Information Resource Recommendation in Knowledge Processes

Tadej Štajner Dunja Mladenić Marko Grobelnik

Jožef Stefan Institute Ljubljana, Slovenia

Introduction

Motivation

- Knowledge workers in modern work environments often suffer from information overload;
- Can we learn from their behaviour and assist them with retrieving information that they need in that point in time?

Goal

 Proactively assist knowledge workers with their workflows by suggesting relevant information resources by learning their knowledge process.

Introduction

Knowledge workers:

People whose work consists of manipulating information resources

Information resources:

Atomic information objects of the work domain

Knowledge process:

A model that describes what kind of knowledge resources a user could need given his current situation

Knowledge work domain

Manipulating Office documents

Reading and writing e-mail

... these are all **information resources**.

Tadej Štajner

Situation

Problem description

Provide relevant ranking of information resources

• Given that we are monitoring the user's workstation and know what information resources were accessed when;

Constraints:

- Learn only from usage logs, without explicit user supervision
- As opposed to classic process models, actions are not well-defined.

Knowledge process

A model that describes what kind of information resources a user could need given his current situation;

How can we use it?

• Given a user's current sessions of resource usage, provide a probability distribution on which information resource d would be used next:

$$P(d_i | d_{currentsession0}, \dots d_{currentsessionj})$$

• There are several possible ways on how to estimate that

Data

- Every manipulation of an information resource is a TNT event, having these basic properties:
 - Text content of the resource
 - Network (social network context i.e. e-mail recipients)
 - Time of occurrence
- Events are partitioned into sessions.

Knowledge process framework

We separate the concerns into three sub-models:

- **Event model**: how to represent event features?
- Action model: how to represent individual steps within a process?
- **Process model**: how to represent the transition probabilities between actions?

Event representation model

- We represent events in a vector space model;
- Feature construction:
 - Each property of event is a feature
 - Event type (send, receive, save, ..)
 - Media type (document, e-mail, web site)
 - Social roles of participants (inside or outside of organization, manager, developer, researcher, private or mutiple people, single or multiple organizations)
 - Bag-of-words of resource content
 - Weighed using the TF-IDF scheme.

Event representation model (2)

- Alternative representation: we can also encode the features of events in the same session within an event;
- Feature-based with session information
 - Along with its own features, concatenate features of events within the same session.
 - Crude but efficient way to encode the knowledge process

Action model

- How to efficiently represent the actions in the knowledge process so that is provides relevant feedback and is easy to compute?
- Problem: We have high dimensionality in event features.
 - Approach 1: automatically construct action definitions out of data by clustering events, reducing the dimensionality of the feature space;
 - Approach 2: assume conditional independence of individual event features to make computing the probability of candidate resources tractable (remove infrequent features).

Action model by clustering (1)

- Cluster all known events into *k* clusters;
- We treat the cluster definitions as actions
 - The membership of event in a cluster denotes its action
 - From this point on, we only view at the cluster that an event belongs to;
- Result: the process model now needs to model transition probabilities only between *k* different actions;

Action model by clustering (1)

- Once we construct the clusters, we only consider the cluster membership of the events;
- In the example, the events can be reduced to three categories (actions)
 - 1. scientific paper
 - 2. call for papers
 - 3. proposal

Action model by independent features (2)

- How is this different from the action model by clustering?
 - We do not assign a single action to an event;
 - We assume conditional independence between two features co-occurring in the same event;
 - We model the process on probabilities of transitions from event with a feature f_i to another event with a feature f_i.
- Result: the process model now needs to model transition probabilities only between *m* different features.

Process model

- How to model the transition probability of one action to the next one?
 - Using the Markov model over actions we can predict which action is the most likely successor;
- Problem: when predicting using conditional probabilities, we must not have zero probabilities.
 - Solution: Laplace (add-one) smoothing $P(a_i | a_j) = \frac{1 + c(a_i a_j)}{K + c(a_j)}$
 - *c(ab)*: number of occurrences transitioning from a to b
 - *c(a)*: number of occurrences of a
 - *K*: number of distinct actions

Process model (example)

Ranking

- Given that we have a probability distribution over the actions that will follow, how do we translate that to concrete information resources?
- Given a user's session, for each candidate resource, we combine the following:
 - The probability of the action that the resource would represent (computed using the process model);
 - The average similarity between the candidate resource and the other resources in the session;

