A Complete Algorithm for Generating Landmarks

Blai Bonet Julio Castillo

Universidad Simón Bolívar, Caracas, Venezuela

ICAPS 2011 - Freiburg, June 2011

Introduction

- multiple uses of landmarks in planning
- most powerful admissible heuristics are based on landmarks
- we know . . .
 - a lot about exploiting landmarks
 - little about generation of landmarks
- this work is about generation of landmarks

Our contribution

- principled algorithm for generating landmarks
- landmarks can be used for different purposes
- a general framework for heuristics based on landmarks:
 - admissible for optimal planning
 - non-admissible for satisfacing planning
- polytime admissible heuristic

Relaxed Planning

Obtained by removing the deletes of each action

Relaxed task characterized by:

- finite set F of facts
- initial facts $I \subseteq F$
- ullet goal facts $G \subseteq F$ that must be reached
- operators of the form $o[4]: a, b \rightarrow c, d$

```
read: If we already have facts a and b (preconditions pre(o)), we can apply o, paying 4 units (cost cost(o)), to obtain facts c and d (effects eff(o))
```

Assume WLOG: $I = \{i\}, G = \{g\}, \text{ all } pre(o) \neq \emptyset$

Example

$$o_1[3]: i \to a, b$$

$$o_2[4]: i \to a, c$$

$$o_3[5]: i \to b, c$$

$$o_4[1]: a, b \to d$$

 $o_5[1]: a, c, d \to g$

One way to reach goal $G = \{g\}$ from $I = \{i\}$:

- apply sequence o_1, o_2, o_4, o_5 (plan)
- cost: 3+4+1+1=9 (optimal)

Optimal Relaxed Cost

- h^+ : minimal total cost to reach G from I
- Very good heuristic function for optimal planning
- NP-hard to compute or approximate by constant factor

Landmarks

Most accurate admissible heuristics are based on landmarks

 $\bf Def:$ a (disjunctive action) landmark is a set of operators L such that each plan must contain some action in L

Example

$$o_1[3]: i \to a, b$$

 $o_2[4]: i \to a, c$

$$o_3[5]: i \to b, c$$

$$o_4[1]: a, b \to d$$

 $o_5[1]: a, d, c \to g$

Some landmarks:

- need $q: W = \{o_5\}$ (hence $h^+ > 1$)
- need $a: X = \{o_1, o_2\}$ (hence $h^+ \ge 3$)
- need c: $Y = \{o_2, o_3\}$ (hence $h^+ \ge 4$)
- need d: $Z = \{o_4\}$ (hence $h^+ \ge 1$)
- ...

Exploiting Landmarks: Hitting Sets

Given:

- ullet finite set A
- ullet collection ${\mathcal F}$ of subsets from A
- non-negative costs $c:A\to\mathbb{R}^+_0$

Hitting set:

- subset $H \subseteq A$ that hits every $S \in \mathcal{F}$ (i.e. $S \cap H \neq \emptyset$)
- cost of $H = \sum_{a \in H} c(a)$

Minimum-cost Hitting Set (MHS):

- minimizes cost
- classical NP-complete problem

Landmarks and Hitting Sets

Can view collection of landmarks as instance of MHS problem

Example (Landmarks)
$$A = \{o_1, o_2, o_3, o_4, o_5\}$$

$$\mathcal{F} = \{\underbrace{\{o_5\}}_{W}, \underbrace{\{o_1, o_2\}}_{X}, \underbrace{\{o_2, o_3\}}_{Y}, \underbrace{\{o_4\}}_{Z}\}$$
 costs: $c(o_1) = 3$, $c(o_2) = 4$, $c(o_3) = 5$, $c(o_4) = 1$, $c(o_5) = 1$

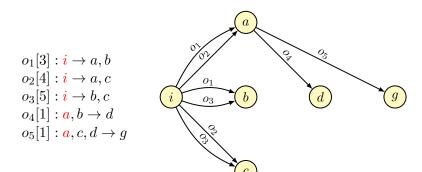
Minimum hitting set: $\{o_2, o_4, o_5\}$ with cost 4+1+1=6

Obtaining Landmarks: Justification Graphs

Precondition choice function (pcf): function D that maps operators to preconditions

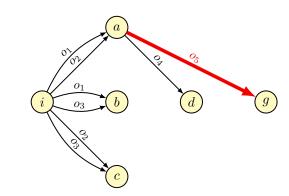
Justification graph for pcf *D*: arc-labeled digraph with:

- \bullet vertices: the facts F
- arcs: $D(o) \xrightarrow{o} e$ for each operator o and effect $e \in eff(o)$



