
ICAPS 2011 Tutorial

Scott Sanner

Introduction to Planning
Domain Modeling in RDDL

Observation

• Planning languages direct 5+ years of research
– PDDL and variants
– PPDDL

• Why?
– Domain design is time-consuming

• So everyone uses the existing benchmarks

– Need for comparison
• Relatively little planner code is released
• Only means of comparison is on competition benchmarks

• Implication:
– We should choose our languages & problems well…

Current Stochastic Domain Language

• PPDDL
– more expressive than PSTRIPS
– for example, probabilistic universal

and conditional effects:

(:action put-all-blue-blocks-on-table
:parameters ()
:precondition ()
:effect (probabilistic 0.9

(forall (?b)
(when (Blue ?b)

(not (OnTable ?b)))))

• But wait, not just BlocksWorld…
– Colored BlocksWorld
– Exploding BlocksWorld
– Moving-stacks BlocksWorld

• Difficult problems but where to apply solutions???

• Compact relational PPDDL Description:

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c – city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c))))

London
Paris

Rome
Berlin

MoscowLogistics:

More Realistic: Logistics

• But wait… only one truck can move at a time???

• No concurrency, no time: will FedEx care?

• Can instantiate problems for any domain objects

- 3 trucks: 2 planes: 3 boxes:

What stochastic problems
should we care about?

Mars Rovers

• Continuous
– Time, robot position / pose, sun angle, …

• Partially observable
– Even worse: high-dimensional partially observable

Mealeau, Benazera,

Brafman, Hansen,

Mausam. JAIR-09.

Elevator Control

• Concurrent Actions
– Elevator: up/down/stay
– 6 elevators: 3^6 actions

• Exogenous / Non-boolean:
– Random integer arrivals

(e.g., Poisson)

• Complex Objective:
– Minimize sum of wait times
– Could even be nonlinear function

(squared wait times)

• Policy Constraints:
– People might get annoyed

if elevator reverses direction

Traffic Control

• Concurrent
– Multiple lights

• Indep. Exogenous Events
– Multiple vehicles

• Continuous Variables
– Nonlinear dynamics

• Partially observable
– Only observe stoplines

Can PPDDL model

these problems?

No? What happened?

A Brief History of (ICAPS) Time

STRIPS (1971)

Fikes & Nilsson

Relational

ADL (1987)

Pednault

Cond. Effects

Open World

PDDL 1.2 (1998)

McDermott et al

Univ. Effects

PDDL 2.1, + (2003)

Fox & Long

Numerical fluents,

Conc., Exogenous

PDDL history from: http://ipc.informatik.uni-freiburg.de/PddlResources

PDDL 2.2 (2004)

Edelkamp & Hoffmann

Derived Pred, Temporal

PDDL 3.0 (2004)

Gerevini & Long

Traj. Constraints,

Preferences

PPDDL (2004)

Younes & Littmann

Prob. Effects

Big

Bang

ICAPS 3.2

PDDL Evolved, but
PPDDL didn’t ����

Also effects+prob+

concurrency difficult

What would it take to model

more realistic problems?

Let’s take a deeper look at

traffic control…

Birth of RDDL: Solving Traffic Control

Looking ahead… will need something
more like Relational DBN

What’s missing in PPDDL, Part I

• Need Unrestricted Concurrency:
– In PPDDL, would have to enumerate joint actions

– In PDDL 2.1: restricted concurrency
• conflicting actions not executable

• when effects probabilistic, some chance most effects conflict

– really need unrestricted concurrency in probabilistic setting

• Multiple Independent Exogenous Events:
– PPDDL only allows 1 independent event to affect fluent

• E.g, what if cars in a queue change lanes, brake randomly?

What’s missing in PPDDL, Part II

• Expressive transition
distributions:
– (Nonlinear) stochastic

difference equations

– E.g., cell velocity as
a function of traffic
density

• Partial observability:
– In practice, only

observe stopline

What’s missing in PPDDL, Part III

• Distinguish fluents from nonfluents:
– E.g., topology of traffic network

– Lifted planners must know this to be efficient!

