# Ensemble Monte-Carlo Planning: An Empirical Study

#### **Alan Fern and Paul Lewis**

**Computer Science** 

**Oregon State University** 

#### **Talk Outline**

Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

#### Klondike Solitaire



- UCT planner worked surprisingly well (34.4%)
- Voting across small UCT trees worked better (37%)
  - Using less total time!

## **Parallel UCT in Go**

- Several proposals to parallelize UCT with experiments in Go (Cazenave, et. al., 2007) (Gelly, et. al., 2008)
- Simply voting of independent UCTs worked best!





Fig. 5. Performance of the different parallelization methods

#### **Prior Observations: Multi-Core**

- Parallel Time Advantage
  - More CPUs showed significant improvement



VS



## **Prior Observations: Single-Core**

- Single-Core Space Advantage
  - ◆ Single core only needs memory for single (smaller) tree
- Single-Core Time Advantage
  - Ensembles show advantages w.r.t. total CPU time



## **Objective**

- Prior observations about UCT ensembles are limited in scope
  - Domains limited to Go and Solitaire
  - Limited ensemble configurations

- Our Goal: provide evidence for or against prior observations
  - Consider 6 domains (other than Go and Solitaire)
  - Test a regular grid of ensemble configurations

#### **Talk Outline**

Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

## UCT Algorithm [Kocsis & Szepesvari, 2006]

- UCT is an instance of Monte-Carlo Tree Search
  - Single-agent problems or games
  - Stochastic and deterministic problems
- Major advance in computer Go

A growing number of success stories

Practical successes not well understood

#### **Monte-Carlo Tree Search**

- Online Action Selection:
  - Build a sparse lookahead tree rooted at current state s
  - Select root action that looks best



- Tree Building: repeatedly executes a rollout policy from root
  - Add one fringe node to tree each time
  - Updates statistics of tree nodes based on return
- Key Idea: rollout policy biased by previous runs to expand tree in more promising directions



Iteration 2

**Current World State** 



Iteration 3

**Current World State** 



Iteration 3

Current World State

Tree Policy





#### Iteration 4

**Current World State** 







What is an appropriate tree policy?

**Current World State** 



Treat action selection as **bandit problem** 

#### **Upper Confidence Bound (UCB) Rule:**

$$\pi_{UCT}(s) = \arg\max_{a} Q(s,a) + c \sqrt{\frac{\ln n(s)}{n(s,a)}}$$
 Exploitation Term Exploitation Term

#### **Talk Outline**

Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

#### **Ensemble UCT**

- 1. Build *T* independent UCT trees rooted at current state
- Accumulate action statistics at root nodes of trees
- 3. Execute action with best average return



## Why might ensembles work?

UCT is stochastic – unlucky runs can choose bad actions



## Why might ensembles work?

- UCT is stochastic unlucky runs can choose bad actions
- Variance Reduction: average reduces variance (and bad luck)
- Likely explanation for observed parallel-time advantage



## Why might ensembles work?

- Sequential-time advantage
  - Single large tree must be worse than multiple smaller trees (w/ equal # nodes)
  - Assumes time is reflected by total number of tree nodes
- Smaller trees: higher variance and bias at root
  - Can averaging make up for the lower quality individuals?



