

From Activity to Language: Learning to recognise the meaning of motion

Centre for Vision, Speech and Signal Processing

Prof Rich Bowden 20 June 2011

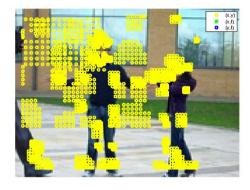
Overview

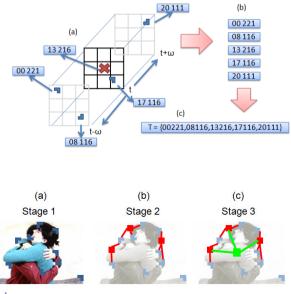
- Talk is about recognising spatio temporal patterns
- Activity Recognition
 - Holistic features
 - Weakly supervised learning
- Sign Language Recognition
 - Using weak supervision
 - Using linguistics
 - EU Project Dicta-Sign
 - Facial Feature tracking
 - Lip motion
 - Non manual features

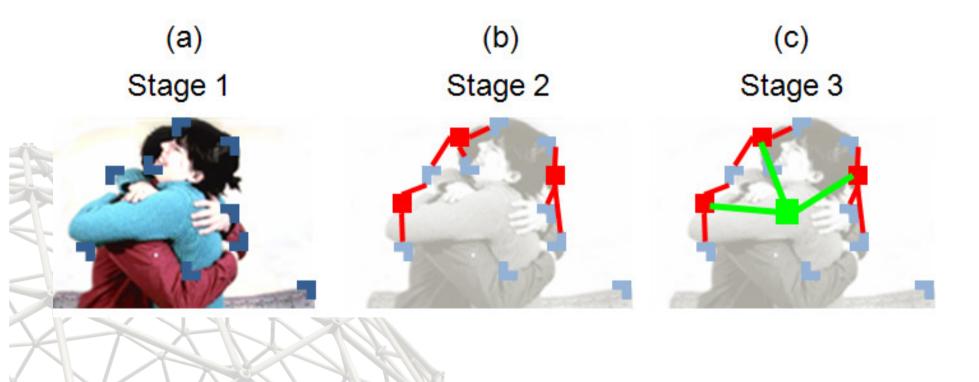
Activity Recognition

Action/Activity Recognition

- Densely detect corners
 - (x,y), (x,t), (y,t)
 - Provides both spatial and temporal information
- Spatially encode local neighbourhood
 - Quantise corner types
 - Encode local spatio-temporal relationship
- Apply data mining
 - Find frequently reoccurring feature combinations using the association rule mining e.g Apriori algorithm
- Repeat process hierarchically







KTH Action Recognition

- Classifier is pixel based frame wise voting scheme
- KTH Dataset 94.5% (95.7%) 24 fps

20	20	40	60	80	100	120	140	160.
	-			end Cla	nining *	-		1
20								
ACC.								
80 -								
x0 -								
10 H								
								-
20 -								

Method	Average
Schüldt training/test partitions	Precision
Wang et al [8] Harris3D + HOF	92.1%
Laptev et al [2] HOG + HOF	91.8%
Klaser et al [36] HOG3D	91.4%
Nowozin et al [37] Subseq Boost SVM	87.04%
Schüldt et al [1] SVM Split	71.71%
Ke et al [24] Vol Boost	62.97%
Fixed grid	90.5%
Non-Hierarchical Mined, $L = 1$	89.8%
Hierarchical Mined, $L = 3$	94.50%

Method	Average
leave-one-out test/train	Precision
Kim et al [38] CCA	95%
Zhang et al [39] BEL	94.33%
Liu and Shah [40] Cuboids	94.15%
Han et al citeHanICCV09 MKGPC	94.1%
Uemura et al [15] Motion Comp Feats	93.7%
Bregonzio et al [41] 2D Gabor filter	93.2%
Yang et al [42] Motion Edges	87.3%
Wong and Cipolla [43] Subspace SVM	86.60%
Niebles et al [44] pLSA model	81.50%
Dollar et al [20] Spat-Temp	81.20%
Fixed grid	90.5%
Non-Hierarchical Mined, $L = 1$	91.7%
Hierarchical Mined, $L = 3$	95.7%

