Computing All-Pairs Shortest Paths by Leveraging Low Treewidth

Léon Planken¹ Mathijs de Weerdt¹ Roman van der Krogt²

¹Delft University of Technology

²Cork Constraint Computation Centre

15 June 2011

Outline

• Computing all-pairs shortest paths

- Introduction
- 2 Motivation
- Existing algorithms
- Leveraging low treewidth

Introduction Motivation Existing algorithms

All-pairs shortest paths

We consider directed graphs graphs on n vertices and m edges.

Introduction Motivation Existing algorithms

All-pairs shortest paths

We consider directed graphs graphs on n vertices and m edges.

Introduction Motivation Existing algorithms

All-pairs shortest paths

Arcs in the graph are labelled by real-valued weights.

Introduction Motivation Existing algorithms

All-pairs shortest paths

We are interested in finding shortest paths...

Introduction Motivation Existing algorithms

All-pairs shortest paths

D	а	b	с	d	е	f	g	h
а	0	8	5	14	3	3	3	5
b	-7	0	-2	6	-4	-5	-5	-3
с	-1	7	0	10	2	1	-1	1
d	-4	4	1	0	-1	-1	-1	1
е	2	10	7	15	0	4	4	6
f	-2	6	3	11	1	0	0	2
g	0	8	5	13	3	2	0	4
h	-2	6	3	9	1	0	-2	0

... between all pairs of vertices: distance matrix *D*.

Introduction Motivation Existing algorithms

Motivation

Why is this problem of interest to the ICAPS crowd?

- Shortest paths can clearly be used for spational reasoning
- But for temporal reasoning as well: Simple Temporal Networks

Introduction Motivation Existing algorithms

Simple Temporal Networks

- Proposed in 1991 by Dechter, Meiri and Pearl
- Represent and reason about temporal information
- Nodes represent events
- Arcs represent temporal constraints

Introduction Motivation Existing algorithms

Simple Temporal Networks

b happens between 10 and 40 time units after a.

Planken, De Weerdt, Van der Krogt Computing APSP by Leveraging Low Treewidth

Introduction Motivation Existing algorithms

Simple Temporal Networks

Let's add some constraints.

-7

Introduction Motivation Existing algorithms

Simple Temporal Networks

These can be used to infer tighter bounds.

Introduction Motivation Existing algorithms

Simple Temporal Networks

These can be used to infer tighter bounds.

Introduction Motivation Existing algorithms

Simple Temporal Networks

These can be used to infer tighter bounds.

Introduction Motivation Existing algorithms

Simple Temporal Networks

These can be used to infer tighter bounds.

Introduction Motivation Existing algorithms

Simple Temporal Networks

An equivalent representation uses weighted arcs.

Planken, De Weerdt, Van der Krogt Computing APSP by Leveraging Low Treewidth

Introduction Motivation Existing algorithms

Simple Temporal Networks Applications

- Scheduling problems (e.g. job shop)
- Temporal planning
- Space missions:
 - NASA's Mars Rover
 - ESA's Mars Express

Introduction Motivation Existing algorithms

Algorithms for APSP

- Floyd–Warshall (1959–62): $\mathcal{O}(n^3)$ time
 - Proposed by Dechter et al. for the STN
 - Very simple to implement

Introduction Motivation Existing algorithms

Algorithms for APSP

- Floyd–Warshall (1959–62): $\mathcal{O}(n^3)$ time
 - Proposed by Dechter et al. for the STN
 - Very simple to implement
- Johnson (1977): $\mathcal{O}(nm + n^2 \log n)$ time
 - Requires Fibonacci heap (1987)
 - A bit harder to implement
 - Benefits from sparseness

Introduction Motivation Existing algorithms

Other algorithms

- Bellman–Ford (1958–62): O(nm) time
 - Find inconsistency (negative cycles)
 - Find single schedule for events
 - Infer constraints involving a single time point