#### **Talk Outline**

Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

## **Backgammon**



- 2 player
- Stochastic

## **Biniax**



- 1 player
- stochastic

## **Connect 4**



- 2 player
- Deterministic

## Havannah



- 2 player
- deterministic



Two variants with different scoring schemes

- 1 player
- stochastic

| UPPER SECTION                      | HOW<br>TO SCORE              | GAME<br>#1 | GAME<br>#2 | GAME<br>#3 | GAME<br>#4 | GAME<br>#5 | GAME<br>#6       |
|------------------------------------|------------------------------|------------|------------|------------|------------|------------|------------------|
| Aces • = 1                         | Count and Add<br>Only Aces   |            |            |            |            |            |                  |
| Twos • = 2                         | Count and Add<br>Only Twos   |            |            |            |            |            |                  |
| Threes • = 3                       | Count and Add<br>Only Threes |            |            |            | 3 44 3     |            |                  |
| Fours = 4                          | Count and Add<br>Only Fours  |            |            |            |            |            |                  |
| Fives = 5                          | Count and Add<br>Only Fives  |            |            |            |            |            | 2                |
| Sixes = 6                          | Count and Add<br>Only Sixes  |            |            |            |            |            |                  |
| TOTAL SCORE                        | $\rightarrow$                |            |            | 2          |            |            | 4                |
| BONUS If total score is 63 or over | SCORE 35                     |            | 3,         |            |            |            | 1/2              |
| TOTAL Of Upper Section             | -                            |            |            | iic.       |            |            |                  |
| LOWER SECTION                      |                              |            |            |            |            |            |                  |
| 3 of a kind                        | Add Total<br>Of All Dice     |            |            |            |            |            |                  |
| 4 of a kind                        | Add Total<br>Of All Dice     |            |            |            |            |            |                  |
| Full House                         | SCORE 25                     |            |            |            |            |            |                  |
| Sm. Straight Sequence of 4         | SCORE 30                     |            |            |            |            |            |                  |
| Lg. Straight Sequence of 5         | SCORE 40                     |            |            |            |            |            |                  |
| YAHTZEE 5 of a kind                | SCORE 50                     |            |            |            |            |            |                  |
| Chance                             | Score Total<br>Of All 5 Dice |            |            |            |            |            |                  |
| YAHTZEE                            | FOR EACH BONUS               |            |            |            |            | $\Box\Box$ | $\top \top \top$ |
| BONUS                              | SCORE 100<br>PER             |            |            |            |            |            |                  |
| TOTAL Of Lower Section             |                              |            | 1,         |            |            |            |                  |
| TOTAL Of Upper Section             |                              | B.         |            | :          | 1 1        |            |                  |
| GRAND TOTAL                        | <b>→</b>                     |            |            |            |            |            |                  |

## **Experiment Setup**

All ensembles run as a single thread

- UCT constant set per domain (same for all ensembles)
  - ▲ 24G Ram

- Varied ensemble configurations
  - Ensemble size = # of trees
  - Trajectories per tree = Size of individual trees
- Averaged results over 1000-4000 runs (usually 4000)
  - Show 99% confidence intervals

| Trajectories per | Ensemble Size |   |   |   |    |
|------------------|---------------|---|---|---|----|
| Tree             | 1             | 2 | 4 | 8 | 16 |
| $2^7$            |               |   |   |   |    |
| $2^{8}$          |               |   |   |   |    |
| $2^9$            |               |   |   |   |    |
| $2^{10}$         |               |   |   |   |    |
| $2^{11}$         |               |   |   |   |    |
| $2^{12}$         |               |   |   |   |    |
| $2^{13}$         |               |   |   |   |    |
| $2^{14}$         |               |   |   |   |    |
| $2^{15}$         |               |   |   |   |    |
| $2^{16}$         |               |   |   |   |    |

| Trajectories per | Ensemble Size   |                 |                 |                 |                 |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |
| $2^7$            | $160.3 \pm 2.5$ | $167.9 \pm 1.5$ | $175.3 \pm 2.8$ | $186.3 \pm 2.8$ | $193.5 \pm 3.3$ |  |
| $2^{8}$          |                 |                 |                 |                 |                 |  |
| $2^9$            |                 |                 |                 |                 |                 |  |
| $2^{10}$         |                 |                 |                 |                 |                 |  |
| $2^{11}$         |                 |                 |                 |                 |                 |  |
| $2^{12}$         |                 |                 |                 |                 |                 |  |
| $2^{13}$         |                 |                 |                 |                 |                 |  |
| $2^{14}$         |                 |                 |                 |                 |                 |  |
| $2^{15}$         |                 |                 |                 |                 |                 |  |
| $2^{16}$         |                 |                 |                 |                 |                 |  |