Multi-KTH: Multiple People and Camera motion panning, zoom

	Clap	Wave	Box	Jog	Walk	Avg
Uemura et al	76%	81%	58%	51%	61%	65.4%
US	69%	77%	75%	85%	70%	75.2%

Gilbert, Illingworth, Bowden, Action Recognition Using Mined Hierarchical Compound Features, IEEE TPAMI, May 2011 (vol. 33 no. 5), pp. 883-897

Hollywood Action Recognition

- More recent and realistic dataset
- A number of actions within Hollywood movies

Action	Han [30]	Laptev [5]	Stg 1	Stg 2	Stg 3	Stg 4	Stg 5
AnswerPhone	43.4%	32.1%	3.1%	25.7%	47.0%	21.5%	2%
GetOutCar	46.8%	41.5%	4.5%	38.5%	47.0%	38.4%	32%
HandShake	44.1%	32.3%	2.3%	45.6%	50.0%	38.0%	5%
HugPerson	46.9%	40.6%	8.6%	42.8%	42.1%	12.3%	0%
Kiss	57.3%	53.3%	43.3%	72.5%	69.4%	56.2%	15%
SitDown	46.2%	38.6%	28.6%	84.6%	46.2%	25.8%	0%
SitUp	38.4%	18.2%	10.2%	29.4%	44.0%	34.4%	0%
StandUp	57.1%	50.5%	5.5%	41.6%	70.5%	61.1%	21%
Average	47.5%	38.4%	13.2%	53.5%	52.0%	36.0%	9%

- Hollywood
 - 57%@6 fps
 - No context
- Hollywood2
 - 51%
 - No context

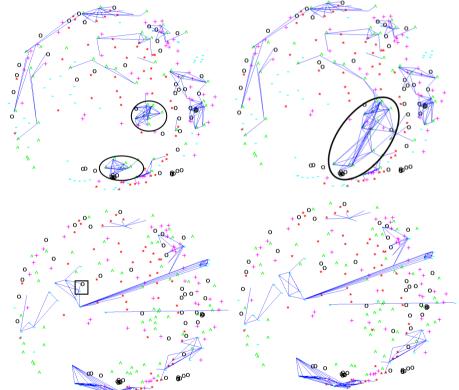
Video Mining and Grouping SURREY

- Iteratively Cluster image and video
 - Efficient and intuitive
- The user selects media that semantically belongs to the same class
 - uses machine learning to "pull" this and other related content together.
 - Minimal training period and no hand labelled training groundtruth
 - Uses two text based mining techniques for efficiency with large datasets
 - Min Hash
 - A Priori

Gilbert, Bowden, iGroup : Weakly supervised image and video grouping, ICCV2011

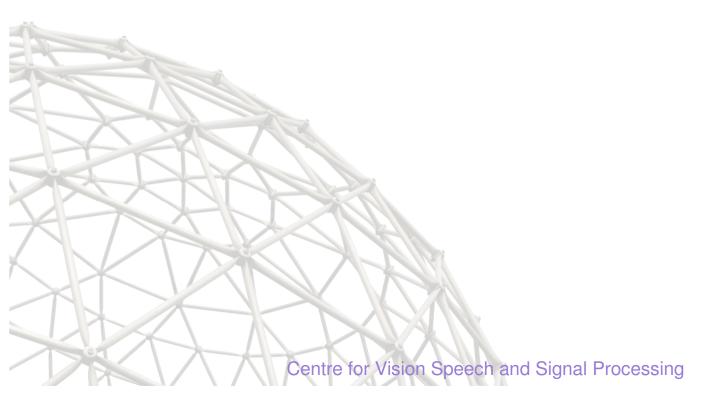
- User generated dataset,
 - 1200 videos, 35 secs per iteration
- Pull true pos media together

 Push false positive media apart



Over 15 iterations of pulling and pushing the media, accuracy of correct group label increases from 60.4% to 81.7%

Sign Recognition



- Sign Language consists of
 - Hand motion
 - Finger spelling
 - Non Manual Features
 - Complex linguistic constructs that have no parallel in speech

