high dimensionality in event features.

 Approach 1: automatically construct action definitions out
of data by clustering events, reducing the dimensionality of
the feature space;

 Approach 2: assume conditional independence of individual
event features to make computing the probability of
candidate resources tractable (remove infrequent features).

14-06-2011 Tadej Stajner 12



Action model by clustering (1)

 C(Cluster all known events into k clusters;

e We treat the cluster definitions as actions

e The membership of event in a cluster denotes its action

* From this point on, we only view at the cluster that an event
belongs to;

* Result: the process model now needs to model transition
probabilities only between k different actions;
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Action model by clustering (1)
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Once we construct the
clusters, we only consider
the cluster membership of
the events;

In the example, the events
can be reduced to three
categories (actions)

1. scientific paper
2. call for papers

3. proposal
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Action model by independent features (2)

 How is this different from the action model by clustering?

* We do not assign a single action to an event;

* We assume conditional independence between two
features co-occurring in the same event;

* We model the process on probabilities of transitions from
event with a feature f; to another event with a feature f..

* Result: the process model now needs to model transition
probabilities only between m different features.
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Process model

 How to model the transition probability of one action to
the next one?

* Using the Markov model over actions we can predict which
action is the most likely successor;

* Problem: when predicting using conditional probabilities,
we must not have zero probabilities.

e Solution: Laplace (add-one) smoothing P(

ofa)= 0%,

K +C(aj)
 c(ab): number of occurrences transitioning fromatob
 ¢(a): number of occurrences of a

e K: number of distinct actions
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Process model (example)
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Ranking

* Given that we have a probability distribution over the
actions that will follow, how do we translate that to
concrete information resources?

 @Given a user's session, for each candidate resource, we
combine the following:

 The probability of the action that the resource would
represent (computed using the process model);

 The average similarity between the candidate resource and
the other resources in the session;
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Implementation
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Architecture
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Experiments

 Data: 31182 events from three knowledge workers in a
telecommunications company within three months;

 Partitioned into sessions;

* Testing scenario:

 Use a subset of sessions for training, remainder for testing (10-
fold cross validation);

* When testing, take a subsequence and withhold the last event;

* Using the approach presented, get a ranking over all candidate
resources;

 QObserve the rank of the correct resource (that was withheld);
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Metrics

e Based on the rank r of the resource for observation i.

e N:number of observations

 ¢(r>=k): number of observations where correct resource is
in top k

* Mean Reciprocal Rank

1 w1
MRR=—xY =
N g I

* Percentage of correct result in top k elements

c(r=k
IDTopK: (N )
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Evaluation set-ups

Event models

IDF: standard feature representation using IDF weighing;
SessionIDF: including features of events within same session (history)
Action models
Clustered-k: define actions by clustering using k as number of clusters
Independent: assume conditional independece of features
Process models

None: baseline — every action has same probablity

Laplace: Markov-model Laplace-smoothed process model
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Results
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Conclusions

 Best scenario: standard feature representation, relatively
low number of clusters, using a process model

* We are able to put the correct resource in the top 20 list
over one third of occasions

* Using the process mining we can not only predict
resources, but also have a look at how the workflow takes
place;

* Using session information within an event model
(SessionlIDF) is in some cases better than standard feature
representation, but still below the best performing setup

* Slightly lower performance, but very simple implementation
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Future work

* Expand event model to more than a vector space model

* The events can be viewed as nodes in a graph with people,
resources and other entities;

* |ssue with current approach: flattening to vector space loses
information;

* Employ machine learning techniques that natively work on
complex graph data;

e Complex graphs are much closer to semantic
representations;

* Evaluate the approach in a contextual recommender
system setting
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