| Trajectories per | Ensemble Size   |                 |                 |                 |                 |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tree             | 1               | 2               | 4               | 8               | 16              |
| $2^7$            | $160.3 \pm 2.5$ | $167.9 \pm 1.5$ | $175.3 \pm 2.8$ | $186.3 \pm 2.8$ | $193.5 \pm 3.3$ |
| $2^8$            | $172.3 \pm 2.8$ | $179.2 \pm 1.6$ | $185.9 \pm 2.8$ | $193.7 \pm 3.0$ | $202.2 \pm 3.7$ |
| $2^9$            |                 |                 |                 |                 |                 |
| $2^{10}$         |                 |                 |                 |                 |                 |
| $2^{11}$         |                 |                 |                 |                 |                 |
| $2^{12}$         |                 |                 |                 |                 |                 |
| $2^{13}$         |                 |                 |                 |                 |                 |
| $2^{14}$         |                 |                 |                 |                 |                 |
| $2^{15}$         |                 |                 |                 |                 |                 |
| $2^{16}$         |                 |                 |                 |                 |                 |

| Trajectories per | Ensemble Size   |                 |                 |                 |                 |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |
| $2^7$            | $160.3 \pm 2.5$ | $167.9 \pm 1.5$ | $175.3 \pm 2.8$ | $186.3 \pm 2.8$ | $193.5 \pm 3.3$ |  |
| $2^{8}$          | $172.3 \pm 2.8$ | $179.2 \pm 1.6$ | $185.9 \pm 2.8$ | $193.7 \pm 3.0$ | $202.2 \pm 3.7$ |  |
| $2^{9}$          | $183.1 \pm 2.7$ | $190.2\pm1.8$   | $197.0 \pm 3.4$ | $205.0 \pm 3.9$ | $208.3 \pm 3.2$ |  |
| $2^{10}$         | $191.8 \pm 2.8$ | $199.9 \pm 1.9$ | $204.0 \pm 3.3$ | $207.9 \pm 3.2$ | $214.2 \pm 3.7$ |  |
| $2^{11}$         | $197.9 \pm 2.5$ | $206.2 \pm 2.0$ | $211.0 \pm 3.6$ | $214.7 \pm 3.8$ | $217.4 \pm 3.7$ |  |
| $2^{12}$         | $208.1 \pm 3.7$ | $211.1 \pm 2.1$ | $214.9 \pm 3.9$ | $215.6 \pm 3.5$ | $220.6 \pm 2.7$ |  |
| $2^{13}$         | $209.0 \pm 3.3$ | $214.9 \pm 1.8$ | $216.4 \pm 3.4$ | $218.9 \pm 4.0$ | $221.4 \pm 2.9$ |  |
| $2^{14}$         | $215.2 \pm 4.0$ | $217.1 \pm 2.2$ | $219.8 \pm 2.8$ | $223.4 \pm 3.1$ | $221.3 \pm 4.0$ |  |
| $2^{15}$         | $215.0 \pm 3.5$ | $220.7 \pm 2.1$ | $220.9 \pm 3.7$ |                 |                 |  |
| $2^{16}$         | $216.6 \pm 3.7$ | $221.0 \pm 3.2$ |                 |                 |                 |  |

- Consistent improvement as ensemble size grows
- Parallel-time and single-core space advantage

| Trajectories per | Ensemble Size   |                 |                 |                 |                 |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |
| $2^7$            | $160.3 \pm 2.5$ | $167.9 \pm 1.5$ | $175.3 \pm 2.8$ | $186.3 \pm 2.8$ | $193.5 \pm 3.3$ |  |
| $2^{8}$          | $172.3 \pm 2.8$ | $179.2 \pm 1.6$ | $185.9 \pm 2.8$ | $193.7 \pm 3.0$ | $202.2 \pm 3.7$ |  |
| $2^{9}$          | $183.1 \pm 2.7$ | $190.2 \pm 1.8$ | $197.0 \pm 3.4$ | $205.0 \pm 3.9$ | $208.3 \pm 3.2$ |  |
| $2^{10}$         | $191.8 \pm 2.8$ | $199.9 \pm 1.9$ | $204.0 \pm 3.3$ | $207.9 \pm 3.2$ | $214.2 \pm 3.7$ |  |
| $2^{11}$         | $197.9 \pm 2.5$ | $206.2 \pm 2.0$ | $211.0 \pm 3.6$ | $214.7 \pm 3.8$ | $217.4 \pm 3.7$ |  |
| $2^{12}$         | $208.1 \pm 3.7$ | $211.1 \pm 2.1$ | $214.9 \pm 3.9$ | $215.6 \pm 3.5$ | $220.6 \pm 2.7$ |  |
| $2^{13}$         | $209.0 \pm 3.3$ | $214.9 \pm 1.8$ | $216.4 \pm 3.4$ | $218.9 \pm 4.0$ | $221.4 \pm 2.9$ |  |
| $2^{14}$         | $215.2 \pm 4.0$ | $217.1 \pm 2.2$ | $219.8 \pm 2.8$ | $223.4 \pm 3.1$ | $221.3 \pm 4.0$ |  |
| $2^{15}$         | $215.0 \pm 3.5$ | $220.7 \pm 2.1$ | $220.9 \pm 3.7$ |                 |                 |  |
| $2^{16}$         | $216.6 \pm 3.7$ | $221.0 \pm 3.2$ |                 |                 |                 |  |