The problem with Sign is lack of large corpuses of labelled training data

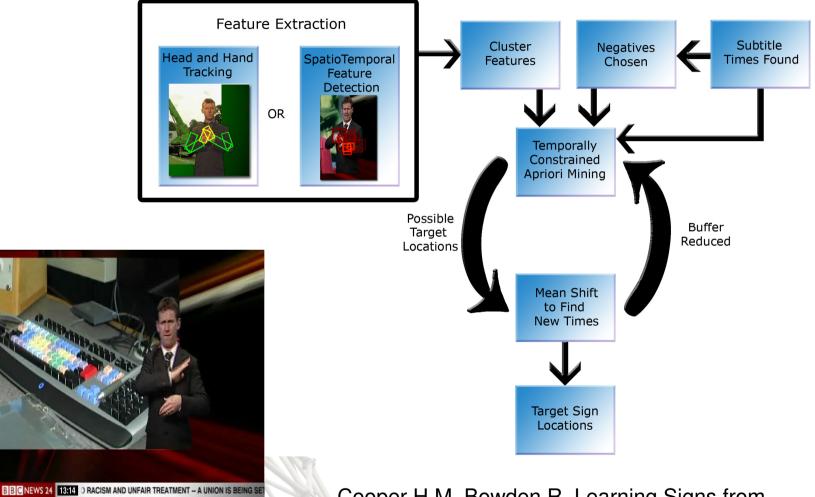
Sign Language

- Labelling large data sets is time consuming and requires expertise.
- Vast amount of sign data is broadcast daily on the BBC.
- BBC data arrives with its own weak label in the form of a subtitle.
- Can we learn what a sign looks like using the subtitle data?
 - Yes... But it's not as easy as it sounds!

Frame	6645	6665	6685	6705	6725 6745	6765	6	6785	6805	6825	6845	6865
Sign Gloss	100 peop	e manage	finally live	why	plane-crash		fire	where Indo	nesia isla	nd nan	ne JAV	A
Subtitle		more than <mark>1</mark>	00 peophave	<mark>man</mark> to	esca fror an	aerin		<mark>Ind</mark> as a	crash landed	on the	<mark>slan</mark> of Java	

Mining Signs

44 ()



Mined results for the signs Army and Obese Cooper H M, Bowden R, Learning Signs from Subtitles: A Weakly Supervised Approach to Sign Language Recognition.CVPR09. pp2568-2574.

Sign Language Recognition

- New project with Zisserman (Oxford) and Everingham (Leeds)
 - Learning to Recognise Dynamic Visual Content from Broadcast Footage
- Currently working on the project Dicta-Sign
- Parallel corpora across 4 sign languages
- Automated tools for annotation using HamNoSys
- Web2.0 tools for the Deaf Community
 - Demonstration: Sign Wiki

HamNoSys

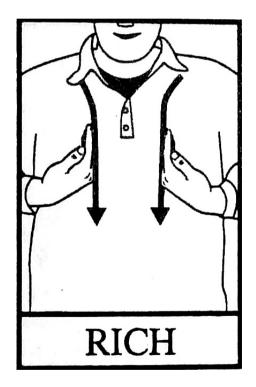
- Linguistic documentation of sign data
- Pictorial representation of phonemes

-e.g:

Handshape	Orientation	Location	Movement	Constructs
Open	Finger	Torso	Straight	Symmetry
970 097	TALF VTAT		↑→ĸ ↑⊾ĸ	: <i>+</i>
Closed	Palm	Head	Circle/Ellipse	Repetition
000	0000	$\bigcirc \frown$	COCC	$ + + + + \rightarrow$
6ec	0000	200	0000	++> <+

HamNoSys Example

- Ieft right mirror
- Or hand shape/orientation
 - Right side of torso
 - contact with torso
 - downwards motion



Motion Features

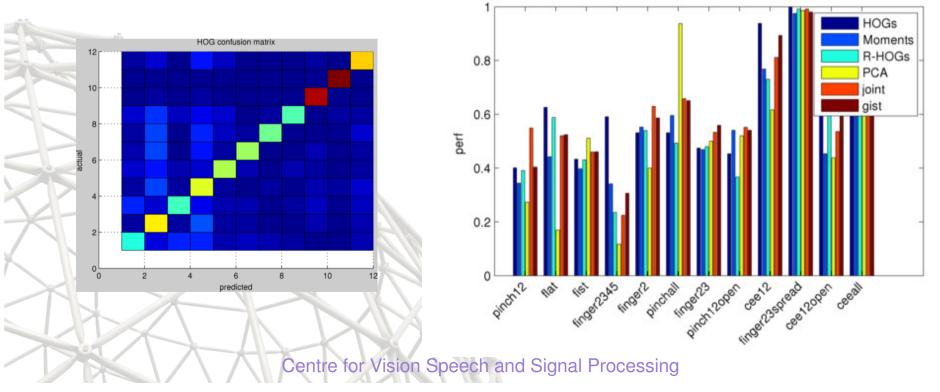
- Automated tools help for annotation
- Useful in recognition as they generalise
- Features follow subset of HamNoSys
 - Location
 - Motion
 - Handshape

