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Motivations
 Socially compatible robots

 Blend into human activities

 Understand social spaces

 Learn patterns of activities

 Human-aware planning

 Look for people around

 Minimize hindrance to people



Learning Activity Patterns
 Learn spatio-temporal patterns of human activities
 Answer questions like:

 How probable is an activity performed at a certain time 
and space?

 How long do I need to wait for an activity to happen?
 What is the path that maximize the probability of 

encountering a certain activity?



Spatial Affordance Map

 Poisson process
 Non-homogeneous spatial

Poisson process with rate 
function

 Assumption
 Function approximators

are too slow
 Piecewise homogeneous  

in space and time

 Learning
 Using Bayesian learning
 Gamma distributed 

 Poisson parameter
obtained via expectation
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b̧
Bayesian = E[¸ ] =

®
¯

¸ » ¡ (¸ ; ®; ¯)

¸ (~x; t) '
X

( i ;j )2 X ;¿2 T

¸ i j ¿1i j ¿(~x; t)



Learning Example



People Simulator
 Real data is hard to collect
 Simulator with 3-layer agent architecture
 Three simulated environments
 Activities learned from questionnaires

Office Warehouse House



Maximum Encounter Planning
 Plan paths that maximize the probability of 

encountering people, giving a deadline

 Example: Coffee delivery robot

 Deliver coffee fast
 Coffee must be still 

hot (deadline)
 People may move



Maximum Encounter Planning
 Finite horizon MDP

 State: cell in the map
 Action: move to next cell
 Reward: Poisson rate
 Horizon: the deadline

 Challenges
 Horizon reduced in time
 Time variance of reward



Planning heuristics
 MDP is too complex for 

real time planning

 O(N3) time complexity
 Too slow

 O(N3) space complexity
 Memory swap for limited 

resource robots

 MDP behavior
 Go towards the sink if 

deadline is enough
 Use a longer but more 

probable path

 Heuristics
 Relax action stochasticity
 A* towards the local sink
 A* towards the global 

sink



Generated Path Analysis
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Generated Path Analysis

PM D P = 0:89 PL OC = 0:83



Encounter Planning Experiments
 Experiment setup

 10 simulation days
 1000 paths
 Random starting location
 Random starting time

 Metric used
 Success rate with respect 

to the deadline
 Approaches

 MDP
 Local/global sink
 Waiting
 Random walk

Informed

Uninformed



Minimum Interference Coverage
 Plan paths that cover the entire space, 

minimizing the interference with humans

 Example: Autonomous vacuum cleaner

 Cleans the whole house
 Cleans room when 

people are not there
 Uses the routes with the

minimum traffic



Minimum Interference Coverage
 Time-dependent TSP
 Nodes: rooms
 Edges: doorways
 Costs: Poisson rates

 Challenges and properties
 Sparseness: TSP is usually fully connected
 Asymmetry: presence of node costs 
 Time dependence: Poisson rates vary over time



Minimum Interference Coverage
Algorithm: ATDTSP

 Generate the room 
graph

 Complete the graph 
(Floyd-Warshall)

 Solve the TSP    
(dynamic programming)
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Preliminary results
 Experiment setup

 10 simulation days
 1000 paths
 Random starting location
 Random starting time
 Coverage/transit times

 Metric used
 Interference time
 People interfered

 Approaches
 Dynamic programming
 Greedy/NN heuristic
 General TSP

# People

Time



Complexity and Heuristics
 Dynamic programming 

too expensive
 O(N2N) in time
 O(2N) in space

 Graph completion also 
expensive
 Floyd-Warshall for every 

time step O(N4)

 Heuristics
 Greedy O(N2log2N)
 Nearest neighbor O(N2)
 Good search heuristic for 

asymmetric problems?

 TSP: good formulation?
 No sparseness
 Complex reduction

 Alternatives?
 Symbolic planning?
 Temporal planning?



Conclusions
 Novel planning problems for social robots
 Maximum encounter probability
 Minimum interference coverage

 Learn and reason about human activities
 Spatial affordance map

 Simulator engine of populated environments
 Three realistic scenarios
 Code available soon (mail me!)

tipaldi@informatik.uni-freiburg.de
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