An Effective Approach to Realizing Planning Programs

Alfonso Gerevini ${ }^{\dagger}$, Fabio Patrizi* and Alessandro Saetti ${ }^{\dagger}$

\dagger University of Brescia, Italy
\{gerevini,saetti\}@ing.unibs.it

Imperial College London

*Imperial College London, UK fpatrizi@imperial.ac.uk

Introduction

- Planning programs (p-programs): high-level, declarative representation of the behavior of agents acting in a domain [De Giacomo et al. AAMAS-2010]
- State transition systems labelled by domain goals and states representing decision points about which goal is next
- Realizing a p-program: finding and combining a collection of plans for the transition goals making the p-program executable
- The existing method for realizing a p-program is inefficient
- We propose a planning-based approach for deterministic domains that is considerable faster

Talk Outline

(1) Planning program definition
(2) Planning program realization
(3) A planning-based algorithm
(9) Experimental results
(5) Conclusions and future work

Planning Programs (P-Programs)

Informally through an example
P-program: High-level, declarative representation of the behavior of an agent acting in a domain described by an automaton

Planning Programs (P-Programs)

Informally through an example

P-program: High-level, declarative representation of the behavior of an agent acting in a domain described by an automaton

Example (Sale representative)

- On customer request, fly to WA $\left(G_{1}\right)$ or $\mathrm{BO}\left(G_{2}\right)$
- From BO and WA, required to return to NY $\left(G_{0}\right)$
- After returning, serve next (goal) request

Planning Programs

More formally

Consider a (deterministic) planning domain $\mathcal{D}=\langle P, A, \tau\rangle$, where:

- P : set of domain propositions
- A: set of domain actions
- $\tau: S \times A \rightarrow S$: state transition function
(Call $S=2^{P}$ the set of \mathcal{D}-states)

Planning Programs

More formally

Consider a (deterministic) planning domain $\mathcal{D}=\langle P, A, \tau\rangle$, where:

- P : set of domain propositions
- A: set of domain actions
- $\tau: S \times A \rightarrow S$: state transition function
(Call $S=2^{P}$ the set of \mathcal{D}-states)

Definition (Planning Program for \mathcal{D})

A Planning Program for \mathcal{D} is a tuple $\mathcal{P}=\left\langle V, v_{0}, \Gamma, \delta\right\rangle$, where:

- V : (finite) set of \mathcal{P}-states
- $v_{0} \in V$: initial \mathcal{P}-state
- Γ : set of possible goals in \mathcal{D}
- $\delta: V \times \Gamma \rightarrow V:$ p-program transition function

P-Program Realization

The execution of a p-program \mathcal{P} for \mathcal{D} works as follows:
(1) Initially, \mathcal{D} and \mathcal{P} are in the joint state $\left\langle s_{0}, v_{0}\right\rangle$
(2) When \mathcal{D} and \mathcal{P} are in joint state $\langle s, v\rangle$, a v-outgoing transition $\left\langle v, G, v^{\prime}\right\rangle$ is selected from the p-program (if any)
(3) A plan π achieving G from s is executed, leading \mathcal{D} to s^{\prime}
(9) $\left\langle s^{\prime}, v^{\prime}\right\rangle$ becomes the current joint state; a new iteration starts

Realizing a p-program (intuitively): building a plan for every transition selectable during the p-program execution in the current domain state

Remark: the transitions from joint states $\left\langle s^{\prime}, v\right\rangle$ and $\left\langle s^{\prime \prime}, v\right\rangle$ may require different plans if $s^{\prime} \neq s^{\prime \prime}$

P-Program Realization

Example

Example (Sale representative, cont.)

Program realization function

State	Transition	Plan
$s_{0}=\{$ (at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, g_{2}, v_{2}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$
$s_{0}=\{$ (at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, g_{1}, v_{1}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$
$s_{1}=\{$ (at P1 Bo), (at A1 Bo) $\}$	$\left\langle v_{2}, g_{0}, v_{0}\right\rangle$	$\left\langle a_{7}, a_{1}, a_{8}\right\rangle$
$s_{2}=\{$ (at P1 Wa), (at A1 Wa) $\}$	$\left\langle v_{1}, g_{0}, v_{0}\right\rangle$	$\left\langle a_{9}, a_{10}, a_{8}\right\rangle$
$s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$	$\left\langle v_{0}, g_{2}, v_{2}\right\rangle$	$\left\langle a_{2}, a_{3}, a_{4}\right\rangle$
$s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$	$\left\langle v_{0}, g_{1}, v_{1}\right\rangle$	$\left\langle a_{2}, a_{5}, a_{6}\right\rangle$

