

New Mexico State University Son Thanh To Tran Cao Son Enrico Pontelli

Contingent Planning as And/Or forward Search with Disjunctive Representation

- Contingent planning
- Approach overview
 - -Employed **DNF representation**
 - -PrAO: a new And/Or forward search with novel pruning techniques
- DNF representation: review & extension
- PrAO And/Or forward search algorithm
- Experimental evaluation
- Conclusion and future work

- Contingent planning
 - An example & formulation
 - And/Or search for solutions
- Approach overview
 - Employed DNF representation
 - -PrAO: an And/Or forward search
- DNF representation: review & extension
- And/Or forward search algorithm: PrAO
- Experimental evaluation
- Conclusion and future work

Contingent Planning: An Example

Contingent Planning Problem

```
Problem P = \langle F, A, \Omega, I, G \rangle
      Fluents: F = \{bug\text{-}is\text{-}dead, at\text{-}same\text{-}room\}
    Actions: A = \{move, kill-bug\}
      \Rightarrow pre(move) = \emptyset
           move: at\text{-}same\text{-}room \rightarrow \neg at\text{-}same\text{-}room
           move: \neg at\text{-}same\text{-}room \rightarrow at\text{-}same\text{-}room
      ⋄ pre(kill-bug) = at-same-room
           kill-bug: \varnothing \rightarrow bug-is-dead
    Sensing: \Omega = {sense-bug}, pre(sense-bug) = \emptyset
      ⋄ l(sense-bug) = at-same-room
      Initial State: I = \neg bug-is-dead (? at-same-room)
      Goal: G = bug-is-dead
```

• The initial *Belief State*: set of states satisfying *I*: $BS(I) = \{ \{\neg bug\text{-}is\text{-}dead, at\text{-}same\text{-}room \} \}$ $\{\neg bug\text{-}is\text{-}dead, \neg at\text{-}same\text{-}room \} \}$

- Contingent planning
 - ✓ Formulation
 - >And/Or search for solutions
- Approach overview
 - Employed DNF representation
 - -PrAO: an And/Or forward search
- DNF representation: review & extension
- And/Or forward search algorithm: PrAO
- Experimental evaluation
- Conclusion and future work

Overview of Our Approach

- Extend DNF representation for conformant planning (ICAPS-2009) to handle
 - Non-deterministic actions
 - Sensing actions
- **Develop PrAO**: an And/Or forward search with
 - Novel pruning techniques
 - The remaining search graph when a solution is detected is also the solution

- ✓ Contingent planning
- ✓ Approach overview
- >DNF representation
 - ➤ Brief review (conformant planning)
 - Extending for contingent planing
- And/Or forward search algorithm: PrAO
- Experimental evaluation
- Conclusion and future work

- Contingent planning
- ✓ Approach overview
- DNF representation
 - ✓ Review (conformant planning)
 - Extending for contingent planning
- And/Or forward search algorithm: PrAO
- Experimental evaluation
- Conclusion and future work

- A non-deterministic action a contains a set of outcomes: $o_1, ..., o_n$. (a is deterministic if n = 1)
- o_i is a set of conditional effects
- a_i : the deterministic action with set of effects o_i

- A non-deterministic action a contains a set of outcomes: $o_1, ..., o_n$. (a is deterministic if n = 1)
- o_i is a set of conditional effects
- a_i : the deterministic action with set of effects o_i

- A non-deterministic action a contains a set of outcomes: $o_1, ..., o_n$. (a is deterministic if n = 1)
- o_i is a set of conditional effects
- a_i : the deterministic action with set of effects o_i

- A non-deterministic action a contains a set of outcomes: o_1 , ..., o_n . (a is deterministic if n = 1)
- o_i is a set of conditional effects
- a_i : the deterministic action with set of effects o_i

- A non-deterministic action a contains a set of outcomes: $o_1, ..., o_n$. (a is deterministic if n = 1)
- o_i is a set of conditional effects
- a_i : the deterministic action with set of effects o_i

Successor states for Sensing Actions

Sensing action ω:

```
• (\omega, S) \to (S^+, S^-)

• S^+ = \{s \mid s \in S, s \models l(\omega)\}

• S^- = \{s \mid s \in S, s \models \neg l(\omega)\}

• (\omega, \Delta) \to (\Delta^+, \Delta^-): \Delta^+ \equiv S^+ \Delta^- \equiv S^-

• (\Delta^+ \models l(\omega) \quad \Delta^- \models \neg l(\omega))
```

