Effective Heuristics and Belief Tracking for Planning with Incomplete Information

Alexandre Albore¹

Miquel Ramírez¹ Hector Geffner²

DTIC

Universitat Pompeu Fabra

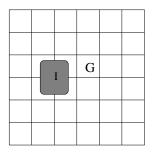
ICREA & DTIC Universitat Pompeu Fabra

Freiburg, 15/06/2011

Incomplete Information: Conformant Planning

Task

Robot must move from **uncertain** *I* into *G* with **certainty**.



- Similar to classical planning except for uncertain /
- Plans, however, quite different: best conformant plan must move the robot to a corner first (localization)

Motivation

Conformant planning is **special case** of contingent planning

Ideas provide the basis for

- Planning with Sensing (Brafman & Hoffmann, 2005)
- Derivation of Finite-State Controllers (Bonet, Palacios, Geffner, 2009)

Obtaining conformant planners that scale up well is critical.

Conformant Planning: Belief State Formulation

- Belief state: set of possible states
- Actions map belief state b into belief state ba

$$b_a = \{s' | s' \in F(a, s) \& s \in b\}$$

Conformant planning is path-finding in belief space

Challenges: # of belief states is **doubly exponential** in # of vars.

- Effective representation of belief states b
- Effective heuristic h(b) for estimating cost to G in belief space

Recent alternative: translation into classical planning (Palacios & Geffner 2007).

Basic Translation: Move to the "knowledge level"

conformant problem $P = \langle F, O, I, G \rangle$

- F fluents in P
- 2 O actions with effects $C \rightarrow L$
- I initial situation, CNF clauses over F-literals
- G goal situation, conjuction of F-literals

classical problem $K_0(P) = \langle F', O', I', G' \rangle$

- ② O' = O but preconditions L replaced by KL, effects $C \to L$ replaced by rules
 - Support $KC \rightarrow KL$
 - Cancellation $\neg K \neg C \rightarrow \neg K \neg L$

Basic Translation: Properties

$K_0(P)$ is **sound** but **incomplete**:

- **Soundness**: every classical plan for $K_0(P)$ is a conformant plan for P
- **Completeness**: all plans for P are classical plans for $K_0(P)$.

Key Elements in General Translation $K_{T,M}(P)$

- A set T of tags t
 - consistent sets of **assumptions** (literals) about initial situation *I*:

$$I \not\models \neg t$$

- A set M of merges m
 - valid subsets of tags (DNF)

$$I \models \bigvee_{t \in m} t$$

3 Tagged literals KL/t meaning that L true **if** t **initially** true

General Translation: $K_{T,M}(P)$

conformant problem
$$P = \langle F, O, I, G \rangle$$

classical problem $K_{T,M}(P) = \langle F', O', I', G' \rangle$

- $F' = \{KL/t, K\neg L/t \mid L \in F \& t \in T\}$
- O' = O but preconditions L replaced by KL, effects $C \to L$ replaced by rules
 - Support $KC/t \rightarrow KL/t$
 - Cancellation $\neg K \neg C/t \rightarrow \neg K \neg L/t$
 - Plus merge actions

$$\bigwedge_{t \in m, m \in M} KL/t \rightarrow KL$$

- $I' = \{ KL/t \mid \text{if } I \models t \supset L \}$
- $G' = \{KL \mid L \in G\}$

Compiling Uncertainty Away: Properties

- Translation K_{T,M}(P) always sound, for suitable choice of sets of tags and merges, it is complete
- Conformant width is roughly the max # of relevant uncertain variables that interact in P
- $K_i(P)$ is **polynomial instance** of $K_{T,M}(P)$ that is **complete** for problems with conformant width **bounded** by i
- Most benchmarks have bounded width and equal to 1!
- $K_i(P)$ with i = 1, is basis for conformant planner T0 (Palacios & Geffner, 2009)

Shortcomings of the Translation—based Approach

- For problems with high width, complete translation unfeasible
- Incomplete yet tractable translations may
 - render a solvable problem unsolvable
 - result in **infinite** heuristic values for solvable beliefs
- Relevant information like cardinality of beliefs, seems to get lost in translation

Contributions of this work

- **1** New translation $K_S^i(P)$
 - Exponential in i, always complete, not always sound
 - $K_S^i(P)$ **sound** for problems with conformant width $\leq i$
- New planner T1 based on K_S¹(P) improves upon T0 planner based on K₁(P)
 - Belief space planner
 - Two heuristics
 - **Reachability** heuristic h_C derived from $K_S^1(P)$
 - Certainty heuristic h_K

Outline for the rest of the talk

1 Translation $K_S^i(P)$

Planner T1

Experimental Results

Idea for the $K_S^i(P)$ translation

$$K_{S0}(P)$$
 is $K_{T,M}(P)$ with $T = S_0$.