- Consistent improvement for larger ensemble sizes
- Parallel-time and single-core space advantage
- 16 x  $2^{11}$  on par w/ 1 x  $2^{16}$  = 32x improvement

| Trajectories per |                 | Ensemble Size   |                 |                 |                 |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |
| $2^{10}$         | $522 \pm .048$  | $370 \pm .052$  | $299 \pm .053$  | $233 \pm .055$  | $189 \pm .055$  |  |
| $2^{11}$         | $256 \pm .054$  | $139 \pm .055$  | $102 \pm .056$  | $011 \pm .057$  | $056 \pm .056$  |  |
| $2^{12}$         | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ |  |
| $2^{13}$         | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ |  |
| $2^{14}$         | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $841 \pm 042$   |  |
| $2^{15}$         | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ |  |
| $2^{16}$         | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ |                 |  |
| $2^{17}$         | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ |                 |                 |  |
| $2^{18}$         | $.871 \pm 038$  | $.910 \pm 0.31$ |                 |                 |                 |  |
| $2^{19}$         | $.903 \pm .032$ |                 |                 |                 |                 |  |

- Similar observations across other domains
- Except Binax

#### Binax

| Trajectories per | Ensemble Size   |                 |                 |                 |                 |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |
| $2^8$            | $102.1 \pm 1.2$ | $102.0 \pm 1.2$ | $100.9 \pm 1.2$ | $101.2 \pm 1.4$ | $101.8 \pm 2.4$ |  |
| $2^9$            | $103.9 \pm 1.2$ | $104.0 \pm 1.2$ | $104.4 \pm 1.2$ | $103.0 \pm 1.4$ | $103.9 \pm 2.4$ |  |
| $2^{10}$         | $105.9 \pm 1.2$ | $105.3 \pm 1.2$ | $105.0 \pm 1.2$ | $106.6 \pm 2.4$ | $107.7 \pm 2.4$ |  |
| $2^{11}$         | $108.0 \pm 1.2$ | $107.9 \pm 1.2$ | $107.4 \pm 1.2$ | $108.3 \pm 2.4$ | $108.7 \pm 2.4$ |  |
| $2^{12}$         | $109.0 \pm 1.2$ | $109.5 \pm 1.2$ | $110.6 \pm 2.4$ | $110.5 \pm 2.4$ |                 |  |
| $2^{13}$         | $110.6 \pm 1.2$ | $112.1 \pm 1.2$ | $113.8 \pm 2.4$ | $114.0 \pm 2.4$ |                 |  |
| $2^{14}$         | $111.9 \pm 1.2$ | $113.9 \pm 1.2$ |                 |                 |                 |  |
| $2^{15}$         | $113.2 \pm 1.2$ |                 |                 |                 |                 |  |

