Ensemble Monte-Carlo Planning: An Empirical Study #### **Alan Fern and Paul Lewis** **Computer Science** **Oregon State University** #### **Talk Outline** Motivation Monte-Carlo Planning with UCT Ensembles Domains & Results #### Klondike Solitaire - UCT planner worked surprisingly well (34.4%) - Voting across small UCT trees worked better (37%) - Using less total time! ## **Parallel UCT in Go** - Several proposals to parallelize UCT with experiments in Go (Cazenave, et. al., 2007) (Gelly, et. al., 2008) - Simply voting of independent UCTs worked best! Fig. 5. Performance of the different parallelization methods #### **Prior Observations: Multi-Core** - Parallel Time Advantage - More CPUs showed significant improvement VS ## **Prior Observations: Single-Core** - Single-Core Space Advantage - ◆ Single core only needs memory for single (smaller) tree - Single-Core Time Advantage - Ensembles show advantages w.r.t. total CPU time ## **Objective** - Prior observations about UCT ensembles are limited in scope - Domains limited to Go and Solitaire - Limited ensemble configurations - Our Goal: provide evidence for or against prior observations - Consider 6 domains (other than Go and Solitaire) - Test a regular grid of ensemble configurations #### **Talk Outline** Motivation Monte-Carlo Planning with UCT Ensembles Domains & Results ## UCT Algorithm [Kocsis & Szepesvari, 2006] - UCT is an instance of Monte-Carlo Tree Search - Single-agent problems or games - Stochastic and deterministic problems - Major advance in computer Go A growing number of success stories Practical successes not well understood #### **Monte-Carlo Tree Search** - Online Action Selection: - Build a sparse lookahead tree rooted at current state s - Select root action that looks best - Tree Building: repeatedly executes a rollout policy from root - Add one fringe node to tree each time - Updates statistics of tree nodes based on return - Key Idea: rollout policy biased by previous runs to expand tree in more promising directions Iteration 2 **Current World State** Iteration 3 **Current World State** Iteration 3 Current World State Tree Policy #### Iteration 4 **Current World State** What is an appropriate tree policy? **Current World State** Treat action selection as **bandit problem** #### **Upper Confidence Bound (UCB) Rule:** $$\pi_{UCT}(s) = \arg\max_{a} Q(s,a) + c \sqrt{\frac{\ln n(s)}{n(s,a)}}$$ Exploitation Term Exploitation Term #### **Talk Outline** Motivation Monte-Carlo Planning with UCT Ensembles Domains & Results #### **Ensemble UCT** - 1. Build *T* independent UCT trees rooted at current state - Accumulate action statistics at root nodes of trees - 3. Execute action with best average return ## Why might ensembles work? UCT is stochastic – unlucky runs can choose bad actions ## Why might ensembles work? - UCT is stochastic unlucky runs can choose bad actions - Variance Reduction: average reduces variance (and bad luck) - Likely explanation for observed parallel-time advantage ## Why might ensembles work? - Sequential-time advantage - Single large tree must be worse than multiple smaller trees (w/ equal # nodes) - Assumes time is reflected by total number of tree nodes - Smaller trees: higher variance and bias at root - Can averaging make up for the lower quality individuals? #### **Talk Outline** Motivation Monte-Carlo Planning with UCT Ensembles Domains & Results ## **Backgammon** - 2 player - Stochastic ## **Biniax** - 1 player - stochastic ## **Connect 4** - 2 player - Deterministic ## Havannah - 2 player - deterministic Two variants with different scoring schemes - 1 player - stochastic | UPPER SECTION | HOW