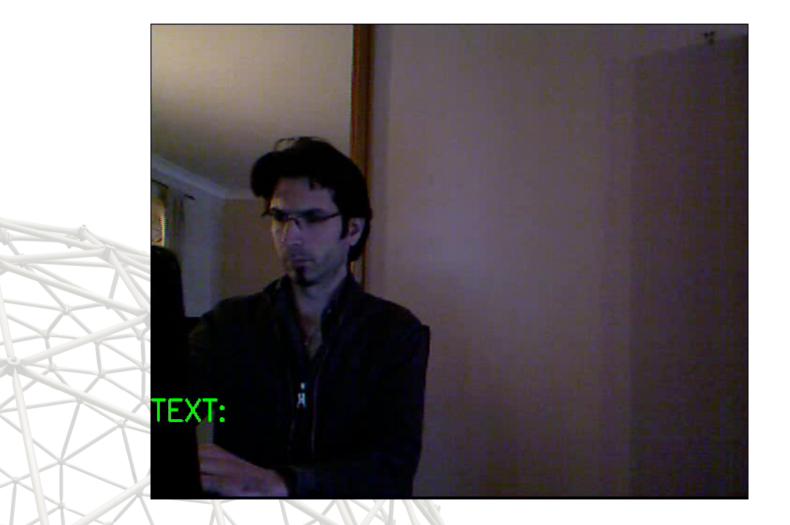
Relative together/apart Centre for Vision Speech and Signal Processing

Synchronous motion

Mapping Hands to HamNoSyster

- Align PDTS with HamNoSys
 - Identify which hand shapes are likely in which frame
 - Extract features for that frame e.g. HOG, GIST, Sobel, moments
- RDF, multiclass classifier



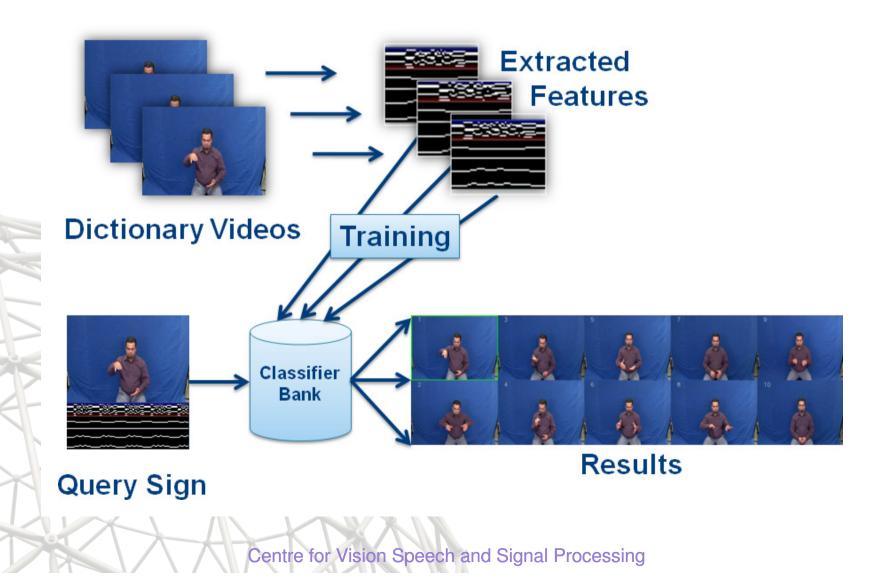


Motion Features

• Features are not mutually exclusive and can fire in combination.



