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Specific Problem

Specific Problem

Assumption
We have an exploration planner
running which tells our robot new
locations to explore (e.g. a
frontier-based planner which tries
to cover all unknown space).

New Goal
While going to the goal location (from exploration planner), accurately
detect and place objects of interest.
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Hybrid Approach

Exploration Approaches

Shortest Path Approach
1 Go to the goal, running object

detector continuously.
2 Accept object hypothesis

based upon detector
threshold.

Limitation: Quality of detection.

Information Gathering Approach
1 Gather as much information

about the object as wanted
2 After gathering enough

information, continue on
towards the goal.

Limitation: Unknown path length.
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Hybrid Approach

Hybrid Approach

Properties
Takes into account the motion cost of informative vantage points
Allows for both the shortest path approach or the most information
gain approach depending on cost function.
This is a POMDP formulation [1].
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Hybrid Approach

The Cost of Detecting an Object

Total Cost
Cost(T ) = Cmotion(T ) + α · E [Cdecision(T )]

Sample Trajectory T Decision

object decision
exists? accept reject

yes Ktp Kfp
no Kfn Ktn
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Hybrid Approach

Perception Field: Expected Information Around an
Object Hypothesis

Sensor Model
We build a model p(z|o, x) of the
detector output z given whether the
object was truly there (o = 1) or
not (o = 0) and the relative position
x of the object.

Perception Field
Using the sensor model, we can
evaluate the expected information
at points around an object.
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Hybrid Approach

Guided Forward Search

We can use the perception field to guide a forward search for
good trajectories through space.

We then pick the trajectory from those sampled with the lowest
cost.

This is a belief roadmap [3] scheme.
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Hybrid Approach

Initial Algorithm

Algorithm replan_on_new_detection

Input: an object detection z

1: update object belief with z
2: while planning time remains do
3: Ti ∼ P // Sample trajectory using perception field
4: T← T ∪ Ti
5: T ∗ ← arg min

Ti∈T
(ct(Ti))

6: execute trajectory T ∗
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Hybrid Approach

The Result: Our Robot Stands Still

Our robot stands still at the most informative location until satisfied
then moves on.

This is not what we want!
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Planning To Perceive Correlations

Independence

Our initial approach assumed that
object detections were
independent.

This is clearly not so!
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Planning To Perceive Correlations

A True Model for Object Detection

Modeling The Environment

Observations from our object detector are influenced by a global
hidden variable: the environment.

Original Lighting Occlusion

Disadvantages

Computational burden to model the full environment (aka. the world).
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Planning To Perceive Correlations

Planing To Perceive: Correlated Observation History

Idea
Spatial correlation between
observations: locality matters most.

Properties
We no longer keep taking pictures
from same vantage point since
expected information diminishes
because of locality correlation with
previous observations.
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Planning To Perceive Correlations

Fully Correlated Input Model

We build a model for the probability of two observations at two
locations being fully correlated or not.
p(zi = zj |xi , xj)

Observations from the same location are set to be fully correlated.
p(zi = zj |xi = xj) = 0
The probability of two locations being fully correlated is inversely
proportional to the distance between the two locations.

p(zi = zj |xi , xj) =

{
1− distance(x1,xj )

dmax
⇔ d < dmax

0 ⇔ d ≥ dmax
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Planning To Perceive Correlations

Dynamic Perception Field

× p(zi = zj |xi , xj) =
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Planning To Perceive Algorithm

Planning To Perceive

Algorithm replan_on_new_detection

Input: an object detection z

1: update perception field P with z
2: update object belief with z
3: while planning time remains do
4: Ti ∼ P // Sample trajectory from dynamic perception field
5: T← T ∪ Ti
6: T ∗ ← arg min

Ti∈T
(ct(Ti))

7: execute trajectory T ∗
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Results

Object Detector and Perception Field

Detector
Felzenschwab [2] detector for doors with a stereo camera to get
relative position and orientation of potential door, trained on 3500
images.

Perception Field
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Results Simulations

Simulation

Single Door Simulation Multiple Door Simulation
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Results Simulations

Sample Trajectories

Random Viewpoints Trajectory

Planned Viewpoints Trajectory
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Results Simulations

Results: Simulation of 50 Runs

Single Door

Average Random

Greedy RTBSS Planned

Precision 0.26 ±0.04

0.31 ±0.06 0.45 ±0.06 0.75 ±0.06

Recall 0.60 ±0.07

0.44 ±0.07 0.58 ±0.07 0.80 ±0.06

Path (m) 62.0 ±0.67

67.0 ±2.23 47.6 ±0.19 54.9 ±3.04

Cdecision 7.8 ±0.70

0.8 ±0.83 -1.6 ±0.76 -5.4 ±0.58

Multiple Doors

Average Random Greedy RTBSS Planned
Precision 0.64 ±0.03 0.64 ±0.03 0.70 ±0.03 0.53 ±0.05
Recall 0.64 ±0.04 0.63 ±0.02 0.66 ±0.03 0.76 ±0.03
Path (m) 199 ±11.24 153 ±4.37 160 ±6.08 138 ±7.12
Cdecision 6.12 ±1.24 7.32 ±1.11 4.64 ±6.25 4.49 ±1.37
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Results Real-World Trials

Results: Real World

Real World Trials

Average Greedy Planned
Precision 0.53 ±0.14 0.7 ±0.15
Recall 0.60 ±0.14 0.7 ±0.15
Path (m) 153.86 ±33.34 91.68 ±15.56
Cdecision 1.6 ±2.61 -4.8 ±1.77
Trials 10 10

Perception Field
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Conclusion

Conclusion

Used cost function with takes into account both path length and
information.
Modeling correlations between object detections avoids
overconfidence in expected belief update during planning.
Our system results in higher precision and recall than a traditional
object detector by itself.
Implemented algorithm on robotic wheelchair which shows
promise over other strategies to utilize an object detector

Future Work
A correlation model that is more than just spatial correlation.
A cost function without use of an α mixing parameter between two
costs functions.
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Conclusion

References

Frank Deinzer, Joachim Denzler, and Heinrich Niemann.
Viewpoint selection - planning optimal sequences of views for
object recognition.
In Proc. ICCV. Springer, 2003.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part based models.
IEEE Trans. Pattern Analysis and Machine Intelligence, 32(9),
September 2010.

S. Prentice and N. Roy.
The belief roadmap: Efficient planning in belief space by factoring
the covariance.
International Journal of Robotics Research, 8(11-12):1448–1465,
December 2009.

Velez, Hemann, Huang, Posner, Roy (MIT) Planning To Perceive June 18, 2011 23 / 23


	Motivation
	Specific Problem
	Hybrid Approach
	Planning To Perceive
	Correlations
	Algorithm

	Results
	Simulations
	Real-World Trials

	Conclusion