• Expressive rewards & probabilities:
– E.g., sums, products, nonlinear functions, ratios, conditionals

• Global state-action constraints:
– Concurrent domains need global action preconditions

• E.g., two traffic lights cannot go into a given state

– In logistics, vehicles cannot be in two different locations

• Regression planners need state constraints!

Is there any hope?

Yes, but we need to borrow from
factored MDP / POMDP community…

A Brief History of (ICAPS) Time

STRIPS (1971)

Fikes & Nilsson

Relational

ADL (1987)

Pednault

Cond. Effects

Open World

PDDL 1.2 (1998)

McDermott et al

Univ. Effects

PDDL 2.1, + (2003)

Fox & Long

Numerical fluents,

Conc., Exogenous

PDDL 2.2 (2004)

Edelkamp & Hoffmann

Derived Pred, Temporal

PDDL 3.0 (2004)

Gerevini & Long

Traj. Constraints,

Preferences

PPDDL (2004)

Littmann & Younes

Prob. Effects

RDDL (2010)

Sanner

PDDL 2.2 ×××× DBN++

Dynamic Bayes Nets (1989)

Dean and Kanazawa

Factored Stochastic Processes

Big

Bang

SPUDD, Sym. Perseus (1999,

2004) Hoey, Boutilier, Poupart

DBN + Utility: Fact. (PO)MDP

ICAPS

UAI

3.2

Relational!

What is RDDL?

• Relational Dynamic

Influence Diagram

Language

– Relational

[DBN + Influence Diagram]

• Think of it as

Relational SPUDD /

Symbolic Perseus

– on speed

t t+1

a

x1

x2

r

x1’

x2’

o1
o2

Key task: how

to specify lifted

distributions &

reward?

RDDL Principles I

• Everything is a fluent (parameterized variable)
– State fluents

– Observation fluents

• for partially observed domains

– Action fluents

• supports factored concurrency

– Intermediate fluents

• derived predicates, correlated effects, …

– Constant nonfluents (general constants, topology relations, …)

• Flexible fluent types
– Binary (predicate) fluents

– Multi-valued (enumerated) fluents

– Integer and continuous fluents (from PDDL 2.1)

RDDL Principles II

• Semantics is ground DBN / Influence Diagram

– Unambiguous specification of transition semantics

• Supports unrestricted concurrency

– Naturally supports independent exogenous events

• General expressions in transition / reward

– Logical expressions (∧, ∨, ⇒, ⇔, ∀, ∃)

– Arithmetic expressions (+,−,*, /, ∑x, ∏x)

– In/dis/equality comparison expressions (=, ≠, <,>, ≤, ≥)

– Conditional expressions (if-then-else, switch)

– Basic probability distributions

• Bernoulli, Discrete, Normal, Poisson

Logical expr. {0,1}

so can use in

arithmetic expr.

∑x, ∏x aggregators over
domain objects

extremely powerful

RDDL Principles III

• Goal + General (PO)MDP objectives
– Arbitrary reward

• goals, numerical preferences (c.f., PDDL 3.0)

– Finite horizon

– Discounted or undiscounted

• State/action constraints
– Encode legal actions

• (concurrent) action preconditions

– Assert state invariants
• e.g., a package cannot be in two locations

RDDL Grammar

Let’s examine BNF
grammar in infinite tedium!

OK, maybe not.
(Grammar online if you want it.)

RDDL Examples

Easiest to understand

RDDL in use…

How to Represent Factored MDP?

P(p’|p,r)

RDDL Equivalent

Can think of

transition

distributions

as “sampling

instructions”

A Discrete-Continuous POMDP?

Integer

Multi-

valued

Real

A Discrete-Continuous POMDP, Part I

A Discrete-Continuous POMDP, Part II

Integer

Multi-

valued

Real

Variance comes from other

previously sampled variables

Mixture of

Normals

RDDL so far…

• Mainly SPUDD / Symbolic Perseus with a
different syntax ☺
– A few enhancements

• concurrency

• constraints

• integer / continuous variables

• Real problems (e.g., traffic) need lifting
– An intersection model

– A vehicle model
• Specify each intersection / vehicle model once!