Dictionary Overview



Results

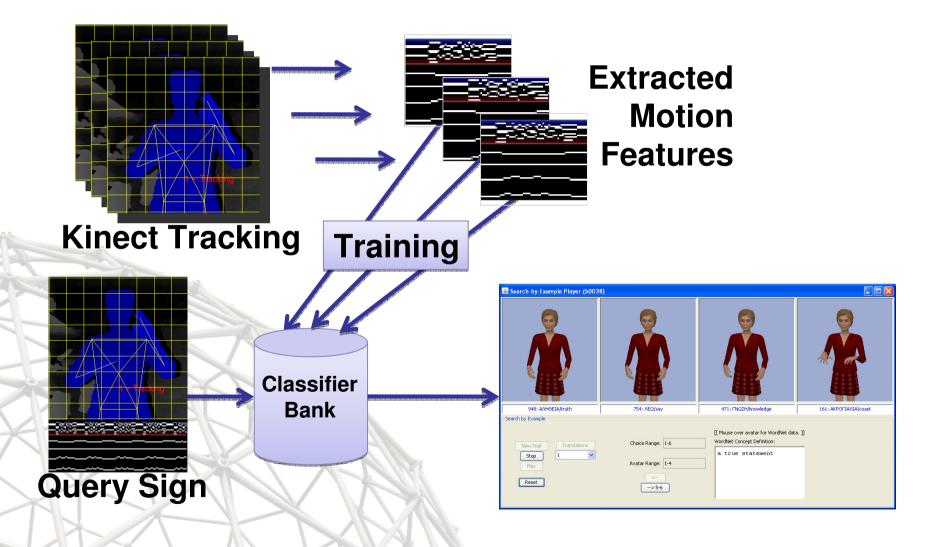
- 984 isolated signs, single signer, 5 rep
- Using feature types individually or in pairs

	Results Returned	Motion	Location	Handshape	Motion + Handshape	Motion + Location	Location + Handshape
X	1	25.1%	60.5%	3.4%	36.0%	66.5%	66.2%
	10	48.7%	82.2%	17.3%	60.7%	82.7%	86.9%

Using all types of features in combination

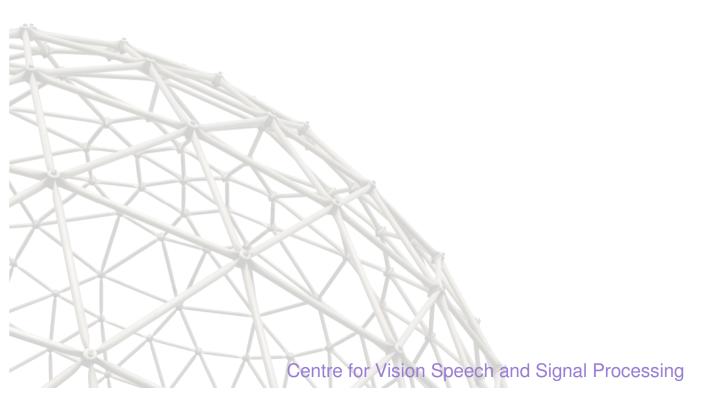
Results Returned	1 st Order Transitions	2 nd Order Transitions	WTA Handshape + 2 nd Order	WTA Handshape + 1 st Order
1	68.4%	71.4%	54.0%	52.7%
10	85.3%	85.9%	59.9%	59.1%

Live Demo



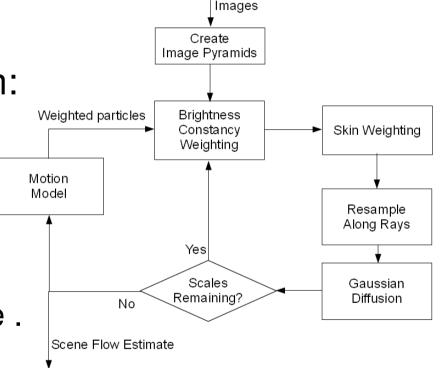
Kinect Demo

Moving to 3D features



Scene Particle approach

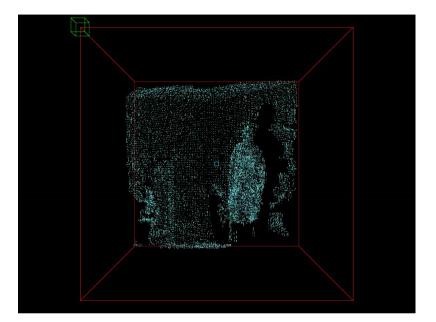
- Scene Particle approach:
 - Particle Filter inspired.
 - Multiple hypotheses.
 - No smoothing artifacts.
 - Easily parallelisable.
 - Kinect: 10 secs per frame .
 - Multi-view: 2 mins per frame.