TO SCORE | GAME
#1 | GAME
#2 | GAME
#3 | GAME
#4 | GAME
#5 | GAME
#6 | |------------------------------------|------------------------------|------------|------------|------------|------------|------------|------------------| | Aces • = 1 | Count and Add
Only Aces | | | | | | | | Twos • = 2 | Count and Add
Only Twos | | | | | | | | Threes • = 3 | Count and Add
Only Threes | | | | 3 44 3 | | | | Fours = 4 | Count and Add
Only Fours | | | | | | | | Fives = 5 | Count and Add
Only Fives | | | | | | 2 | | Sixes = 6 | Count and Add
Only Sixes | | | | | | | | TOTAL SCORE | \rightarrow | | | 2 | | | 4 | | BONUS If total score is 63 or over | SCORE 35 | | 3, | | | | 1/2 | | TOTAL Of Upper Section | - | | | iic. | | | | | LOWER SECTION | | | | | | | | | 3 of a kind | Add Total
Of All Dice | | | | | | | | 4 of a kind | Add Total
Of All Dice | | | | | | | | Full House | SCORE 25 | | | | | | | | Sm. Straight Sequence of 4 | SCORE 30 | | | | | | | | Lg. Straight Sequence of 5 | SCORE 40 | | | | | | | | YAHTZEE 5 of a kind | SCORE 50 | | | | | | | | Chance | Score Total
Of All 5 Dice | | | | | | | | YAHTZEE | FOR EACH BONUS | | | | | $\Box\Box$ | $\top \top \top$ | | BONUS | SCORE 100
PER | | | | | | | | TOTAL Of Lower Section | | | 1, | | | | | | TOTAL Of Upper Section | | B. | | : | 1 1 | | | | GRAND TOTAL | → | | | | | | | ## **Experiment Setup** All ensembles run as a single thread - UCT constant set per domain (same for all ensembles) - ▲ 24G Ram - Varied ensemble configurations - Ensemble size = # of trees - Trajectories per tree = Size of individual trees - Averaged results over 1000-4000 runs (usually 4000) - Show 99% confidence intervals | Trajectories per | Ensemble Size | | | | | |------------------|---------------|---|---|---|----| | Tree | 1 | 2 | 4 | 8 | 16 | | 2^7 | | | | | | | 2^{8} | | | | | | | 2^9 | | | | | | | 2^{10} | | | | | | | 2^{11} | | | | | | | 2^{12} | | | | | | | 2^{13} | | | | | | | 2^{14} | | | | | | | 2^{15} | | | | | | | 2^{16} | | | | | | | Trajectories per | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | 2^7 | 160.3 ± 2.5 | 167.9 ± 1.5 | 175.3 ± 2.8 | 186.3 ± 2.8 | 193.5 ± 3.3 | | | 2^{8} | | | | | | | | 2^9 | | | | | | | | 2^{10} | | | | | | | | 2^{11} | | | | | | | | 2^{12} | | | | | | | | 2^{13} | | | | | | | | 2^{14} | | | | | | | | 2^{15} | | | | | | | | 2^{16} | | | | | | | | Trajectories per | Ensemble Size | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Tree | 1 | 2 | 4 | 8 | 16 | | 2^7 | 160.3 ± 2.5 | 167.9 ± 1.5 | 175.3 ± 2.8 | 186.3 ± 2.8 | 193.5 ± 3.3 | | 2^8 | 172.3 ± 2.8 | 179.2 ± 1.6 | 185.9 ± 2.8 | 193.7 ± 3.0 | 202.2 ± 3.7 | | 2^9 | | | | | | | 2^{10} | | | | | | | 2^{11} | | | | | | | 2^{12} | | | | | | | 2^{13} | | | | | | | 2^{14} | | | | | | | 2^{15} | | | | | | | 2^{16} | | | | | | | Trajectories per | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | 2^7 | 160.3 ± 2.5 | 167.9 ± 1.5 | 175.3 ± 2.8 | 186.3 ± 2.8 | 193.5 ± 3.3 | | | 2^{8} | 172.3 ± 2.8 | 179.2 ± 1.6 | 185.9 ± 2.8 | 193.7 ± 3.0 | 