Introduction Motivation Existing algorithms

Other algorithms

- Bellman–Ford (1958–62): O(nm) time
 - Find inconsistency (negative cycles)
 - Find single schedule for events
 - Infer constraints involving a single time point
- $P^{3}C$ (ICAPS'08): $O(nw_{d}^{2})$ time
 - Infer constraints for an (interesting) subset of all pairs
 - For this specific problem: state of the art

DPC Snowball Empirical evaluation Conclusion

Outline

- Computing all-pairs shortest paths
- Leveraging low treewidth
 - Directed path consistency
 - 2 Snowball
 - Empirical evaluation
 - Conclusion

DPC Snowball Empirical evaluation Conclusion

Directed path consistency Introduction

- Proposed by [Dechter et al., 1991] for determining consistency
- Known from CSP literature
- Given vertex ordering d, runs in $\mathcal{O}(nw_d^2)$ time
- Prerequisite to P^3C

DPC Snowball Empirical evaluation Conclusion

Directed path consistency Algorithm

Given
$$G = \langle V, E \rangle$$
 and vertex ordering d :
For $k \leftarrow n$ to 1:
For all $i < j < k$ such that $\{i, k\}, \{j, k\} \in E$:
 $w_{i \rightarrow j} \leftarrow \min\{w_{i \rightarrow j}, w_{i \rightarrow k} + w_{k \rightarrow j}\}$
 $w_{j \rightarrow i} \leftarrow \min\{w_{j \rightarrow i}, w_{j \rightarrow k} + w_{k \rightarrow i}\}$
 $E \leftarrow E \cup \{\{i, j\}\}$
If $w_{i \rightarrow j} + w_{j \rightarrow i} < 0$ return INCONSISTENT
Return CONSISTENT

DPC Snowball Empirical evaluation Conclusion

Directed path consistency Algorithm

Given $G = \langle V, E \rangle$ and vertex ordering d: For $k \leftarrow n$ to 1: For all i < j < k such that $\{i, k\}, \{j, k\} \in E$: $w_{i \rightarrow j} \leftarrow \min\{w_{i \rightarrow j}, w_{i \rightarrow k} + w_{k \rightarrow j}\}$ $w_{j \rightarrow i} \leftarrow \min\{w_{j \rightarrow i}, w_{j \rightarrow k} + w_{k \rightarrow i}\}$ $E \leftarrow E \cup \{\{i, j\}\}$ If $w_{i \rightarrow j} + w_{j \rightarrow i} < 0$ return INCONSISTENT Return CONSISTENT

DPC Snowball Empirical evaluation Conclusion

Directed path consistency Algorithm

Given $G = \langle V, E \rangle$ and vertex ordering d: For $k \leftarrow n$ to 1: For all i < j < k such that $\{i, k\}, \{j, k\} \in E$: $w_{i \rightarrow j} \leftarrow \min\{w_{i \rightarrow j}, w_{i \rightarrow k} + w_{k \rightarrow j}\}$ $w_{j \rightarrow i} \leftarrow \min\{w_{j \rightarrow i}, w_{j \rightarrow k} + w_{k \rightarrow i}\}$ $E \leftarrow E \cup \{\{i, j\}\}$ If $w_{i \rightarrow j} + w_{j \rightarrow i} < 0$ return INCONSISTENT Return CONSISTENT

DPC Snowball Empirical evaluation Conclusion

Directed path consistency Algorithm

Given
$$G = \langle V, E \rangle$$
 and vertex ordering d :
For $k \leftarrow n$ to 1:
For all $i < j < k$ such that $\{i, k\}, \{j, k\} \in E$:
 $w_{i \rightarrow j} \leftarrow \min\{w_{i \rightarrow j}, w_{i \rightarrow k} + w_{k \rightarrow j}\}$
 $w_{j \rightarrow i} \leftarrow \min\{w_{j \rightarrow i}, w_{j \rightarrow k} + w_{k \rightarrow i}\}$
 $E \leftarrow E \cup \{\{i, j\}\}$
If $w_{i \rightarrow j} + w_{j \rightarrow i} < 0$ return INCONSISTENT
Return CONSISTENT