Hadfield, Bowden. Kinecting the dots: Particle Based Scene Flow from depth sensors, ICCV2011

Scene Particles

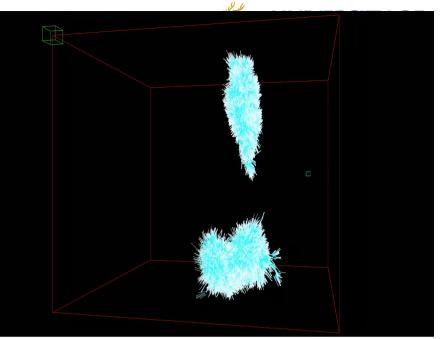
- Middlebury stereo dataset:
- Structure 20x better.
- Motion mag. 5x better.



Approach	Structure	Op. Flow	Z Flow	AAE
Scene Particle	0.31	0.16	0.00	3.43
Basha 2010	6.22	1.32	0.01	0.12
Huguet 2007	5.55	5.79	8.24	0.69

3D Tracking

- Scene Particle system.
- Adaptive skin model.
- 6D (x+dx) clustering.
- 3D trajectories.



Kinect Data Set

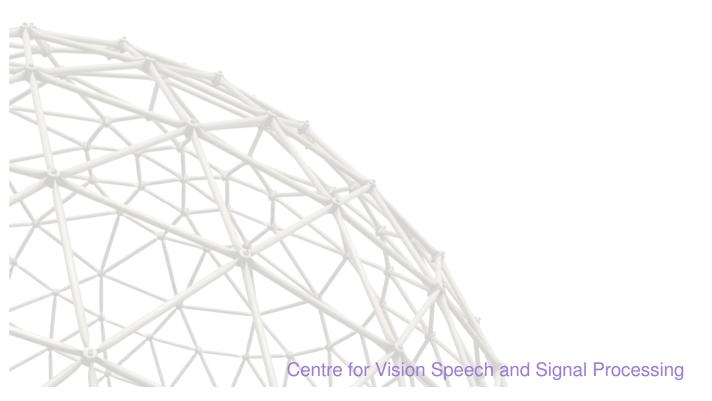
- 20 Signs
 - Randomly chosen GSL
 - Some similar motions (e.g. April and Athens)
- 6 people ~7 repetitions per sign
- OpenNI / NITE skeleton data
- Extracted HamNoSys motion and location features
- Motion Features same as 2D case plus the Z plane motions.

3D Kinect Results

- User Independent (5 subject train,1 test)
- All Users (leave one out method)

Test	Markov (Chain	Sequential Patterns		
Subject	Top 1	Top 4	Top 1	Top 4	
В	56%	80%	72%	91%	
E	61%	79%	80%	98%	
Н	30%	45%	67%	89%	
N	55%	86%	77%	95%	
S	58%	75%	78%	98%	
J	63%	83%	80%	98%	
Average	54%	75%	76%	95%	
All	79%	92%	92%	99.9%	

Facial Feature Tracking



Facial Feature Tracking

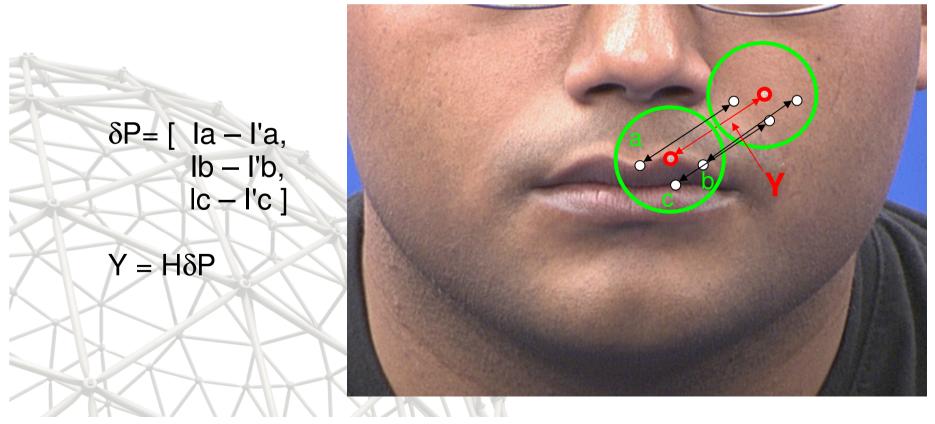
- Primarily built for lip reading
- Flocks of Linear Predictors
 - provide fast accurate regresser functions for tracking
 - generic, can track any object or feature
 - accurate tracking of any facial feature
 - allows accurate pose estimation