202.2 ± 3.7 | | | 2^{9} | 183.1 ± 2.7 | 190.2 ± 1.8 | 197.0 ± 3.4 | 205.0 ± 3.9 | 208.3 ± 3.2 | | | 2^{10} | 191.8 ± 2.8 | 199.9 ± 1.9 | 204.0 ± 3.3 | 207.9 ± 3.2 | 214.2 ± 3.7 | | | 2^{11} | 197.9 ± 2.5 | 206.2 ± 2.0 | 211.0 ± 3.6 | 214.7 ± 3.8 | 217.4 ± 3.7 | | | 2^{12} | 208.1 ± 3.7 | 211.1 ± 2.1 | 214.9 ± 3.9 | 215.6 ± 3.5 | 220.6 ± 2.7 | | | 2^{13} | 209.0 ± 3.3 | 214.9 ± 1.8 | 216.4 ± 3.4 | 218.9 ± 4.0 | 221.4 ± 2.9 | | | 2^{14} | 215.2 ± 4.0 | 217.1 ± 2.2 | 219.8 ± 2.8 | 223.4 ± 3.1 | 221.3 ± 4.0 | | | 2^{15} | 215.0 ± 3.5 | 220.7 ± 2.1 | 220.9 ± 3.7 | | | | | 2^{16} | 216.6 ± 3.7 | 221.0 ± 3.2 | | | | | - Consistent improvement as ensemble size grows - Parallel-time and single-core space advantage | Trajectories per | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | 2^7 | 160.3 ± 2.5 | 167.9 ± 1.5 | 175.3 ± 2.8 | 186.3 ± 2.8 | 193.5 ± 3.3 | | | 2^{8} | 172.3 ± 2.8 | 179.2 ± 1.6 | 185.9 ± 2.8 | 193.7 ± 3.0 | 202.2 ± 3.7 | | | 2^{9} | 183.1 ± 2.7 | 190.2 ± 1.8 | 197.0 ± 3.4 | 205.0 ± 3.9 | 208.3 ± 3.2 | | | 2^{10} | 191.8 ± 2.8 | 199.9 ± 1.9 | 204.0 ± 3.3 | 207.9 ± 3.2 | 214.2 ± 3.7 | | | 2^{11} | 197.9 ± 2.5 | 206.2 ± 2.0 | 211.0 ± 3.6 | 214.7 ± 3.8 | 217.4 ± 3.7 | | | 2^{12} | 208.1 ± 3.7 | 211.1 ± 2.1 | 214.9 ± 3.9 | 215.6 ± 3.5 | 220.6 ± 2.7 | | | 2^{13} | 209.0 ± 3.3 | 214.9 ± 1.8 | 216.4 ± 3.4 | 218.9 ± 4.0 | 221.4 ± 2.9 | | | 2^{14} | 215.2 ± 4.0 | 217.1 ± 2.2 | 219.8 ± 2.8 | 223.4 ± 3.1 | 221.3 ± 4.0 | | | 2^{15} | 215.0 ± 3.5 | 220.7 ± 2.1 | 220.9 ± 3.7 | | | | | 2^{16} | 216.6 ± 3.7 | 221.0 ± 3.2 | | | | | - Consistent improvement for larger ensemble sizes - Parallel-time and single-core space advantage - 16 x 2^{11} on par w/ 1 x 2^{16} = 32x improvement | Trajectories per | | Ensemble Size | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | 2^{10} | $522 \pm .048$ | $370 \pm .052$ | $299 \pm .053$ | $233 \pm .055$ | $189 \pm .055$ | | | 2^{11} | $256 \pm .054$ | $139 \pm .055$ | $102 \pm .056$ | $011 \pm .057$ | $056 \pm .056$ | | | 2^{12} | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ | | | 2^{13} | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ | | | 2^{14} | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | 841 ± 042 | | | 2^{15} | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ | | | 2^{16} | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ | | | | 2^{17} | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ | | | | | 2^{18} | $.871 \pm 038$ | $.910 \pm 0.31$ | | | | | | 2^{19} | $.903 \pm .032$ | | | | | | - Similar observations across other domains - Except Binax #### Binax | Trajectories per | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | 2^8 | 102.1 ± 1.2 | 102.0 ± 1.2 | 100.9 ± 1.2 | 101.2 ± 1.4 | 101.8 ± 2.4 | | | 2^9 | 103.9 ± 1.2 | 104.0 ± 1.2 | 104.4 ± 1.2 | 103.0 ± 1.4 | 103.9 ± 2.4 | | | 2^{10} | 105.9 ± 1.2 | 105.3 ± 1.2 | 105.0 ± 1.2 | 106.6 ± 2.4 | 107.7 ± 2.4 | | | 2^{11} | 108.0 ± 1.2 | 107.9 ± 1.2 | 107.4 ± 1.2 | 108.3 ± 2.4 | 108.7 ± 2.4 | | | 2^{12} | 109.0 ± 1.2 | 109.5 ± 1.2 | 110.6 ± 2.4 | 110.5 ± 2.4 | | | | 2^{13} | 110.6 ± 1.2 | 112.1 ± 1.2 | 113.8 ± 2.4 | 114.0 ± 2.4 | | | | 2^{14} | 111.9 ± 1.2 | 113.9 ± 1.2 | | | | | | 2^{15} | 113.2 ± 1.2 | | | | | | • Small trees: no improvement #### Binax | Trajectories per | | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | | 2^8 | 102.1 ± 1.2 | 102.0 ± 1.2 | 100.9 ± 1.2 | 101.2 ± 1.4 | 101.8 ± 2.4 | | | | 2^{9} | 103.9 ± 1.2 | 104.0 ± 1.2 | 104.4 ± 1.2 | 103.0 ± 1.4 | 103.9 ± 2.4 | | | | 2^{10} | 105.9 ± 1.2 | 105.3 ± 1.2 | 105.0 ± 1.2 | 106.6 ± 2.4 | 107.7 ± 2.4 | | | | 2^{11} | 108.0 ± 1.2 | 107.9 ± 1.2 | 107.4 ± 1.2 | 108.3 ± 2.4 | 108.7 ± 2.4 | | | | 2^{12} | 109.0 ± 1.2 | 109.5 ± 1.2 | 110.6 ± 2.4 | 110.5 ± 2.4 | | | | | 2^{13} | 110.6 ± 1.2 | 112.1 ± 1.2 | 113.8 ± 2.4 | 114.0 ± 2.4 | | | | | 2^{14} | 111.9 ± 1.2 | 113.9 ± 1.2 | | | | | | | 2^{15} | 113.2 ± 1.2 | | | | | | | - Small trees: no improvement - Larger trees: very small improvement - Binax Properties: UCT has very low variance Small trees are quite biased # **Results: Single Core** #### Connect 4 | Trajectories per | | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | | 2^{10} | $522 \pm .048$ | $370 \pm .052$ | $299 \pm .053$ | $233 \pm .055$ | $189 \pm .055$ | | | | 2^{11} | $256 \pm .054$ | $139 \pm .055$ | $102 \pm .056$ | $011 \pm .057$ | $056 \pm .056$ | | | | 2^{12} | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ | | | | 2^{13} | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ | | | | 2^{14} | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ | | | | 2^{15} | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ | | | | 2^{16} | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ | | | | | 2^{17} | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ | | | | | | 2^{18} | $.871 \pm .038$ | $.910 \pm 0.31$ | | | | | | | 2^{19} | $.903 \pm .032$ | | | | | | | Ensembles along diagonals have same total nodes | Trajectories per | | | Ensemble Size | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Tree | 1 | 2 | 4 | 8 | 16 | | 2^{10} | $522 \pm .048$ | $370 \pm .052$ | $299 \pm .053$ | $233 \pm .055$ | $189 \pm .055$ | | 2^{11} | $256 \pm .054$ | $139 \pm .055$ | $102 \pm .056$ | $011 \pm .057$ | $056 \pm .056$ | | 2^{12} | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ | | 2^{13} | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ | | 2^{14} | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ | | 2^{15} | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ | | 2^{16} | $.727 \pm .054$ | $.884\pm.037$ | $.886 \pm .036$ | $.926 \pm .029$ | | | 2^{17} | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ | | | | 2^{18} | $.871 \pm .038$ | $.910 \pm 0.31$ | | | | | 2^{19} | $.903 \pm .032$ | | | | | - Ensembles along diagonals have same total nodes - Small Trees: ensembles of very small trees hurt performance | Trajectories per | | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | | 2^{10} | $522 \pm .048$ | $370 \pm .052$ | $299 \pm .053$ | $233 \pm .055$ | $189\pm.055$ | | | | 2^{11} | $256 \pm .054$ | $139 \pm .055$ | $102 \pm .056$ | $011 \pm .057$ | $056 \pm .056$ | | | | 2^{12} | $.011 \pm .056$ | $.121 \pm .056$ | $.227\pm.055$ | $.253 \pm .054$ | $.284 \pm .076$ | | | | 2^{13} | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ | | | | 2^{14} | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ | | | | 2^{15} | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ | | | | 2^{16} | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ | | | | | 2^{17} | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ | | | | | | 2^{18} | $.871 \pm .038$ | $.910 \pm 0.31$ | | | | | | | 