
Ensemble Monte-Carlo Planning:
An Empirical Study

Alan Fern and Paul Lewis
Computer Science

Oregon State University

Talk Outline
Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

Klondike Solitaire
UCT Lookahead Tree

Tree Ensemble

UCT planner worked surprisingly well (34.4%)

Voting across small UCT trees worked better (37%)
Using less total time!

HOP Planner (27% win rate)

Bjarnason et. al., ICAPS-2009

Parallel UCT in Go
• Several proposals to parallelize UCT with experiments in Go

(Cazenave, et. al., 2007) (Gelly, et. al., 2008)

• Simply voting of independent UCTs worked best!

Simple
Voting

Next
Best

(Gelly, et. al., 2008)

Prior Observations: Multi-Core
Parallel Time Advantage
More CPUs showed significant improvement

VS

Prior Observations: Single-Core
Single-Core Space Advantage
Single core only needs memory for single (smaller) tree

Single-Core Time Advantage
Ensembles show advantages w.r.t. total CPU time

VS

Multiple Small Trees Single Big Tree

Objective

Prior observations about UCT ensembles are
limited in scope
Domains limited to Go and Solitaire
Limited ensemble configurations

Our Goal: provide evidence for or against prior
observations
Consider 6 domains (other than Go and Solitaire)
Test a regular grid of ensemble configurations

Talk Outline
Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

UCT is an instance of Monte-Carlo Tree Search
Single-agent problems or games
Stochastic and deterministic problems

Major advance in computer Go

A growing number of success stories

Practical successes not well understood

UCT Algorithm [Kocsis & Szepesvari, 2006]

 Online Action Selection:
 Build a sparse lookahead tree rooted at current state s
 Select root action that looks best

 Tree Building: repeatedly executes a rollout policy from root
 Add one fringe node to tree each time
 Updates statistics of tree nodes based on return

 Key Idea: rollout policy biased by previous runs to expand
tree in more promising directions

Monte-Carlo Tree Search

10 5
s

Current World State

Default
Policy
(e.g. random)

Terminal
(reward = 1)

1

1

1 Initially tree is single leaf

new tree node

Iteration 1
UCT Example

Current World State

1

1

0

Default
Policy

Terminal
(reward = 0)

new tree node

Iteration 2
UCT Example

Current World State

1

1/2

0

Iteration 3
UCT Example

Current World State

1

1/2

0

Tree Policy

Iteration 3
UCT Example

Current World State

1

1/2

0

Tree Policy

0

Default
Policy

new tree node

Iteration 3
UCT Example

Current World State

1/2

1/3

0
Tree

Policy

0

Iteration 4
UCT Example

Current World State

1

1/2

1/3

0

0

Iteration 4
UCT Example

Current World State

2/3

2/3

0
Tree

Policy

0

What is an appropriate tree policy?

1

UCT Example

Current World State

1

1/2

1/3

0
Tree

Policy

0

a1 a2

UCT Example

),(
)(ln),(maxarg)(

asn
sncasQs aUCT +=π

Treat action selection
as bandit problem

Upper Confidence Bound (UCB) Rule:

Exploitation Term
Exploitation Term

Talk Outline
Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

Ensemble UCT

ss s

1. Build T independent UCT trees rooted at current state

2. Accumulate action statistics at root nodes of trees

3. Execute action with best average return

7/10 2/5 6/8 5/7 8/11 1/4

Accumulate

21/29 8/16 Best voting method
in preliminary study
(out of at least 5)

Why might ensembles work?