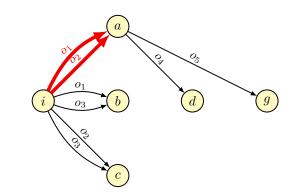
Landmark (cut): $W = \{o_5\}$

 $o_{1}[3]: \mathbf{i} \to a, b$ $o_{2}[4]: \mathbf{i} \to a, c$ $o_{3}[5]: \mathbf{i} \to b, c$ $o_{4}[1]: \mathbf{a}, b \to d$ $o_{5}[1]: \mathbf{a}, c, d \to g$

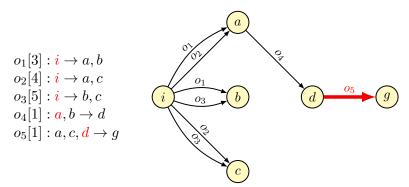


Landmark (cut): $X = \{o_1, o_2\}$

 $o_{1}[3]: \mathbf{i} \to a, b$ $o_{2}[4]: \mathbf{i} \to a, c$ $o_{3}[5]: \mathbf{i} \to b, c$ $o_{4}[1]: \mathbf{a}, b \to d$ $o_{5}[1]: \mathbf{a}, c, d \to g$



Landmark (cut): $W = \{o_5\}$



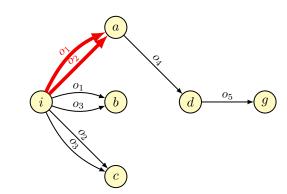
Landmark (cut): $Z = \{o_4\}$

 $o_{1}[3]: \mathbf{i} \to a, b$ $o_{2}[4]: \mathbf{i} \to a, c$ $o_{3}[5]: \mathbf{i} \to b, c$ $o_{4}[1]: \mathbf{a}, b \to d$ $o_{5}[1]: a, c, \mathbf{d} \to g$

$$a$$
 o_1
 o_3
 b
 d
 o_5
 g

Landmark (cut): $X = \{o_1, o_2\}$

 $o_{1}[3]: \mathbf{i} \to a, b$ $o_{2}[4]: \mathbf{i} \to a, c$ $o_{3}[5]: \mathbf{i} \to b, c$ $o_{4}[1]: \mathbf{a}, b \to d$ $o_{5}[1]: a, c, \mathbf{d} \to g$



Power of Justification Graph Cuts

```
Thm (B. & Helmert, 2010): Let \mathcal{L} be all "cut landmarks". Then, h^+ = \cos of MHS for \mathcal{L}.
```

Power of Justification Graph Cuts

Thm (B. & Helmert, 2010): Let \mathcal{L} be all "cut landmarks". Then, $h^+ = \cos$ of MHS for \mathcal{L} .

Impractical to generate all landmarks!

Do we need all of them to get h^+ or a good approximation?

Principled Generation of

Landmarks

 $H = \mathsf{subset}$ of operators

R = fluents reachable from I using only operators in H

H = subset of operators

R = fluents reachable from I using only operators in H

 $g \in R \implies H$ "contains" a relaxed plan

 $g \notin R \implies (R,R^c)$ is cut of some justification graph G(D)

and H does not hit cutset (R, R^c)

H = subset of operators

R = fluents reachable from I using only operators in H

$$g\in R\implies H$$
 "contains" a relaxed plan
$$g\notin R\implies (R,R^c) \text{ is cut of some justification graph }G(D)$$
 and H does not hit $\mathrm{cutset}(R,R^c)$

Indeed, it's enough to define pcf D as D(o) = p where

$$\left\{ \begin{array}{ll} p \in \mathit{pre}(o) & \text{if } \mathit{pre}(o) \subseteq R \\ p \in \mathit{pre}(o) \setminus R & \text{if } \mathit{pre}(o) \not\subseteq R \end{array} \right.$$

For such pcf D,

$$L = \mathsf{cutset}(R, R^c) = \{o : D(o) \in R \text{ and } \mathit{eff}(o) \not\subseteq R^c\}$$

is landmark not hit by H!

For such pcf D,

$$L = \mathsf{cutset}(R, R^c) = \{o : D(o) \in R \text{ and } \mathit{eff}(o) \not\subseteq R^c\}$$

is landmark not hit by H!