DPC Snowball Empirical evaluation Conclusion

Directed path consistency Algorithm

Given
$$G = \langle V, E \rangle$$
 and vertex ordering d :
For $k \leftarrow n$ to 1:
For all $i < j < k$ such that $\{i, k\}, \{j, k\} \in E$:
 $w_{i \rightarrow j} \leftarrow \min\{w_{i \rightarrow j}, w_{i \rightarrow k} + w_{k \rightarrow j}\}$
 $w_{j \rightarrow i} \leftarrow \min\{w_{j \rightarrow i}, w_{j \rightarrow k} + w_{k \rightarrow i}\}$
 $E \leftarrow E \cup \{\{i, j\}\}$
If $w_{i \rightarrow j} + w_{j \rightarrow i} < 0$ return INCONSISTENT
Return CONSISTENT

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

DPC

Snowball Empirical evaluation Conclusion

DPC

Snowball Empirical evaluatio Conclusion

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

DPC Snowball Empirical evaluation Conclusion

- Edge between last two vertices is minimal
- This example: $w_d = 5$, fill = 9
- Heuristic: minimum degree

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

DPC

Snowball Empirical evaluatio Conclusion

DPC

Snowball Empirical evaluatio Conclusion

Directed path consistency Example

DPC

Snowball Empirical evaluation Conclusion

Directed path consistency Example

DPC Snowball Empirical evaluation Conclusion

- Using minimum degree: $w_d = 3$, fill = 2
- Shortest paths can be found by "looking down"
- We use this in our algorithm

- $\bullet\,$ Like $P^{3}C,$ builds on DPC
- Runs in $\mathcal{O}(nm_c) \subseteq \mathcal{O}(n^2w_d)$
- Idea: after DPC,
 - D[1][2] and D[2][1] are minimal
 - Shortest path to/from k runs through neighbours j < k

Given
$$G = \langle V, E \rangle$$
 which is DPC along d :
For all $i, j \in V : D[i][j] \leftarrow \infty$
For all $i \in V : D[i][i] \leftarrow 0$
For $k \leftarrow 1$ to n :
For all $j < k$ such that $\{j, k\} \in E$:
For $i \in \{1, \dots, k-1\}$:
 $D[i][k] \leftarrow \min\{D[i][k], D[i][j] + w_{j \rightarrow k}\}$
 $D[k][i] \leftarrow \min\{D[k][i], w_{k \rightarrow j} + D[j][i]\}$
Return D

```
Given G = \langle V, E \rangle which is DPC along d:

For all i, j \in V : D[i][j] \leftarrow \infty

For all i \in V : D[i][i] \leftarrow 0

For k \leftarrow 1 to n:

For all j < k such that \{j, k\} \in E:

For i \in \{1, \dots, k-1\}:

D[i][k] \leftarrow \min\{D[i][k], D[i][j] + w_{j \rightarrow k}\}

D[k][i] \leftarrow \min\{D[k][i], w_{k \rightarrow j} + D[j][i]\}

Return D
```

Given
$$G = \langle V, E \rangle$$
 which is DPC along d :
For all $i, j \in V : D[i][j] \leftarrow \infty$
For all $i \in V : D[i][i] \leftarrow 0$
For $k \leftarrow 1$ to n :
For all $j < k$ such that $\{j, k\} \in E$:
For $i \in \{1, \dots, k-1\}$:
 $D[i][k] \leftarrow \min\{D[i][k], D[i][j] + w_{j \rightarrow k}\}$
 $D[k][i] \leftarrow \min\{D[k][i], w_{k \rightarrow j} + D[j][i]\}$
Return D

```
Given G = \langle V, E \rangle which is DPC along d:

For all i, j \in V : D[i][j] \leftarrow \infty

For all i \in V : D[i][i] \leftarrow 0

For k \leftarrow 1 to n:

For all j < k such that \{j, k\} \in E:

For i \in \{1, \dots, k-1\}:

D[i][k] \leftarrow \min\{D[i][k], D[i][j] + w_{j \rightarrow k}\}

D[k][i] \leftarrow \min\{D[k][i], w_{k \rightarrow j} + D[j][i]\}

Return D
```