Correct Wrong Correct
ss s

7/10 2/5 4/7 6/8 8/11 1/4

 UCT is stochastic – unlucky runs can choose bad actions

Why might ensembles work?

ss s
7/10 2/5 4/7 6/8 8/11 1/4

Accumulate

19/28 9/17 Reduced
Variance

 UCT is stochastic – unlucky runs can choose bad actions

 Variance Reduction: average reduces variance (and bad luck)

 Likely explanation for observed parallel-time advantage

High Individual
Variance

Why might ensembles work?

s

s s s

…

Accumulate
VS

 Sequential-time advantage
 Single large tree must be worse than multiple smaller trees (w/ equal # nodes)
 Assumes time is reflected by total number of tree nodes

 Smaller trees: higher variance and bias at root
 Can averaging make up for the lower quality individuals?

s

Talk Outline
Motivation

Monte-Carlo Planning with UCT

Ensembles

Domains & Results

Backgammon

• 2 player

• Stochastic

Biniax

• 1 player

• stochastic

Connect 4

• 2 player

• Deterministic

Havannah

• 2 player

• deterministic

• 1 player

• stochastic

Two variants with different
scoring schemes

Experiment Setup
All ensembles run as a single thread

UCT constant set per domain (same for all ensembles)
 24G Ram

Varied ensemble configurations
Ensemble size = # of trees
Trajectories per tree = Size of individual trees

Averaged results over 1000-4000 runs (usually 4000)
Show 99% confidence intervals

Results
Yahtzee

Results
Yahtzee

Results
Yahtzee

Results
Yahtzee

• Consistent improvement as ensemble size grows

• Parallel-time and single-core space advantage

Results
Yahtzee

• Consistent improvement for larger ensemble sizes

• Parallel-time and single-core space advantage

• 16 x 211 on par w/ 1 x 216 = 32x improvement

Results
Connect 4

• Similar observations across other domains

• Except Binax

Results
Binax

• Small trees: no improvement

Results Binax

• Small trees: no improvement

• Larger trees: very small improvement

• Binax Properties: UCT has very low variance
Small trees are quite biased

Results: Single Core
Connect 4

• Ensembles along diagonals have same total nodes

Results
Connect 4

• Ensembles along diagonals have same total nodes

• Small Trees: ensembles of very small trees hurt performance

Results
Connect 4

• Ensembles along diagonals have same total nodes

• Small Trees: ensembles of very small trees hurt performance

• Medium Trees: performance not hurt for larger trees

Small Trees

s

s s s

VS

s s s s s s s

High bias trees
Variance is not main problem

Results
Connect 4

• Large Trees: improvement trend – not statistically significant

• Only two domains show such a trend

• Most show no significant single-core time advantage

Summary
Parallel time and single-core space advantage?
Yes – consistently significant
Except when individual tree variance is very small

Sequential-time advantage?
Nothing significant
Suggestive trends in 2 domains for large trees

Sequential-time disadvantage
Happens when trees are too small (high bias)

Future Work
Better understand bias-variance trade-off

Experiments for larger ensembles
When does improvement stop?

Are trends the same for “enhanced” versions of
UCT?

Optimize configuration for a cluster’s space and
time constraints

Thanks

Time Overhead for Large Trees

Ensemble Parameter Sensitivity

	Ensemble Monte-Carlo Planning:�An Empirical Study
	Talk Outline
	Klondike Solitaire
	Parallel UCT in Go
	Prior Observations: Multi-Core
	Prior Observations: Single-Core
	Objective
	Talk Outline
	UCT Algorithm [Kocsis & Szepesvari, 2006]�
	Monte-Carlo Tree Search
	UCT Example
	UCT Example
	UCT Example
	UCT Example
	UCT Example
	UCT Example
	UCT Example
	UCT Example
	UCT Example
	Talk Outline
	Ensemble UCT
	Why might ensembles work?
	Why might ensembles work?
	Why might ensembles work?
	Talk Outline
	Backgammon
	Biniax
	Connect 4
	Havannah
	Slide Number 30
	Experiment Setup
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results: Single Core
	Results
	Results
	Small Trees
	Results
	Summary
	Future Work
	Thanks
	Time Overhead for Large Trees
	Ensemble Parameter Sensitivity