L improved by removing from ${\cal G}(D)$ facts irrelevant to ${\cal g}$

Algorithm A

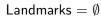
Input: subset H of actions

Output: YES if H contains plan, or landmark not hit by H

Method:

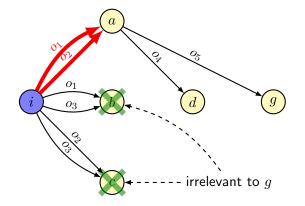
- lacksquare R:= set of reachable fluents using actions in H
- ② if $g \in H$ then return YES
- $lacksquare{1}{3}$ compute pcf D and justification graph G(D)
- lacksquare simplify graph G(D)
- **5 return** cutset of (R, R^c) in simplified graph

Time: linear with correct data structures!



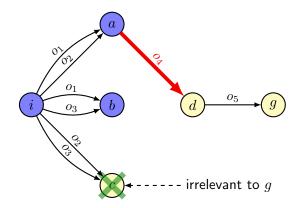
Landmarks $= \emptyset$

$$H = \emptyset$$
; $R = \{i\}$; $R^c = \{a, b, c, d, g\}$; $L = \{o_1, o_2\}$



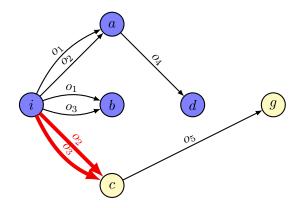
$$\mathsf{Landmarks} = \{\underbrace{\{ \textcolor{red}{o_1}, o_2 \}}_{X} \}$$

$$H = \{o_1\}$$
 ; $R = \{i, a, b\}$; $R^c = \{c, d, g\}$; $L = \{o_4\}$



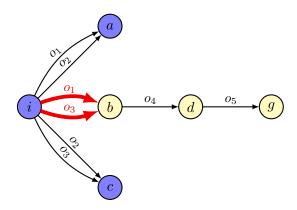
$$\mathsf{Landmarks} = \{\underbrace{\{o_1, o_2\}}_{X}, \underbrace{\{o_4\}}_{Z}\}$$

$$H = \{o_1, o_4\}$$
; $R = \{i, a, b, d\}$; $R^c = \{c, g\}$; $L = \{o_2, o_3\}$



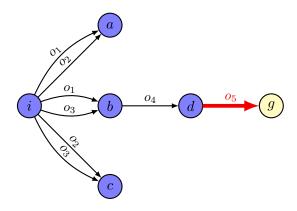
$$\mathsf{Landmarks} = \{\underbrace{\{o_1, \textcolor{red}{o_2}\}}_{X}, \underbrace{\{\textcolor{red}{o_4}\}}_{Z}, \underbrace{\{\textcolor{red}{o_2}, o_3\}}_{Y}\}$$

 $H = \{o_2, o_4\}$; $R = \{i, a, c\}$; $R^c = \{b, g\}$; $L = \{o_1, o_3\}$



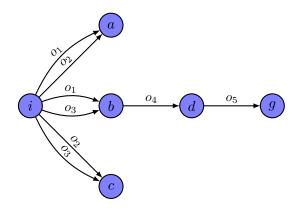
$$\mathsf{Landmarks} = \{\underbrace{\{o_1,o_2\}}_{X},\underbrace{\{o_4\}}_{Z},\underbrace{\{o_2,o_3\}}_{Y},\{o_1,o_3\}\}$$

$$H=\{o_1,o_2,o_4\}$$
 ; $R=\{i,a,b,c,d\}$; $R^c=\{g\}$; $L=\{o_5\}$



$$\mathsf{Landmarks} = \{\underbrace{\{o_1,o_2\}}_X,\underbrace{\{o_4\}}_Z,\underbrace{\{o_2,o_3\}}_Y,\{o_1,o_3\},\underbrace{\{o_5\}}_W\} \text{ complete!}$$

$$H = \{o_1, o_2, o_4, o_5\}$$
 ; $R = \{i, a, b, c, d, g\}$; $R^c = \emptyset$



Algorithm C1

Input: initial collection \mathcal{L} (maybe empty)

Output: a complete collection and $h^+(I)$

Method:

- lacksquare H:= min-cost hitting set for $\mathcal L$
- **2** L := A(H)
- **3** if L = YES then return \mathcal{L} and cost of H
- **5** goto 2

Algorithm C1 does not run in polytime because:

- computing min-cost hitting sets is NP-hard
- number of iterations may be exponential

Flaws can be overcomed to get a polytime approximation by:

- controlling number of iterations
- controlling difficulty of solving MHS problem

See paper for:

- ullet details about algorithm C1 and variants C2 and C3
- how to use A to get heuristics for satisficing planning
- novel polytime admissible heuristics that dominate best-known heuristics (in number of expanded nodes)

slower than state-of-the-art heuristics (i.e. LM-Cut)

Thanks!