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Klondike Solitaire 
UCT Lookahead Tree

Tree Ensemble

UCT planner worked surprisingly well (34.4%)

Voting across small UCT trees worked better (37%)
Using less total time! 

HOP Planner (27% win rate)

Bjarnason et. al., ICAPS-2009



Parallel UCT in Go
• Several proposals to parallelize UCT with experiments in Go

(Cazenave, et. al., 2007) (Gelly, et. al., 2008)

• Simply voting of independent UCTs worked best!

Simple 
Voting

Next
Best

(Gelly, et. al., 2008)



Prior Observations: Multi-Core
Parallel Time Advantage
More CPUs showed significant improvement

VS



Prior Observations: Single-Core
Single-Core Space Advantage
Single core only needs memory for single (smaller) tree

Single-Core Time Advantage
Ensembles show advantages w.r.t. total CPU time

VS

Multiple Small Trees Single Big Tree



Objective

Prior observations about UCT ensembles are 
limited in scope
Domains limited to Go and Solitaire
Limited ensemble configurations

Our Goal: provide evidence for or against prior 
observations
Consider 6 domains (other than Go and Solitaire)
Test a regular grid of ensemble configurations
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UCT is an instance of Monte-Carlo Tree Search
Single-agent problems or games
Stochastic and deterministic problems

Major advance in computer Go

A growing number of success stories

Practical successes not well understood

UCT Algorithm  [Kocsis & Szepesvari, 2006]



 Online Action Selection:
 Build a sparse lookahead tree rooted at current state s
 Select root action that looks best

 Tree Building: repeatedly executes a rollout policy from root
 Add one fringe node to tree each time
 Updates statistics of tree nodes based on return

 Key Idea: rollout policy biased by previous runs to expand 
tree in more promising directions

Monte-Carlo Tree Search

10 5
s



Current World State

Default
Policy
(e.g. random)

Terminal
(reward = 1)

1

1

1 Initially tree is single leaf

new tree node

Iteration 1
UCT Example



Current World State

1

1

0

Default
Policy

Terminal
(reward = 0)

new tree node

Iteration 2
UCT Example



Current World State

1

1/2

0

Iteration 3
UCT Example



Current World State

1

1/2

0

Tree Policy

Iteration 3
UCT Example



Current World State

1

1/2

0

Tree Policy

0

Default
Policy

new tree node

Iteration 3
UCT Example



Current World State

1/2

1/3

0
Tree 

Policy

0

Iteration 4
UCT Example



Current World State
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1/2

1/3

0

0

Iteration 4
UCT Example



Current World State

2/3

2/3

0
Tree 

Policy

0

What is an appropriate tree policy?

1

UCT Example



Current World State

1

1/2

1/3

0
Tree 

Policy

0

a1 a2

UCT Example
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Treat action selection 
as bandit problem

Upper Confidence Bound (UCB) Rule:

Exploitation Term
Exploitation Term
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Ensemble UCT

ss s

1. Build T independent UCT trees rooted at current state

2. Accumulate action statistics at root nodes of trees

3. Execute action with best average return

7/10 2/5 6/8 5/7 8/11 1/4

Accumulate

21/29 8/16 Best voting method
in preliminary study
(out of at least 5)



Why might ensembles work? 

Correct Wrong Correct
ss s

7/10 2/5 4/7 6/8 8/11 1/4

 UCT is stochastic – unlucky runs can choose bad actions



Why might ensembles work? 

ss s
7/10 2/5 4/7 6/8 8/11 1/4

Accumulate

19/28 9/17 Reduced  
Variance

 UCT is stochastic – unlucky runs can choose bad actions

 Variance Reduction: average reduces variance (and bad luck)

 Likely explanation for observed parallel-time advantage

High Individual
Variance



Why might ensembles work? 

s

s s s

…

Accumulate
VS

 Sequential-time advantage 
 Single large tree must be worse than multiple smaller trees (w/ equal # nodes)
 Assumes time is reflected by total number of tree nodes

 Smaller trees: higher variance and bias at root
 Can averaging make up for the lower quality individuals?

s
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Backgammon

• 2 player

• Stochastic



Biniax

• 1 player

• stochastic



Connect 4

• 2 player

• Deterministic



Havannah

• 2 player

• deterministic



• 1 player

• stochastic

Two variants with different
scoring schemes



Experiment Setup
All ensembles run as a single thread

UCT constant set per domain (same for all ensembles)
 24G Ram

Varied ensemble configurations
Ensemble size = # of trees
Trajectories per tree = Size of individual trees

Averaged results over 1000-4000 runs (usually 4000)
Show 99% confidence intervals



Results
Yahtzee



Results
Yahtzee



Results
Yahtzee



Results
Yahtzee

• Consistent improvement as ensemble size grows

• Parallel-time and single-core space advantage



Results
Yahtzee

• Consistent improvement for larger ensemble sizes

• Parallel-time and single-core space advantage

• 16 x 211  on par w/ 1 x 216 =  32x improvement



Results
Connect 4

• Similar observations across other domains

• Except Binax



Results
Binax

• Small trees: no improvement 



Results Binax

• Small trees: no improvement 

• Larger trees: very small improvement

• Binax Properties: UCT has very low variance
Small trees are quite biased 



Results: Single Core
Connect 4

• Ensembles along diagonals have same total nodes



Results
Connect 4

• Ensembles along diagonals have same total nodes

• Small Trees: ensembles of very small trees hurt performance



Results
Connect 4

• Ensembles along diagonals have same total nodes

• Small Trees: ensembles of very small trees hurt performance

• Medium Trees: performance not hurt for larger trees



Small Trees

s

s s s

VS

s s s s s s s

High bias trees
Variance is not main problem



Results
Connect 4

• Large Trees: improvement trend – not statistically significant 

• Only two domains show such a trend

• Most show no significant single-core time advantage



Summary
Parallel time and single-core space advantage?
Yes – consistently significant
Except when individual tree variance is very small

Sequential-time advantage?
Nothing significant
Suggestive trends in 2 domains for large trees

Sequential-time disadvantage
Happens when trees are too small (high bias)



Future Work
Better understand bias-variance trade-off

Experiments for larger ensembles
When does improvement stop?

Are trends the same for “enhanced” versions of 
UCT? 

Optimize configuration for a cluster’s space and 
time constraints



Thanks



Time Overhead for Large Trees



Ensemble Parameter Sensitivity
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