2^{19} | $.903 \pm .032$ | | | | | | | - Ensembles along diagonals have same total nodes - Small Trees: ensembles of very small trees hurt performance - Medium Trees: performance not hurt for larger trees ## **Small Trees** VS High bias trees Variance is not main problem | Trajectories per | | Ensemble Size | | | | | | |------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--| | Tree | 1 | 2 | 4 | 8 | 16 | | | | 2^{10} | $522 \pm .048$ | $370 \pm .052$ | $299 \pm .053$ | $233 \pm .055$ | $189 \pm .055$ | | | | 2^{11} | $256 \pm .054$ | $139 \pm .055$ | $102 \pm .056$ | $011 \pm .057$ | $056 \pm .056$ | | | | 2^{12} | $.011 \pm .056$ | $.121 \pm .056$ | $.227 \pm .055$ | $.253 \pm .054$ | $.284 \pm .076$ | | | | 2^{13} | $.234 \pm .054$ | $.413 \pm .051$ | $.507 \pm .048$ | $.543 \pm .067$ | $.608 \pm .064$ | | | | 2^{14} | $.470 \pm .049$ | $.646 \pm .043$ | $.765 \pm .051$ | $.842 \pm .042$ | $.841 \pm .042$ | | | | 2^{15} | $.648 \pm .042$ | $.793 \pm .048$ | $.859 \pm .040$ | $.899 \pm .034$ | $.918 \pm .031$ | | | | 2^{16} | $.727 \pm .054$ | $.884 \pm .037$ | $.886 \pm .036$ | $.926 \pm .029$ | | | | | 2^{17} | $.811 \pm .045$ | $.898 \pm .035$ | $.917 \pm .024$ | | | | | | 2^{18} | $.871 \pm .038$ | $.910 \pm 0.31$ | | | | | | | 2^{19} | $.903 \pm .032$ | | | | | | | - Large Trees: improvement trend not statistically significant - Only two domains show such a trend - Most show no significant single-core time advantage # **Summary** - Parallel time and single-core space advantage? - Yes consistently significant - Except when individual tree variance is very small - Sequential-time advantage? - Nothing significant - Suggestive trends in 2 domains for large trees - Sequential-time disadvantage - Happens when trees are too small (high bias) ## **Future Work** Better understand bias-variance trade-off - Experiments for larger ensembles - When does improvement stop? Are trends the same for "enhanced" versions of UCT? Optimize configuration for a cluster's space and time constraints # **Thanks** # **Time Overhead for Large Trees** Connect 4 Ensemble Timing Table (ms) | Total | Ensembles | | | | | | |--------------|-------------|-------------|-------------|-------------|-------------|--| | Trajectories | 1 | 2 | 4 | 8 | 16 | | | 4096 | | | | | 694 ± 6 | | | 8192 | | | | 714 ± 6 | | | | 16384 | | | 740 ± 6 | | | | | 32768 | | 773 ± 6 | | | | | | 65536 | 792 ± 6 | | | | | | # **Ensemble Parameter Sensitivity** Connect 4 Ensemble Parameter Sensitivity | UCT | Ensembles | | | | | |----------|-------------------|-------------------|-------------------|-------------------|-------------------| | Constant | 1 | 2 | 4 | 8 | 16 | | 0.5 | 0.205 ± 0.075 | 0.318 ± 0.075 | 0.378 ± 0.073 | 0.413 ± 0.072 | 0.434 ± 0.072 | | 0.6 | 0.412 ± 0.070 | 0.565 ± 0.065 | 0.618 ± 0.062 | 0.619 ± 0.062 | 0.525 ± 0.068 | | 1 | 0.727 ± 0.054 | 0.793 ± 0.048 | 0.765 ± 0.051 | 0.543 ± 0.067 | 0.284 ± 0.076 | #### Yahtzee Ensemble Parameter Sensitivity | UCT | Ensembles | | | | | |----------|---------------|---------------|---------------|---------------|---------------| | Constant | 1 | 2 | 4 | 8 | 16 | | 2 | 173 ± 2.6 | 195 ± 2.9 | 207 ± 3.4 | 208 ± 2.9 | 207 ± 3.0 | | 4 | 187 ± 2.6 | 201 ± 2.9 | 209 ± 3.2 | 211 ± 3.2 | 208 ± 3.2 | | 64 | 215 ± 3.5 | 217 ± 2.2 | 216 ± 3.4 | 216 ± 3.5 | 217 ± 3.7 |