\mathcal{D}-actions:
a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo)
a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
a9: (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

P-Program Realization

More formally

For a planning domain $\mathcal{D}=\langle P, A, \tau\rangle$:

- Π : set of all plans executable from some \mathcal{D}-state
- $s_{0} \in S$: an initial \mathcal{D}-state

Definition (P-program Realization)

Given \mathcal{D} and $\mathcal{P}=\left\langle V, v_{0}, \Gamma, \delta\right\rangle$, a realization of P is a partial function $\rho: S \times \delta \rightarrow \Pi$, inductively defined as follows:

- for every \mathcal{P}-transition $\left\langle v_{0}, G, v\right\rangle \in \delta, \rho\left(s_{0},\left\langle v_{0}, G, v\right\rangle\right)$ is defined;
- if $\rho\left(s,\left\langle v, G, v^{\prime}\right\rangle\right)$ is defined then:
- $\pi=\rho\left(s,\left\langle v, G, v^{\prime}\right\rangle\right)$ is a plan achieving G from s
- $\forall\left\langle v^{\prime}, G^{\prime}, v^{\prime \prime}\right\rangle \in \delta$, if $\operatorname{Result}(s, \pi)=s^{\prime}$, then $\rho\left(s^{\prime},\left\langle v^{\prime}, G^{\prime}, v^{\prime \prime}\right\rangle\right)$ is defined.

P-Program Realization

How to Compute a Realization?

Two proposed approaches:

- Reduction to LTL-synthesis [DeGiacomo\&al@AAMAS10]
- Pros: tools available (TLV); easy to handle non-deterministic domains as well
- Cons: computationally inefficient
- Planning-based approach [in this paper]
- Pros: can exploit fast planning technology and the problem structure to efficiently solve the realization problem
- Cons: need dedicated algorithm; current algorithm supports only deterministic domains

A Planning-based Algorithm

 Informally(1) Open $=$ set of joint (domain/program) states to process, initially set to $\left\langle s_{0}, v_{0}\right\rangle$
(2) Repeat
(3) Select a pair $\langle s, v\rangle$ from Open
(1) Foreach program transition d outgoing from v do
(5) Construct a plan π achieving the goals of d from s

- Update the realization function
(1) Progress the program and world states possibly generating a new joint state to process (pair added to Open)
(8) Until Open is empty

Plans resulting in already generated domain states are preferred
(Preferred states are handled by soft goals compiled into PDDL2.1)

A planning-based algorithm

An example (part 1 of 4)

Program realization function under construction

State	Transition	Plan	
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{2}, v_{2}\right\rangle$	$?$	
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{1}, v_{1}\right\rangle$		$?$

$a_{1}:($ fly A1 Bo NY)
$a_{2}:($ board P1 A1 NY)
$a_{3}:($ fly A1 NY Bo)
$a_{4}:($ debark P1 A1 Bo)
$a_{5}:($ fly A1 NY Wa)
$a_{6}:($ debark P1 A1 Wa)
$a_{7}:($ board P1 A1 Bo)
$a_{8}:($ debark P1 A1 NY)
$a_{9}:($ board P1 A1 Wa)
$a_{10}:\left(\begin{array}{ll}\text { Ply A1 Wa NY) }\end{array}\right.$
$a_{1}:(f 1 y$ A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo)
a_{5} : (fly A1 NY Wa)
: (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a8. (debark P1 A1 NY)
a_{10} : (fly A1 Wa NY)

A planning-based algorithm

An example (part 1 of 4)

Open $=\{\quad\}$
State $\left(v_{0}\right)=\left\{s_{0}\right\}$
State $\left(v_{1}\right)=\{ \}$
State $\left(v_{2}\right)=\{ \}$

Program realization function under construction

State	Transition	Plan
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{2}, v_{2}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{1}, v_{1}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$

a_{1} : (fly A1 Bo NY) a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo)
a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
(debark P1 A1 NY)
(board P1 A1 Wa
$0:(f l y ~ A 1 ~ W a ~ N ~$

a_{1} : (fly A1 Bo NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo)
a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
a_{9} : (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