- Initially: $\Delta^+ = \Delta^- = \emptyset$
- For every $\delta \in \Delta$:
 - \diamond If $\delta \models l(\omega)$ then:
 - \diamond Else if $\delta \models \neg l(\omega)$ then:
 - ♦ Else:

$$\Delta^{+} = \Delta^{+} \cup \{ \delta^{+} \}$$

$$\delta^{+} = \delta \cup \{ l(\omega) \}$$

$$\Delta^{-} = \Delta^{-} \cup \{ \delta^{-} \}$$

$$\delta^{-} = \delta \cup \{ \neg l(\omega) \}$$

Intuitively:
$$\delta \equiv \delta^+ \cup \delta^ \Delta^+ \equiv S^+$$
 $\Delta^- \equiv S^-$

 $\Delta^+ = \Delta^+ \cup \{\delta\}$

 $\Delta^{-} = \Delta^{-} \cup \{\delta\}$

- ✓ Contingent planning
- ✓ Approach overview
- ✓DNF representation: review & extension
- ➤ PrAO: a new And/Or forward search:
 - > Search space is a directed graph
 - > Novel pruning techniques
- Experimental evaluation
- Conclusion and future work

Goal Reachability

- Node N is goal reachable (GR) if:
 - Goal node (satisfies the goal), or
 - Has a goal-reachable or-child, or
 - Both dual and-children are goal-reachable

Dead Node Propagation

- Node *N* is **dead** if $N \neq$ goal and either:
 - N has no outgoing edges; or
 - Every or-child is dead, and for every pair of dual and-children, at least one is dead

Pruning

- Observation 1:
 - Some edges may become "useless" due to goal-reachable path

- Observation 2:
 - Edges can be removed due to a dead-node

- Observation 2:
 - Edges can be removed by dead-nodes

- Observation 2:
 - Edges can be removed by dead-nodes

- Active nodes: can be reached from the start node
- Some nodes (and their descendants if exist) may become disabled (inactive) after removing useless edges
- Expand only active nodes
- A disabled node *N* may become active again if it is a child of being expanded node. If *N* is active then so are its descendants (*reactivate-propagation*).

PrAO: Reactivate Disabled Nodes

- 1. Initialize the front queue Q with the start node n_o (initial belief state).
- 2. Iteratively perform the following steps:
 - 3. Pick an active node *n* from *Q* with the best heuristic
 - 4. If no such node *n* exists, terminate the search
 - 5. Expand node *n*
 - 6. If *n* is goal-reachable, then
 - 7. Execute *goal-propagation(n)*
 - 8. If n_o is goal-reachable then extract and return the solution.
 - 9. Else if *n* is dead, then
 - 10. Execute *dead-end-propagation(n)*
 - 11. If n_o is a dead node then terminate the search
 - 10. Else for every disabled child *n'* of *n*, activate *n'* and execute *reactivate-propagation(n')*

- Incorporate the pruning techniques in:
 - goal-propagation
 - dead-end-propagation
- Expand only active unexpanded nodes: avoid redundant expansion and reduce numbers of expanded/generated nodes
- PrAO is complete due to reactivatepropagation

Outline

- ✓ Contingent planning
- ✓ Approach overview
- ✓DNF representation: review & extension
- ✓ And/Or forward search: PrAO algorithm
- > Experimental evaluation
 - Experimental setup
 - Performance comparison
- Conclusion and future work

Experimental Setup

- Planners: compare DNF_{ct} with most state-of theart:
 - CLG (Albore, Palacios, and Geffner IJCAI-2009)
 - Contingent-FF (Hoffmann and Brafman ICAPS-2005)
 - POND (Bryce, Kambhampati, and Smith JAIR-2006)
- Benchmarks:
 - •From Pond, Contingent-FF, and CLG distribution.
 - •Several obtained by our modification from conformant domains.
 - ■Total: 64 instances out of 17 domains.

Performance Comparison on 64 Instances of 17 Domains

Outline

- ✓ Contingent planning
- ✓ Approach overview
- ✓DNF representation: review & extension
- ✓ And/Or forward search: PrAO algorithm
- ✓ Experimental evaluation
- ➤ Conclusion and future work

Conclusion

- Extended DNF Representation to handle nondet & sensing actions in contingent planning:
 - Compact
 - Fast state computation
 - Complete
- Developed a new And/Or search algorithm PrAO with novel pruning techniques:
 - Avoid redundant expansion
 - Less expanded/generated nodes
 - Complete

Future Work

- DNF Representation
 - Not good when the size of DNF formulae representing belief states is too large.
- PrAO: And/Or forward search
 - In several problem instances, application of pruning techniques results in more generated/explored nodes.

Thank you!

Question?