Lifted

MDP:

Game

of Life

Concurrency as

factored action

variables

How many

possible joint

actions here?

A Lifted MDP
Intermediate variable: like derived predicate

Using counts to

decide next state

Additive reward!

State constraints,

preconditions

Nonfluent and Instance Defintion

Objects that don’t

change b/w instances

Topologies over

these objects
Numerical

constant nonfluent

Import a topology

Initial state as usual

Concurrency

Power of Lifting
non-fluents game3x3 {

domain = game_of_life;

objects {

x_pos : {x1,x2,x3};

y_pos : {y1,y2,y3};
};

non-fluents {

NEIGHBOR(x1,y1,x1,y2);

NEIGHBOR(x1,y1,x2,y1);
NEIGHBOR(x1,y1,x2,y2);

NEIGHBOR(x1,y2,x1,y1);

NEIGHBOR(x1,y2,x2,y1);

NEIGHBOR(x1,y2,x2,y2);
NEIGHBOR(x1,y2,x2,y3);

NEIGHBOR(x1,y2,x1,y3);

NEIGHBOR(x1,y3,x1,y2);

NEIGHBOR(x1,y3,x2,y2);

NEIGHBOR(x1,y3,x2,y3);
NEIGHBOR(x2,y1,x1,y1);

NEIGHBOR(x2,y1,x1,y2);

NEIGHBOR(x2,y1,x2,y2);

NEIGHBOR(x2,y1,x3,y2);

NEIGHBOR(x2,y1,x3,y1);
NEIGHBOR(x2,y2,x1,y1);

NEIGHBOR(x2,y2,x1,y2);

NEIGHBOR(x2,y2,x1,y3);

NEIGHBOR(x2,y2,x2,y1);

NEIGHBOR(x2,y2,x2,y3);
NEIGHBOR(x2,y2,x3,y1);

NEIGHBOR(x2,y2,x3,y2);

NEIGHBOR(x2,y2,x3,y3);

NEIGHBOR(x2,y3,x1,y3);

NEIGHBOR(x2,y3,x1,y2);
NEIGHBOR(x2,y3,x2,y2);

NEIGHBOR(x2,y3,x3,y2);

NEIGHBOR(x2,y3,x3,y3);

NEIGHBOR(x3,y1,x2,y1);
NEIGHBOR(x3,y1,x2,y2);

NEIGHBOR(x3,y1,x3,y2);

NEIGHBOR(x3,y2,x3,y1);

NEIGHBOR(x3,y2,x2,y1);

NEIGHBOR(x3,y2,x2,y2);
NEIGHBOR(x3,y2,x2,y3);

NEIGHBOR(x3,y2,x3,y3);

NEIGHBOR(x3,y3,x2,y3);

NEIGHBOR(x3,y3,x2,y2);

NEIGHBOR(x3,y3,x3,y2);
};

}

non-fluents game2x2 {

domain = game_of_life;

objects {

x_pos : {x1,x2};

y_pos : {y1,y2};
};

non-fluents {

PROB_REGENERATE = 0.9;

NEIGHBOR(x1,y1,x1,y2);

NEIGHBOR(x1,y1,x2,y1);

NEIGHBOR(x1,y1,x2,y2);

NEIGHBOR(x1,y2,x1,y1);
NEIGHBOR(x1,y2,x2,y1);

NEIGHBOR(x1,y2,x2,y2);

NEIGHBOR(x2,y1,x1,y1);
NEIGHBOR(x2,y1,x1,y2);

NEIGHBOR(x2,y1,x2,y2);

NEIGHBOR(x2,y2,x1,y1);

NEIGHBOR(x2,y2,x1,y2);
NEIGHBOR(x2,y2,x2,y1);

};

}

Reward Function

Next State and Reward

alive’(x2, y1)

alive’(x1, y1)

alive’(x2, y2)

alive’(x1, y2)

set(x2, y1)

alive(x1, y2)

count-neighbors(x2, y1)

count-neighbors(x1, y1)

count-neighbors(x2, y2)

Current State and Actions

set(x1, y2)

alive(x2, y2) count-neighbors(x1, y2)

alive(x1, y1)

set(x2, y2)

set(x1, y1)

alive(x2, y1)