Constructing plans for G_{1} and G_{2} from s_{0}

A planning-based algorithm

An example (part 1 of 4)

Open $=\left\{\left\langle s_{1}, v_{1}\right\rangle,\left\langle s_{2}, v_{2}\right\rangle\right\}$ State $\left(v_{0}\right)=\left\{s_{0}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :---: | :--- | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $?$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $?$ |
| | | |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
ag: (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

The computed plans produce two new final states s_{1} for v_{1} and s_{2} for v_{2}

A planning-based algorithm

An example (part 2 of 4)

Open $=\left\{\left\langle s_{1}, v_{1}\right\rangle,\left\langle s_{2}, v_{2}\right\rangle\right\}$ State $\left(v_{0}\right)=\left\{s_{0}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :---: | :--- | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $?$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $?$ |
| | | |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
ag: (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

A planning-based algorithm

An example (part 2 of 4)

Open $=\left\{\left\langle s_{2}, v_{2}\right\rangle\right\}$
State $\left(v_{0}\right)=\left\{s_{0}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

State	Transition	Plan	
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{2}, v_{2}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$	
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{1}, v_{1}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$	
$s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$	$\left\langle v_{2}, G_{0}, v_{0}\right\rangle$	$\left\langle a_{7}, a_{1}, a_{8}\right\rangle$	
$s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$	$\left\langle v_{1}, G_{0}, v_{0}\right\rangle$?	

a_{1} : (fly A1 Bo NY) a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo)
a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
(debark P1 A1 NY)
(board P1 A1 Wa
$0:(f l y ~ A 1 ~ W a ~ N ~$

Constructing a plan for G_{0} preferring end state s_{0}

A planning-based algorithm

An example (part 2 of 4)

Open $=\left\{\left\langle s_{2}, v_{2}\right\rangle,\left\langle s_{3}, v_{0}\right\rangle\right\}$ State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :---: | :---: | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{7}, a_{1}, a_{8}\right\rangle$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $?$ |
| $s_{3}=\{($ at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $?$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $?$ |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa) a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
a_{9} : (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

The computed plan produces a new final states s_{3} for v_{0}

A planning-based algorithm

An example (part 3 of 4)

Open $=\left\{\left\langle s_{2}, v_{2}\right\rangle,\left\langle s_{3}, v_{0}\right\rangle\right\}$ State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

State	Transition	Plan
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{2}, v_{2}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$
$s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$	$\left\langle v_{0}, G_{1}, v_{1}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$
$s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$	$\left\langle v_{2}, G_{0}, v_{0}\right\rangle$	$\left\langle a_{7}, a_{1}, a_{8}\right\rangle$
$s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$	$\left\langle v_{1}, G_{0}, v_{0}\right\rangle$	$?$
$s_{3}=\{($ at P1 NY), (at A1 NY) $\}$	$\left\langle v_{0}, G_{2}, v_{2}\right\rangle$	$?$
$s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$	$\left\langle v_{0}, G_{1}, v_{1}\right\rangle$	$?$

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
ag: (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

A planning-based algorithm

An example (part 3 of 4)

Open $=\left\{\left\langle s_{3}, v_{0}\right\rangle\right\}$
State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :---: | :---: | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{$ (at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{7}, a_{1}, a_{8}\right\rangle$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{9}, a_{10}, a_{8}\right\rangle$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $?$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $?$ |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
a_{9} : (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

Constructing a plan for G_{0} preferring end states s_{0} or s_{3}

A planning-based algorithm

An example (part 3 of 4)

Open $=\left\{\left\langle s_{3}, v_{0}\right\rangle\right\}$
State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :--- | :--- | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{7}, a_{1}, a_{8}\right\rangle$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{9}, a_{10}, a_{8}\right\rangle$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $?$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $?$ |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
ag: (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

The computed plan produces the preferred final state $s_{3} \in \operatorname{State}\left(v_{0}\right)$

A planning-based algorithm

An example (part 4 of 4)

Open $=\left\{\left\langle s_{3}, v_{0}\right\rangle\right\}$
State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
$\operatorname{State}\left(v_{1}\right)=\left\{s_{1}\right\}$
State $\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :---: | :---: | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{$ (at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{7}, a_{1}, a_{8}\right\rangle$ |
| $s_{2}=\{$ (at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{9}, a_{10}, a_{8}\right\rangle$ |
| $s_{3}=\{($ at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $?$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $?$ |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa)
a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY)
ag: (board P1 A1 Wa)
a_{10} : (fly A1 Wa NY)

