▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The Minimal Seed Set Problem

Avitan Gefen Ronen I. Brafman

Department of Computer Science

Ben-Gurion University of The Negev, Israel

June 16, 2011

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
Outline				

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- 2 Generation as Planning
- 3 New Method
- 4 Empirical results
- 5 Future research

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

What is the minimal seed set problem?

 New and challenging benchmark problem that originates in systems biology.

The minimal seed-set problem is defined as follows:

Given a description of the **metabolic reactions** of an **organism**, characterize the **minimal set of nutrients** with which it could synthesize all nutrients it is capable of synthesizing.

What is the minimal seed set problem?

 New and challenging benchmark problem that originates in systems biology.

The minimal seed-set problem is defined as follows:

Given a description of the **metabolic reactions** of an **organism**, characterize the **minimal set of nutrients** with which it could synthesize all nutrients it is capable of synthesizing.

Questions that can be studied using minimal seed-set:

- What is the effective biochemical environment of a specific species?
- How the structure of the organism's biochemical network correspond to its life-style?
- And how biochemical networks of organisms evolve?

What is the minimal seed set problem?

- Finding a **minimal seed set** is **NP-hard** (e.g., by reduction from the set-cover problem).
- mixed-integer programming approach reported to not scale up (Borenstein et al. 2008).
- (Borenstein et al. 2008) resorted to an approximation algorithm.
- Reduction to SAT (using search) failed to return a solution on all but the smallest problem instance
- FD planner with two different types of heuristics failed to solve even the smallest instance:
 - LM-Cut heuristic
 - newest variant of the abstraction based Merge-and-Shrink heuristic

What is the minimal seed set problem?

A biochemical (metabolic) network is a set of reactions (for example):

•
$$r1: \overbrace{a+b}^{\text{substrate}} \rightarrow \overbrace{c+d}^{\text{product}}$$

•
$$r2: c \rightarrow b+d$$

•
$$R = \{r1, r2\}$$
 $C = \{a, b, c, d\}$

The problem:

A **seed set** of a metabolic network is a **subset of nutrients** from which *C* is reachable.

- Any nutrient in C is either part of the seed set
- Or can be synthesized via some sequence of reactions from this seed set.

We look for the minimal seed set - for example $\{a, b\}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

What is the minimal seed set problem?

A biochemical (metabolic) network is a set of reactions:

- $r1: a+b \rightarrow c+d$
- $r2: c \rightarrow b+d$

•
$$R = \{r1, r2\}$$
 $C = \{a, b, c, d\}$

Organisms as dynamic systems

- Organisms can be viewed as dynamic systems
- Reactions as operators that change the state of the system
- There is a natural casting of the problem to a planning problem

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
Outline				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- 2 Generation as Planning
 - 3 New Method
- Empirical results
- 5 Future research

Seed Set Generation as Planning

A biochemical (metabolic) network is a set of reactions:

•
$$r1: a+b \rightarrow c+d$$

•
$$r2: c \rightarrow b+d$$

• $R = \{r1, r2\}$ $C = \{a, b, c, d\}$

The minimal seed-set problem as a planning problem (no deletes):

- **Propositions:** are the set of nutrients $C = \{a, b, c, d\}$
- Reaction operators: r1, r2 (Both operators have zero cost): pre(r1) = {a,b} pre(r2) = {c} add(r1) = {c,d} add(r2) = {b,d}
- Insert operators will be constructed, one for each of the nutrients in {a, b, c, d}: Their precondition is empty
 Their add effect is a single nutrient
 These operators will have cost higher than zero
- Initial state: All propositions are false
- Goal state: All propositions are true

▲□▶▲□▶▲□▶▲□▶ □ のQで

Current techniques

Current techniques

- Current optimal planners unable to solve this problem
- Non-optimal planners (LAMA with basic parameters) output trivial solution - all inserts

Possible reasons?

- Many zero cost actions (reactions)
- All facts are landmarks (The goal is achieving everything)
- Probably many slightly different optimal solutions
- Many legal permutations to each plan

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
Outline				

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- What is the problem?
- 2 Generation as Planning
- 3 New Method
- 4 Empirical results
- 5 Future research

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
New Method				

• We devised a **variant** of the **A*** **algorithm** that exploits two special properties of this domain:

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Many zero cost actions (reactions)
- Many legal permutations to each plan

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

New Method - Many zero cost actions

Step 1:

- Expanding states (in the A* algorithm) only using insert actions.
- During search expand a new state:
 - insert a nutrient
 - Apply all relevant reactions until no new nutrient can be achieved

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Many zero cost actions and Axioms

Reactions and Axioms

- Derived predicates are not allowed to appear in atomic effects of actions.
- A representation using axioms is possible, but it will be larger and more complicated.
- Planners with admissible heuristics that support axioms are scarce.