Ong, Bowden, Robust Facial Feature Tracking Using Shape-Constrained Multi-Resolution Selected Linear Predictors, IEEE TPAMI, accepted, to appear Centre for Vision Speech and Signal Processing

Linear Predictors

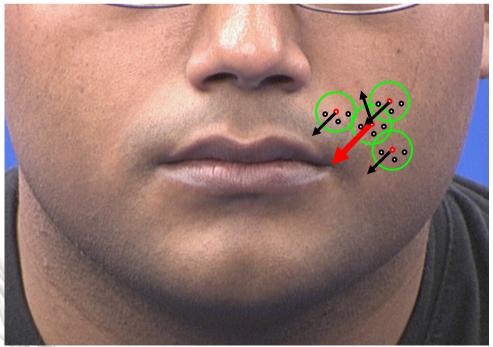
(Marchand et al 1999, Jurie & Dhome 2002, Matas et al 2006)

- Reference Point + Support Pixels (a,b,c)
- Linear mapping (H) from support pixel intensity difference to translation vector



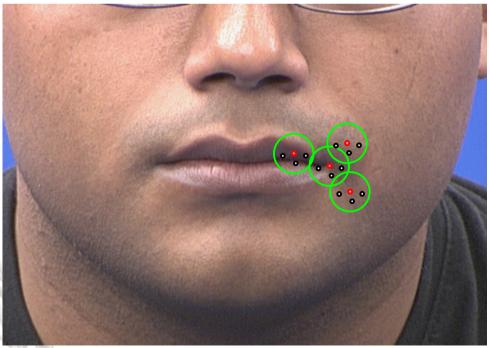
Linear Predictors

- Linear Predictor "Bunches"
 - Single LPs are not stable enough for tracking image features
 - Use a set ("bunch") of LPs instead
 - Final prediction =
 consensus of the most
 common predicted
 translation



Linear Predictors

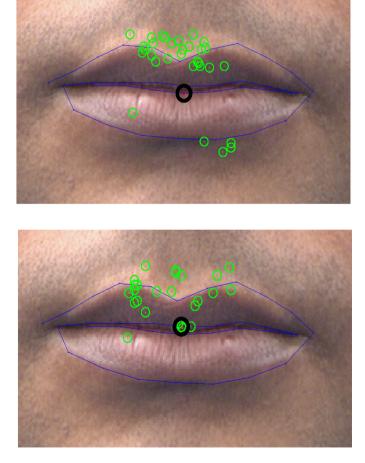
- Linear Predictor "Bunches"
 - Single LPs are not stable enough for tracking image features
 - Use a set ("bunch") of LPs instead
 - Final prediction =
 consensus of the most
 common predicted
 translation