A planning-based algorithm

An example (part 4 of 4)

Open $=\{\quad\}$
State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
$\operatorname{State}\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :--- | :--- | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{$ (at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{7}, a_{1}, a_{8}\right\rangle$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{9}, a_{10}, a_{8}\right\rangle$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{2}, a_{5}, a_{6}\right\rangle$ |

a_{1} : (fly A1 Bo NY) a_{2} : (board P1 A1 NY) a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa) a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY) a_{9} : (board P1 A1 Wa) a_{10} : (fly A1 Wa NY)

Constructing plans for G_{1} and G_{2} preferring end states s_{1} and s_{2}

A planning-based algorithm

An example (part 4 of 4)

Open $=\{\quad\}$
State $\left(v_{0}\right)=\left\{s_{0}, s_{3}\right\}$
State $\left(v_{1}\right)=\left\{s_{1}\right\}$
$\operatorname{State}\left(v_{2}\right)=\left\{s_{2}\right\}$

Program realization function under construction

| State | Transition | Plan |
| :--- | :--- | :--- | :--- |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{0}=\{($ at P1 NY), (at A1 Bo) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{1}, a_{2}, a_{5}, a_{6}\right\rangle$ |
| $s_{1}=\{($ at P1 Bo), (at A1 Bo) $\}$ | $\left\langle v_{2}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{7}, a_{1}, a_{8}\right\rangle$ |
| $s_{2}=\{($ at P1 Wa), (at A1 Wa) $\}$ | $\left\langle v_{1}, G_{0}, v_{0}\right\rangle$ | $\left\langle a_{9}, a_{10}, a_{8}\right\rangle$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{2}, v_{2}\right\rangle$ | $\left\langle a_{2}, a_{3}, a_{4}\right\rangle$ |
| $s_{3}=\{$ (at P1 NY), (at A1 NY) $\}$ | $\left\langle v_{0}, G_{1}, v_{1}\right\rangle$ | $\left\langle a_{2}, a_{5}, a_{6}\right\rangle$ |

a_{1} : (fly A1 Bo NY)
a_{2} : (board P1 A1 NY)
a_{3} : (fly A1 NY Bo)
a_{4} : (debark P1 A1 Bo) a_{5} : (fly A1 NY Wa)
a_{6} : (debark P1 A1 Wa) a_{7} : (board P1 A1 Bo)
a_{8} : (debark P1 A1 NY) a_{9} : (board P1 A1 Wa) a_{10} : (fly A1 Wa NY)

The constructed plans produce the preferred final states s_{1} and s_{2} that are already in $\operatorname{State}\left(v_{1}\right)$ and $\operatorname{State}\left(v_{2}\right)$, respectively

A planning-based algorithm

Backtracking

If for a pair $\langle s, v\rangle$ and a transition outgoing from v no realizing plan can be computed from s :

- State s is added to $\operatorname{Tabu}(v) \Rightarrow s$ cannot be re-generated for v
- State s is removed from State(v)
- The realization function is updated (all plans generating s for the p-transitions ending in v are removed)
- Open is updated with the new frontier of the realization function
$\forall s \in T a b u(v)$ plans realizing a transition to v cannot end in s anymore (compiled into a revised planning problem - new dummy goals and actions)

Experimental Results

Realizing planning programs by planning and formal synthesis

P-program structure

Planning programs with $5-100$ program states forming a single cycle in Blocksworld with 2 blocks. CPU-time limit: 30 minutes

Planner: LPG

Experimental Results

Realizing planning program by planning with and without using preferences
P-program structure

Planning programs with 4 program states forming a sequence of multiple binary cycles in Blocksworld with 5-24 blocks.
Similar results with other domains and program structures

Conclusions

- We have proposed a new planning-based method for realizing p-programs over deterministic domains
- The approach is parametric wrt the planner realizing the transitions (much better if soft goals are supported)
- Experimental results show
- Dramatic performance improvement wrt the previous technique based on LTL synthesis
- The use of preferred states is very effective to deal with (possibly undirected) cycles in the planning program

Future Work

- Performance comparison of other algorithm versions obtained using different planners
- Additional experiments with other domains and planning program structures
- Integration of plan-adaptation techniques when (re)planning for a program transition
- Plan-based method handling non-deterministic domains