▲□▶▲□▶▲□▶▲□▶ □ のQで

New Method - Many zero cost actions

Step 1:

- Expanding states (in the A* algorithm) only using insert actions.
- During search expand a new state:
 - insert a nutrient
 - Apply all relevant reactions until no new nutrient can be achieved
- Step 1 alone is insufficient.

New Method - Pruning actions

Step 2: pruning actions while maintaining optimality

Transform the metabolic network into a (regular) directed graph (known as a directed substrate graph):

- $r1: a+b \rightarrow c+d$
- $r2: c \rightarrow b+d$

• G = (V, E)

- V is the set of nutrients C
- directed arc a = (x, y) exists if and only if there is a reaction r = (X, Y) where $x \in X$ and $y \in Y$

New Method

▲□▶▲□▶▲□▶▲□▶ □ のQで

New Method - Pruning actions

- $r1: a+b \rightarrow c+d$
- $r2: c \rightarrow b+d$
- Next, we identify the strongly connected components (SCC) of G:

• The SCC's of G form a directed acyclic graph (DAG) the G_{scc}:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

New Method - Pruning actions

source component node and source component set

Each node in the *G*_{scc} which has:

- no incoming edges
- and at least one outgoing edge

will be called a *source component node*, and it will represent a special type of SCC of G which we will call a *source component set*.

• In the figure, the only *source component node* is *a*.

New Method - Pruning actions

Since a *source component node* (of G_{scc}) has no incoming edges:

- None of the nutrients outside this component set (SCC in G) can be a precursor for any nutrient in this source component.
- Hence, at least one element of this source component must be part of any seed set.
- Insert actions of a source component constitute a disjunctive action landmark.

New Method - Pruning actions

For each state (after applying all zero cost actions possible):

- Identify all **current** source components in G(s).
 - G(s) = (graph G for state s)
- We can consider only insert actions that produce nutrients that reside in one source component of the current state substrate graph G(s) optimality maintained by action landmark.

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
Outline				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- What is the problem?
- 2 Generation as Planning
- 3 New Method
- 4 Empirical results
- 5 Future research

New Method

Empirical results

 We chose 22 organisms from different taxonomy categories, from small bacteria to mammals. Many of these organisms are well known, well studied, model-type organisms.

Organism	# of nutri-	# of reac-	LM-cut	Merge	GSCC2
	ents	tions		&	(h=0)
				Shrink	
aae	2576	1699	-	-	86.84
avn	305	298	-	-	1.92
ayw	1733	400	-	-	26.18
bmu	3042	2942	-	-	150.84
bra	3139	3556	-	-	174.88
bxe	3106	3722	-	-	177.36
ecc	2901	3137	-	-	145.86
eco	2992	3237	-	-	154.67
ecp	2918	3166	-	-	145.99
ecv	2890	3161	-	-	144.13
ecx	2956	3197	-	-	152.71
hsa	3006	4010	-	-	176.59
mmu	3004	3959	-	-	174.35
rha	3219	3679	-	-	187.69
gga	2986	3514	-	-	158.60
xla	2956	2971	-	-	143.72
dre	2977	3734	-	-	165.49
dme	2973	3099	-	-	151.77
ath	3322	3290	-	-	184.67
cre	2958	563	-	-	104.72
cme	2940	2371	-	-	129.51
sce	2622	2635	-	-	110.59

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
Outline				

- What is the problem?
- 2 Generation as Planning
- 3 New Method
- 4 Empirical results

Future research

The Seed-Set as a Motivating application for planning

- Question: how might existing planners be altered to solve this domain?
- Question: is it possible to find **disjunctive action landmarks** of the form used here more **generally**?

Biologically motivated extensions that challenge current planning algorithms

- Model that capture quantities of metabolites:
 - Using suitable integer-valued variable and numeric effects (addition and subtraction) as in **metric planning**.
- Extended seed-set questions "best" minimal subset according to different criteria:
 - A minimal number of reactions to generate all compounds.
 - A minimal energy to generate all compounds.

What is the problem?	Generation as Planning	New Method	Empirical results	Future research
Thank You				

• Thank You!