Implementation

reading a documentation of a backend system for process mining

• opening a technical presentation on machine learning

ACTIVE Suggest		
Resource	Description	
ideolectures.net/active/	videolectures, net, active, semantic, syn, qualitative, weblogs, training, tenerife, knowledg	
ww.eswc2011.org/content/accepted-papers	www,eswc2011,org,content, accepted,papers,semantic, ontology,grimm,stephan, tramp,query,mashup	
ww.eswc2011.org/	www,eswc2011,org,hsuan, eswc,join,backstrom, semantic,tori,facebook,mash	
fp icml workshop line trading exploration exploitation	owner-pascal- researchers@pascal- network.org, researchers@pascal- network.org	
aflang call papers	owner-pascal- researchers@pascal- network.org, researchers@pascal- network.org	
ww.eswc2011.org/content/program	www, eswc2011, org, content, program, mashup, eswc2011, phd, eswc, demos, accommodation, password	
icai-11.iiia.csic.es/calls/call_for_papers	ijcai, iiia, csic, es, calls, call_for_papers, ijcai, utc,	
Config		

ACTIVE Suggest	
Resource	Description
<u>www.ml.cmu.edu/</u>	www, ml, cmu, edu, ph, aaas, slang, alumni, suttin, twitterverse, microbloggers
sqlite.org/transactional.html	sqlite, org, transactional, html, sqlite, durable, isolated, informaton, serializable, atomic, fai
ACTIVE-WP2- ABMeeting2010.pptx	tadej, workspace, active, meetings, y2ljubljana, ACTIVE, WP2, ABMeeting2010, pptx
ACTIVE-WP2- ReviewMeeting2010.pptx	tadej, workspace, active, meetings, y2ljubljana, ACTIVE, WP2, ReviewMeeting2010, pptx
wp2demo.pptx	tadej, workspace, active, meetings, yzljubljana, wpzdemo, pptx
09WP3 Y2 Review2010.ppt	tadej, workspace, active, meetings, y2ljubljana, 09WP3_Y2_Review2010, ppt
Context Action - Task algorithmic integration.pp	tadej, workspace, active, meetings, q6innsbruck, Context Action , Task algorithmic integration, pptx
Q10-WP3 FD TS.ppt	tadej, workspace, active, meetings, q10heidelberg, Q10 , WP3_FD_TS, ppt
ACTIVE-AB3-Vienna-JSI.ppt>	tadej, workspace, active, meetings, dunaj, advisory, ACTIVE, AB3, Vienna, JSI, pptx
wp <u>3 tadej.ppt</u>	tadej, workspace, active, meetings, q9karlsruhe, wp3_tadej, ppt
	Config
incessi	

14-06-2011

Architecture

Experiments

- Data: 31182 events from three knowledge workers in a telecommunications company within three months;
- Partitioned into sessions;
- Testing scenario:
 - Use a subset of sessions for training, remainder for testing (10-fold cross validation);
 - When testing, take a subsequence and withhold the last event;
 - Using the approach presented, get a ranking over all candidate resources;
 - Observe the rank of the correct resource (that was withheld);

Metrics

- Based on the rank r of the resource for observation i.
 - *N*: number of observations
 - c(r >= k): number of observations where correct resource is in top k
- Mean Reciprocal Rank

$$MRR = \frac{1}{N} \times \sum_{i=0}^{N} \frac{1}{r_i}$$

• Percentage of correct result in top k elements

$$P_{TopK} = \frac{c(r \ge k)}{N}$$

Evaluation set-ups

Event models

IDF: standard feature representation using IDF weighing; SessionIDF: including features of events within same session (history) Action models

Clustered-k: define actions by clustering using k as number of clusters Independent: assume conditional independece of features Process models

None: baseline – every action has same probablity *Laplace*: Markov-model Laplace-smoothed process model

Results

Event Model	Action Model	Process Model	Reciprocal rank	Percentage in top 20
IDF Too many cluster increase sparsity	Independent	None	0.0612	0.2220
	ependent	Laplace	0.0803	0.2377
	stered:10	None	0.0794	0.2697
IDF	vstered:10	Laplace	0.1076	0.3485
IDF	Cluste ed:30	None	0.0853	0.3081
IDF	Clustered:30	Laplace	0.0797	0.2490
Sessi History context instead		None	0.0774	0.2895
Sessi of process m	nodelnt	Laplace	0.0750	0.2674
SessionIDF	Cr red:10	None	0.0756	0.2807
SessionIDF	Clustere 10	Laplace	0.0701	0.2384
SessionIDF	Clustered:30	None	0.0832	0.3013
SessionIDF	Clustered:30	Laplace	0.0874	0.3051

Conclusions

- Best scenario: standard feature representation, relatively low number of clusters, using a process model
 - We are able to put the correct resource in the top 20 list over one third of occasions
- Using the process mining we can not only predict resources, but also have a look at how the workflow takes place;
- Using session information within an event model (SessionIDF) is in some cases better than standard feature representation, but still below the best performing setup
 - Slightly lower performance, but very simple implementation

Future work

- Expand event model to more than a vector space model
 - The events can be viewed as nodes in a graph with people, resources and other entities;
 - Issue with current approach: flattening to vector space loses information;
 - Employ machine learning techniques that natively work on complex graph data;
 - Complex graphs are much closer to semantic representations;
- Evaluate the approach in a contextual recommender system setting