Intermediate @ Level 1

alive’(x3, y3)

alive’(x2, y2)

alive’(x1, y1)

alive’(x3, y2)

alive’(x1, y3)

alive’(x2, y1)

alive’(x3, y1)

alive’(x2, y3)

Reward Function

alive’(x1, y2)

Next State and Reward

alive(x3, y2)

count-neighbors(x3, y3)

count-neighbors(x2, y2)

count-neighbors(x2, y1)

count-neighbors(x3, y1)

count-neighbors(x2, y3)

set(x2, y3)

alive(x1, y3)

count-neighbors(x1, y2)

set(x3, y3)

alive(x2, y3)

count-neighbors(x3, y2)

count-neighbors(x1, y3)

set(x1, y1)

alive(x3, y3)

Current State and Actions

set(x2, y1)

alive(x1, y1)

set(x3, y1)

alive(x2, y1)

count-neighbors(x1, y1)

set(x1, y2)

alive(x3, y1)

set(x2, y2)

alive(x1, y2)

set(x3, y2)

alive(x2, y2)

set(x1, y3)

Intermediate @ Level 1

Simple domains

can generate

complex DBNs!

Complex Lifted Transitions
SysAdmin (Guestrin et al, 2001)

Probability of a

computer running

depends on ratio of

connected

computers running!

How to Think About Distributions

• Transition distribution is stochastic program
– Similar to BLOG (Milch, Russell, et al), IBAL (Pfeffer)
– Leaves of programs are distributions

• Think of SPUDD / Sym. Perseus decision diagrams
as having Bernoulli leaves

• Procedural specification of sampling process
– Use intermediate DBN variables for storage

– E.g., drawing a distance measurement in robotics
• boolean Noise := sample from Bernoulli (.1)
• real Measurement := If (Noise == true)

– Then sample from Uniform(0, 10)

– Else sample from Normal(true-distance, σ2)

0 10

true-distance
Convenient way to write

complex mixture models and

conditional distributions that

occur in practice!

RDDL Software

Open source & online at
http://code.google.com/p/rddlsim/

Java Software Overview

• BNF grammar and parser

• Simulator

• Automatic translations
– LISP-like format (easier to parse)
– SPUDD & Symbolic Perseus (boolean subset)

– Ground PPDDL (boolean subset)

• Client / Server
– Evaluation scripts for log files

• Visualization
– DBN Visualization

– Domain Visualization – see how your planner is doing

Visualization of Boolean Traffic

Visualization of Boolean Elevators

RDDL Domains

• Boolean track

– 8 domains (including traffic & elevators)

– 10 instances per domain from IPPC

– Generators for any size instance!

• General track (bool, integer, continuous)

– Range of problems (Mars Rover, concurrent)

– Where I hope future IPPC focuses…

Ideas for other RDDL Domains

• UAVs with partial observability

• (Hybrid) Control
– Linear-quadratic control (Kalman filtering with control)

– Discrete and continuous actions – avoided by planning

– Nonlinear control

• Dynamical Systems from other fields
– Population dynamics

– Chemical / biological systems

– Physical systems
• Pinball!

– Environmental / climate systems

• Bayesian Modeling
– Continuous Fluents can represent parameters

• Beta / Bernoulli / Dirichlet / Multinomial / Gaussian

– Then progression is a Bayesian update!
• Bayesian reinforcement learning

Submit your own

Domains in RDDL!

Field only makes true progress
working on realistic problems

Future RDDL Extensions?
• Elementary functions

– sin, cos, log, exp, sqrt

• Effects-based specification?
– Easier to write than current fluent-centered approach
– But how to resolve conflicting effects in unrestricted concurrency

• Binomial / Multinomial
– Need a vector fluent type when sampling vectors of counts

• Object fluents
– Much harder than PDDL 3
– Distribrutions over indefinite number of objects

• Perhaps can borrow ideas from BLOG (Milch

• Timed processes?
– Concurrency + time quite difficult

Enjoy RDDL!

(no lack of difficult

problems to solve!)

Questions?