• Small trees: no improvement

#### Binax

| Trajectories per |                 | Ensemble Size   |                 |                 |                 |  |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |  |
| $2^8$            | $102.1\pm1.2$   | $102.0\pm1.2$   | $100.9 \pm 1.2$ | $101.2\pm1.4$   | $101.8 \pm 2.4$ |  |  |
| $2^{9}$          | $103.9 \pm 1.2$ | $104.0 \pm 1.2$ | $104.4 \pm 1.2$ | $103.0 \pm 1.4$ | $103.9 \pm 2.4$ |  |  |
| $2^{10}$         | $105.9 \pm 1.2$ | $105.3 \pm 1.2$ | $105.0 \pm 1.2$ | $106.6 \pm 2.4$ | $107.7 \pm 2.4$ |  |  |
| $2^{11}$         | $108.0 \pm 1.2$ | $107.9 \pm 1.2$ | $107.4 \pm 1.2$ | $108.3 \pm 2.4$ | $108.7 \pm 2.4$ |  |  |
| $2^{12}$         | $109.0 \pm 1.2$ | $109.5 \pm 1.2$ | $110.6 \pm 2.4$ | $110.5 \pm 2.4$ |                 |  |  |
| $2^{13}$         | $110.6 \pm 1.2$ | $112.1 \pm 1.2$ | $113.8 \pm 2.4$ | $114.0 \pm 2.4$ |                 |  |  |
| $2^{14}$         | $111.9 \pm 1.2$ | $113.9 \pm 1.2$ |                 |                 |                 |  |  |
| $2^{15}$         | $113.2\pm1.2$   |                 |                 |                 |                 |  |  |

- Small trees: no improvement
- Larger trees: very small improvement
- Binax Properties: UCT has very low variance Small trees are quite biased

# **Results: Single Core**

#### Connect 4

| Trajectories per |                 | Ensemble Size   |                 |                 |                 |  |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |  |
| $2^{10}$         | $522 \pm .048$  | $370 \pm .052$  | $299 \pm .053$  | $233 \pm .055$  | $189 \pm .055$  |  |  |
| $2^{11}$         | $256 \pm .054$  | $139 \pm .055$  | $102 \pm .056$  | $011 \pm .057$  | $056 \pm .056$  |  |  |
| $2^{12}$         | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ |  |  |
| $2^{13}$         | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ |  |  |
| $2^{14}$         | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ |  |  |
| $2^{15}$         | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ |  |  |
| $2^{16}$         | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ |                 |  |  |
| $2^{17}$         | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ |                 |                 |  |  |
| $2^{18}$         | $.871 \pm .038$ | $.910 \pm 0.31$ |                 |                 |                 |  |  |
| $2^{19}$         | $.903 \pm .032$ |                 |                 |                 |                 |  |  |

Ensembles along diagonals have same total nodes

| Trajectories per |                 |                 | Ensemble Size   |                 |                 |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tree             | 1               | 2               | 4               | 8               | 16              |
| $2^{10}$         | $522 \pm .048$  | $370 \pm .052$  | $299 \pm .053$  | $233 \pm .055$  | $189 \pm .055$  |
| $2^{11}$         | $256 \pm .054$  | $139 \pm .055$  | $102 \pm .056$  | $011 \pm .057$  | $056 \pm .056$  |
| $2^{12}$         | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ |
| $2^{13}$         | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ |
| $2^{14}$         | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ |
| $2^{15}$         | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ |
| $2^{16}$         | $.727 \pm .054$ | $.884\pm.037$   | $.886 \pm .036$ | $.926 \pm .029$ |                 |
| $2^{17}$         | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ |                 |                 |
| $2^{18}$         | $.871 \pm .038$ | $.910 \pm 0.31$ |                 |                 |                 |
| $2^{19}$         | $.903 \pm .032$ |                 |                 |                 |                 |

- Ensembles along diagonals have same total nodes
- Small Trees: ensembles of very small trees hurt performance

| Trajectories per |                 | Ensemble Size   |                 |                 |                 |  |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |  |
| $2^{10}$         | $522 \pm .048$  | $370 \pm .052$  | $299 \pm .053$  | $233 \pm .055$  | $189\pm.055$    |  |  |
| $2^{11}$         | $256 \pm .054$  | $139 \pm .055$  | $102 \pm .056$  | $011 \pm .057$  | $056 \pm .056$  |  |  |
| $2^{12}$         | $.011 \pm .056$ | $.121 \pm .056$ | $.227\pm.055$   | $.253 \pm .054$ | $.284 \pm .076$ |  |  |
| $2^{13}$         | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ |  |  |
| $2^{14}$         | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ |  |  |
| $2^{15}$         | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ |  |  |
| $2^{16}$         | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ |                 |  |  |
| $2^{17}$         | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ |                 |                 |  |  |
| $2^{18}$         | $.871 \pm .038$ | $.910 \pm 0.31$ |                 |                 |                 |  |  |
| $2^{19}$         | $.903 \pm .032$ |                 |                 |                 |                 |  |  |

