

Planning Problems for Social Robots

Gian Diego Tipaldi Kai O. Arras

Social Robotics Lab

University of Freiburg, Germany

Motivations

- Socially compatible robots
 - Blend into human activities
- Understand social spaces
 - Learn patterns of activities
- Human-aware planning
 - Look for people around
 - Minimize hindrance to people

Learning Activity Patterns

- Learn spatio-temporal patterns of human activities
- Answer questions like:
 - How probable is an activity performed at a certain time and space?
 - How long do I need to wait for an activity to happen?
 - What is the path that maximize the probability of encountering a certain activity?

Spatial Affordance Map

- Poisson process
 - Non-homogeneous spatial Poisson process with rate function $\lambda(\vec{x},t)$
- Assumption
 - Function approximators are too slow
 - Piecewise homogeneous in space and time

- Learning
 - Using Bayesian learning
 - Gamma distributed, » ¡ (¸; ®;)
 - Poisson parameter
 obtained via expectation
 Bayesian = E[,] = _

Learning Example

People Simulator

- Real data is hard to collect
- Simulator with 3-layer agent architecture
- Three simulated environments
- Activities learned from questionnaires

Office Warehouse House

Maximum Encounter Planning

- Plan paths that maximize the probability of encountering people, giving a deadline
- Example: Coffee delivery robot
 - Deliver coffee fast
 - Coffee must be still hot (deadline)
 - People may move

Maximum Encounter Planning

- Finite horizon MDP
 - State: cell in the map
 - Action: move to next cell
 - Reward: Poisson rate
 - Horizon: the deadline

- Challenges
 - Horizon reduced in time
 - Time variance of reward

```
Algorithm 1: Encounter Probability Planning
     In: Rate \lambda(\vec{x}, t); time t_{max}; initial state s_0;
     Out: The best path \mathcal{P}^*:
     // Compute the policy
 1 Compute the horizon N;
  2 J<sub>N</sub>(s) ← λ<sub>ijτ</sub> ∀s;
  3 for k \leftarrow N-1 to 0 do
        J_k(s) \leftarrow \max_{a} \left[ R(s, a) + \sum_{s'} p(s'|s, a) J_{k+1}(s') \right];
\mathcal{A}_k^*(s) \leftarrow \operatorname*{argmax}_{a} \left[ R(s, a) + \sum_{s'} p(s'|s, a) J_{k+1}(s') \right];
     // Extract the path
 7 P*(0) ← s<sub>0</sub>;
  s for k \leftarrow 1 to N do
           s \leftarrow P^*(k-1);
           \mathcal{P}^*(k) \leftarrow \mathbb{E}\left[p(s'|s, A_{k-1}^*(s))\right];
11 end
12 return \mathcal{P}^*:
```

Planning heuristics

- MDP is too complex for real time planning
- O(N³) time complexity
 - Too slow
- O(N³) space complexity
 - Memory swap for limited resource robots

- MDP behavior
 - Go towards the sink if deadline is enough
 - Use a longer but more probable path
- Heuristics
 - Relax action stochasticity
 - A* towards the local sink
 - A* towards the global sink

Encounter Planning Experiments

- Experiment setup
 - 10 simulation days
 - 1000 paths
 - Random starting location
 - Random starting time
- Metric used
 - Success rate with respect to the deadline
- Approaches
 - MDP
 - Local/global sink
 - Waiting
 - Random walk

Informed

Uninformed

- Plan paths that cover the entire space, minimizing the interference with humans
- Example: Autonomous vacuum cleaner
 - Cleans the whole house
 - Cleans room when people are not there
 - Uses the routes with the minimum traffic

Time-dependent TSP

Nodes: rooms

Edges: doorways

Costs: Poisson rates

- Challenges and properties
 - Sparseness: TSP is usually fully connected
 - Asymmetry: presence of node costs
 - Time dependence: Poisson rates vary over time

- Generate the room graph
- Complete the graph (Floyd-Warshall)
- Solve the TSP (dynamic programming)

- Generate the room graph
- Complete the graph (Floyd-Warshall)
- Solve the TSP (dynamic programming)

- Generate the room graph
- Complete the graph (Floyd-Warshall)
- Solve the TSP (dynamic programming)

- Generate the room graph
- Complete the graph (Floyd-Warshall)
- Solve the TSP (dynamic programming)

Preliminary results

Experiment setup

- 10 simulation days
- 1000 paths
- Random starting location
- Random starting time
- Coverage/transit times

Metric used

- Interference time
- People interfered

Approaches

- Dynamic programming
- Greedy/NN heuristic
- General TSP

Time

Complexity and Heuristics

- Dynamic programming too expensive
 - $O(N2^N)$ in time
 - $O(2^N)$ in space

- Graph completion also expensive
 - Floyd-Warshall for every time step O(N⁴)

- Heuristics
 - Greedy O(N²log²N)
 - Nearest neighbor O(N²)
 - Good search heuristic for asymmetric problems?
- TSP: good formulation?
 - No sparseness
 - Complex reduction
- Alternatives?
 - Symbolic planning?
 - Temporal planning?

Conclusions

- Novel planning problems for social robots
 - Maximum encounter probability
 - Minimum interference coverage
- Learn and reason about human activities
 - Spatial affordance map
- Simulator engine of populated environments
 - Three realistic scenarios
 - Code available soon (mail me!)

tipaldi@informatik.uni-freiburg.de