DPC Snowball Empirical evaluation Conclusion

DPC Snowball Empirical evaluation Conclusion

- If constant w_d exists, it can be found in O(n) time
 Then, Snowball runs in O(n²) time (optimal).
 Chordal graphs can be identified in O(m) time
 - Then, Snowball runs in $\mathcal{O}(nm)$ time (also nice).

DPC Snowball Empirical evaluation Conclusion

Snowball Etymology

DPC Snowball Empirical evaluation Conclusion

Snowball Etymology

DPC Snowball Empirical evaluation Conclusion

Snowball Etymology

DPC Snowball Empirical evaluation Conclusion

Snowball Etymology

DPC Snowball Empirical evaluation Conclusion

Snowball Etymology

Number of computed shortest paths grows quadratically...

DPC Snowball Empirical evaluation Conclusion

Snowball Etymology

...like a snowball.

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

- Compared Floyd–Warshall, Johnson, Snowball
- Java 1.6 (server mode) on Intel Xeon E5430
- Run 10 times, take average CPU time

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

Benchmark overview

type	#cases	п	т	Wd
Chordal				
- Varying <i>n</i>	130	214–3,125	22,788-637,009	211
- Varying w^*	400	200	985-19,900	5–199
Scale-free				
- Varying <i>n</i>	426	100-200	460-891	38–58
- Varying <i>w_d</i>	190	150	296-2,240	14–103
Diamonds	504	51–379	49-379	2
New York	180	108-4,882	113-8,108	2–51
Job-shop	600	5-241	8-3,840	3–62
HTN	121	500-625	748–1,515	2–144

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

Benchmark overview

type	#cases	п	т	Wd
Chordal				
- Varying <i>n</i>	130	214–3,125	22,788-637,009	211
- Varying w^*	400	200	985-19,900	5–199
Scale-free				
- Varying <i>n</i>	426	100-200	460-891	38–58
- Varying <i>w_d</i>	190	150	296-2,240	14–103
Diamonds	504	51–379	49–379	2
New York	180	108-4,882	113-8,108	2–51
Job-shop	600	5–241	8-3,840	3–62
HTN	121	500–625	748-1,515	2–144

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation Scale-free graphs, $w_d \in [38, 58]$

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

Scale-free graphs, n = 150

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation New York City road network, $w_d \in [2, 51]$

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation STNs from job-shop benchmarks, $w_d \in [3, 62]$

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation STNs from HTN benchmarks, $n \in [500, 625]$

DPC Snowball Empirical evaluation Conclusion

Conclusion

- Proposed a new, simple APSP algorithm:
 - Graphs of constant treewidth: $\mathcal{O}\left(n^2\right)$ time
 - Chordal graphs: $\mathcal{O}(nm)$ time
 - General graphs: $\mathcal{O}(nm_c) \subseteq \mathcal{O}(n^2w_d)$ time
- Empirically seen to outperform competitors in most cases

DPC Snowball Empirical evaluation Conclusion

Future work

- More efficient Snowball: $\mathcal{O}\left(nw_d^2 + n^2s\right)$ time, for $s < w_d$
- Compare against [Pettie 2004]: $O(nm + n^2 \log \log n)$ time
- Incremental/dynamic version?

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

Chordal graphs, $w^* = 211$

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

Chordal graphs, n = 200

DPC Snowball Empirical evaluation Conclusion

Empirical evaluation

"Diamonds" benchmark, $w_d = 2$