- Ensembles along diagonals have same total nodes
- Small Trees: ensembles of very small trees hurt performance
- Medium Trees: performance not hurt for larger trees

## **Small Trees**



VS



High bias trees



Variance is not main problem

| Trajectories per |                 | Ensemble Size   |                 |                 |                 |  |  |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Tree             | 1               | 2               | 4               | 8               | 16              |  |  |
| $2^{10}$         | $522 \pm .048$  | $370 \pm .052$  | $299 \pm .053$  | $233 \pm .055$  | $189 \pm .055$  |  |  |
| $2^{11}$         | $256 \pm .054$  | $139 \pm .055$  | $102 \pm .056$  | $011 \pm .057$  | $056 \pm .056$  |  |  |
| $2^{12}$         | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ |  |  |
| $2^{13}$         | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ |  |  |
| $2^{14}$         | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ |  |  |
| $2^{15}$         | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ |  |  |
| $2^{16}$         | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ |                 |  |  |
| $2^{17}$         | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ |                 |                 |  |  |
| $2^{18}$         | $.871 \pm .038$ | $.910 \pm 0.31$ |                 |                 |                 |  |  |
| $2^{19}$         | $.903 \pm .032$ |                 |                 |                 |                 |  |  |

- Large Trees: improvement trend not statistically significant
- Only two domains show such a trend
- Most show no significant single-core time advantage

# **Summary**

- Parallel time and single-core space advantage?
  - Yes consistently significant
  - Except when individual tree variance is very small

- Sequential-time advantage?
  - Nothing significant
  - Suggestive trends in 2 domains for large trees

- Sequential-time disadvantage
  - Happens when trees are too small (high bias)

## **Future Work**

Better understand bias-variance trade-off

- Experiments for larger ensembles
  - When does improvement stop?

 Are trends the same for "enhanced" versions of UCT?

 Optimize configuration for a cluster's space and time constraints

# **Thanks**

# **Time Overhead for Large Trees**

Connect 4 Ensemble Timing Table (ms)

| Total        | Ensembles   |             |             |             |             |  |
|--------------|-------------|-------------|-------------|-------------|-------------|--|
| Trajectories | 1           | 2           | 4           | 8           | 16          |  |
| 4096         |             |             |             |             | $694 \pm 6$ |  |
| 8192         |             |             |             | $714 \pm 6$ |             |  |
| 16384        |             |             | $740 \pm 6$ |             |             |  |
| 32768        |             | $773 \pm 6$ |             |             |             |  |
| 65536        | $792 \pm 6$ |             |             |             |             |  |

# **Ensemble Parameter Sensitivity**

Connect 4 Ensemble Parameter Sensitivity

| UCT      | Ensembles         |                   |                   |                   |                   |
|----------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Constant | 1                 | 2                 | 4                 | 8                 | 16                |
| 0.5      | $0.205 \pm 0.075$ | $0.318 \pm 0.075$ | $0.378 \pm 0.073$ | $0.413 \pm 0.072$ | $0.434 \pm 0.072$ |
| 0.6      | $0.412 \pm 0.070$ | $0.565 \pm 0.065$ | $0.618 \pm 0.062$ | $0.619 \pm 0.062$ | $0.525 \pm 0.068$ |
| 1        | $0.727 \pm 0.054$ | $0.793 \pm 0.048$ | $0.765 \pm 0.051$ | $0.543 \pm 0.067$ | $0.284 \pm 0.076$ |

#### Yahtzee Ensemble Parameter Sensitivity

| UCT      | Ensembles     |               |               |               |               |
|----------|---------------|---------------|---------------|---------------|---------------|
| Constant | 1             | 2             | 4             | 8             | 16            |
| 2        | $173 \pm 2.6$ | $195 \pm 2.9$ | $207 \pm 3.4$ | $208 \pm 2.9$ | $207 \pm 3.0$ |
| 4        | $187 \pm 2.6$ | $201 \pm 2.9$ | $209 \pm 3.2$ | $211 \pm 3.2$ | $208 \pm 3.2$ |
| 64       | $215 \pm 3.5$ | $217 \pm 2.2$ | $216 \pm 3.4$ | $216 \pm 3.5$ | $217 \pm 3.7$ |