Encoding a preferred state into PDDL2.1

- Two new dummy literals (dummy-fact) and (dummy-goal):
- (dummy-fact) is added to the initial state and the domain action preconditions
- (dummy-goal) is added to the problem goals
- A new numerical fluent (utility) that initially is 0
- A new dummy action nopref with (dummy-fact) as precondition and negative effect, and with (dummy-goal) as positive effect
- For every preferred state s, a new dummy action pref-s similar to nopref but with
- the set of literals in s as additional preconditions, and
- a numerical effect increasing fluent (utility) by a positive value
- A plan metric function maximizing (utility)

Experimental Results

Realizing planning program by planning with and without using preferences

Planning program		IPC6 score (\#solved)		Average \#open pairs	
Structure	$\|\delta\|$	+ pref.	-pref.	+pref.	-pref.
Blocksworld					
1C[50]	50	20 (20)	4.81 (20)	51.2	164
SC[26]	50	20 (20)	0.29 (2)	92.0	695
CD[8]	56	20 (20)	1.0 (4)	245	627
Storage					
1C[50]	50	20 (20)	6.13 (20)	51.4	107
SC[26]	50	20 (20)	0.17 (2)	81.7	2934
CD[8]	56	20 (20)	0.80 (4)	228.5	3081
Zenotravel					
1C[50]	50	20 (20)	6.81 (20)	51.3	63.7
SC[26]	50	20 (20)	1.31 (7)	88.5	2454
CD[8]	56	20 (20)	0.0 (0)	281	3040

1C: one cycle; SC: chain of binary cycles; CD: complete directed graph [n]: n p-program states

Related Work

A number of previous works address related issues:
(1) (Baier\&Mcllraith@ICAPS06): heuristic search to build finite plans that satisfy temporally extended goals

- plan finiteness does not allow to capture cycles in p-programs
(2) (Kabanza\&Thiebaux@ICAPS05): deals with temporally extended goals over infinite, deterministic (cyclic) linear plans
- we need some form of non-determinism to capture the arbitrary selection of p-program transitions
(3) (Kuter\&al@ICAPS08): use of classical planners to find strongcyclic reachability solutions to conditional planning problems

None can be straightforwardly used to compute a p-program realization (\neq goal reachability!)

The General Setting

Features

(DeGiacomo\&al@ICAPS10) propose a more general setting, where:

- the planning domain $\mathcal{D}=\{P, A, \rho\}$ is nondeterministic:
- State transition $\tau \subseteq S \times A \times S$ is a relation instead of a function
- the transitions $\left\langle v, \varphi, G, v^{\prime}\right\rangle \in \delta$ of a p-program $\mathcal{P}=\left\langle V, v_{0}, \Gamma, \delta\right\rangle$ may include also a maintenance goal:
- φ represents a condition to be satisfied during plan execution, until G is achieved
- this allows for capturing persistent goal requirements

The General Setting

Realization

The notion of realization needs to account for the facts that:

- plans are conditional
- maintenance goals must be satisfied

Definition (P-program Realization, general)

Given \mathcal{D} and $\mathcal{P}=\left\langle V, v_{0}, \Gamma, \delta\right\rangle$, a realization of P is a partial function $\rho: S \times \delta \rightarrow \Pi$, inductively defined as follows:

- for every \mathcal{P}-transition $\left\langle v_{0}, \varphi, G, v\right\rangle \in \delta, \rho\left(s_{0},\left\langle v_{0}, \varphi, G, v\right\rangle\right)$ is defined;
- if $\rho\left(s,\left\langle v, \varphi, G, v^{\prime}\right\rangle\right)$ is defined then:
- $\pi=\rho\left(s,\left\langle v, \varphi, G, v^{\prime}\right\rangle\right)$ is a conditional plan achieving G from s
- all states reachable by executing π from s satisfy φ
- for every $\left\langle v^{\prime}, \varphi, G^{\prime}, v^{\prime \prime}\right\rangle \in \delta$, and for all s^{\prime} s.t. $\operatorname{Result}(s, \pi)=s^{\prime}$, $\rho\left(s^{\prime},\left\langle v^{\prime}, \varphi, G^{\prime}, v^{\prime \prime}\right\rangle\right)$ is defined.

The General Setting

Complexity

Theorem

Building a p-program realization over a nondeterministic planning domain is an EXPTIME-complete problem.