• $K_{S0}(P)$ sound and complete, but **exponential** on |F|

Define K_S to be like K_{S0} , **but** $T = S \subseteq S_0$

- S set of samples of S_0
- $K_S(P)$ is **complete** but not necessarily **sound**.

 $K_S^i(P)$ like $K_S(P)$ but with a **specific** sample set S

- Sound when width of problem P bounded by i
- |S| exponential on i

Bases for Conformant Problems

Definition

A set of states S, $S \subseteq S_0$ is a basis for problem P, iff any conformant plan that conforms with S also conforms with S_0

Theorem (Palacios & Geffner, JAIR 2009)

If problem P has width i, then there exists a basis S for P of size **exponential in** i.

The $K_S^i(P)$ translation

 $K_S^i(P)$ is $K_S(P)$ with **sample set** $S \subseteq S_0$ s.t. S guaranteed to be a basis for P if width(P) $\leq i$

 $K_S^i(P)$ is **always** complete and **sound** if width $(P) \leq i$,

Computation of sample sets S **exponential** in i, provided that I compiled into d-DNNF (Darwiche, 2002)

See paper for details

T1 planner

Belief space planner *T*1 **implicitly** represents **beliefs**.

Search **node** $n = \langle \pi, S_n, R \rangle$

- π is the **plan prefix** to reach n from **root node** $\langle \emptyset, S^1, R_0 \rangle$
- S_n is sample set S^1 progressed through π
- R set of known literals

SAT solver used to check literals true in R

Two heuristics:

- $h_C(n) = h(K_S(P))$, where $S = S_n$
- $h_K(n)$... in next slide

Certainty heuristic h_K

Given node $n=\langle \pi,\ S_n,\ R\rangle$, $h_K(n)$ defined as: # of literals L in *one of* **invariants** overlapping G s.t. $\neg L \not\in R$

Related to

- Landmark heuristic (Richter, Helmert & Westphal, 2008)
- Belief cardinality heuristic (Bertoli & Cimatti, 2002)

T1 planner: Search Engine

- Multi-queue best first search algorithm (Helmert, 2004)
- 3 open lists Q1,Q2, Q3:
 - Q1: nodes for helpful actions or that decrease certainty heuristic h_K , ordered with h_C
 - **Q2**: nodes for helpful actions or that decrease certainty heuristic h_K , ordered with h_K
 - Q3: nodes for non-helpful actions, ordered with h_C
- We alternate expansion from Q1 and Q2, ¹/₁₀ of the expansions are from Q3.

Experimental Evaluation

		T0				DNF	-	<i>T</i> 1			
Domain	1	S	avg T	avg L	S	avg T	avg L	S	avg T	avg L	
bomb	8	8	1.7	111	8	4.0	93	7	0.6	93	
coins	8	7	0.1	83	7	0.8	81	8	0.7	142	
comm	8	8	0.2	155	7	255.3	170	8	48.4	162	
corners-cube	10	8	4.4	303	10	1.4	184	10	95.8	432	
cube	6	3	19.6	216	6	959.7	1346	6	6.0	223	
square-ctr	5	2	18.4	171	5	1209.4	2111	5	17.0	258	
logistics	3	3	0.0	24	1	7.5	160	3	0.1	41	
look-and-grab	18	11	0.4	31	7	5.2	9	15	0.1	11	
push-to	9	6	180.2	227	7	67.8	89	8	65.1	219	
Raos-keys	3	2	0.0	16	2	0.5	22	1	0.7	21	
ring	3	3	0.1	55	1	1546.3	39	3	0.6	41	
Uts-k	6	6	4.8	82	6	9.6	92	4	13.1	100	

T1 compared with conf. planners T0 and DNF (To, Son & Pontelli, 2010) T1 has a **higher coverage** than both T0 and DNF.

Heuristics comparison: $h_C(b)$ vs. $h_K(b)$

h_{C}							h _K	T1					
Domain	1	S	T	Е	L	S	Т	Е	L	S	T	E	L
Bomb	9	7	71	4k	101	7	11	773	101	8	2	100	101
Cube(Ctr)	12	6	84	32k	188	10	1	890	61	12	0.1	61	58
Cube(Cor)	11	8	92	219k	271	10	4	26k	88	11	12	15k	269
Dispose	11	7	664	8k	349	9	57	2k	190	8	134	1k	491
Logistics	4	2	0.2	546	30	2	544	1613k	30	4	0.1	554	78
Ring	7	6	1	1k	17	5	571	58k	17	8	0.2	214	31
UTS-k	15	15	0.06	26	7	2	0.05	154	7	13	0.04	10	9

• The **combination** of h_C and h_K in T1 performs generally better

Summary

- **1** A method to define and compute a **sample set** $S \subseteq S_o$ s.t.
 - |S| is exponential in i
 - translation $K_S^i(P)$ based on S is sound and complete if $\mathit{width}(P) \leq i$
- ② A **Planner** *T*1 based on new translation, extended with certainty heuristic, **competitive** with state—of—the—art.

All good things come to an End

Thank you!