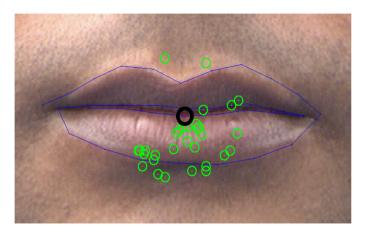


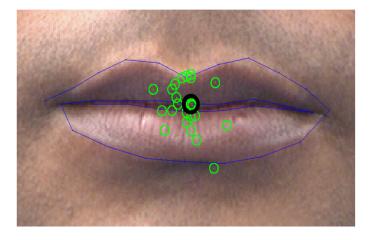
Tracking lips with Linear Predictors

X Translation

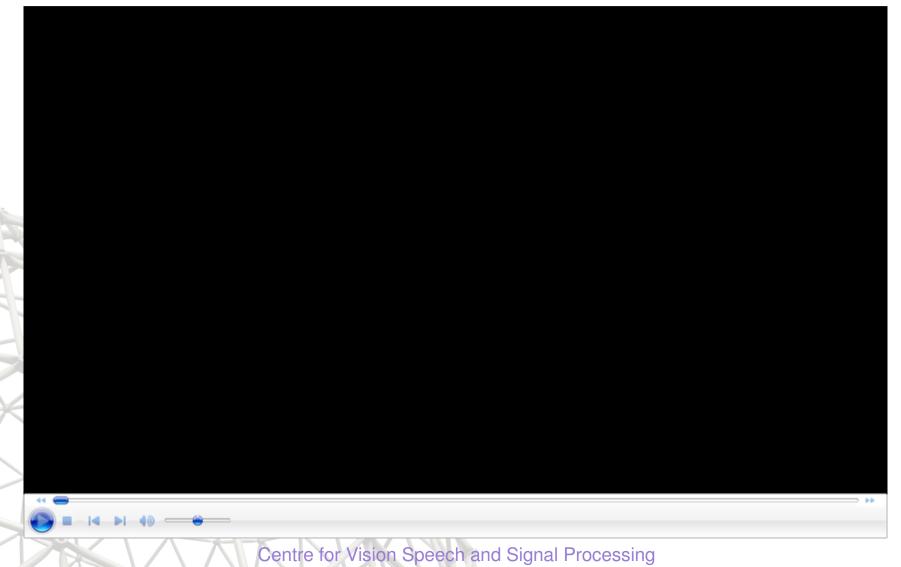
Y Translation



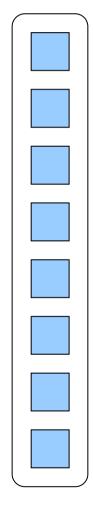




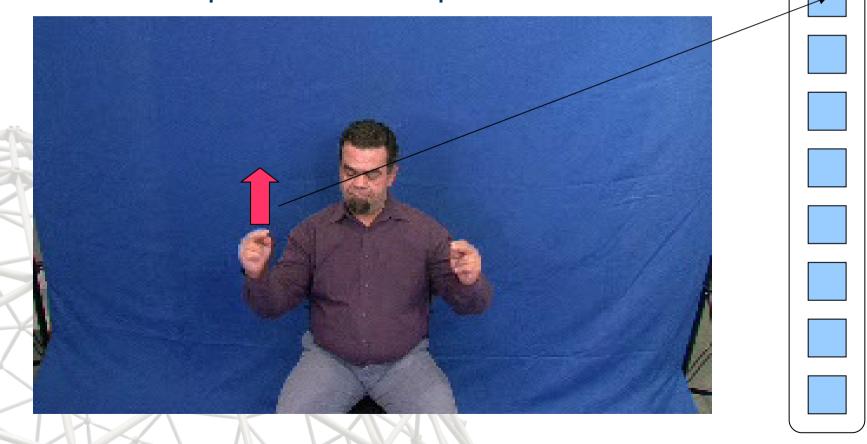
Facial Feature Tracking



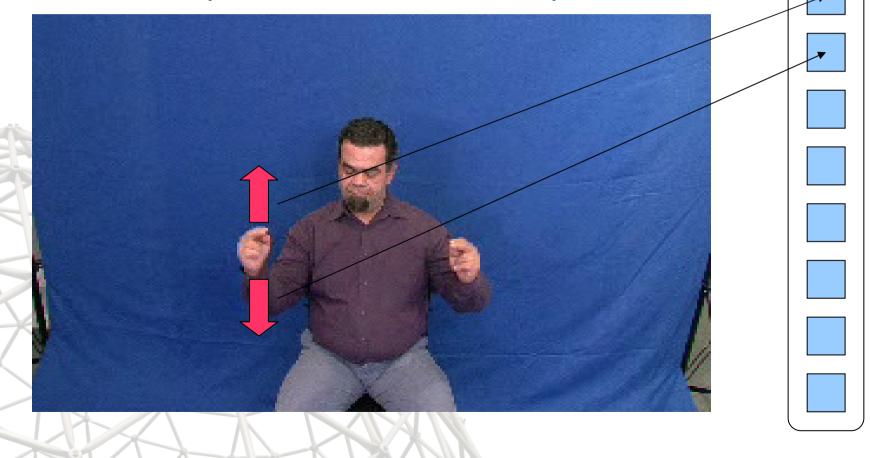
- Sequential Patterns: Sequence of feature subsets
- •Example: 8 features per frame



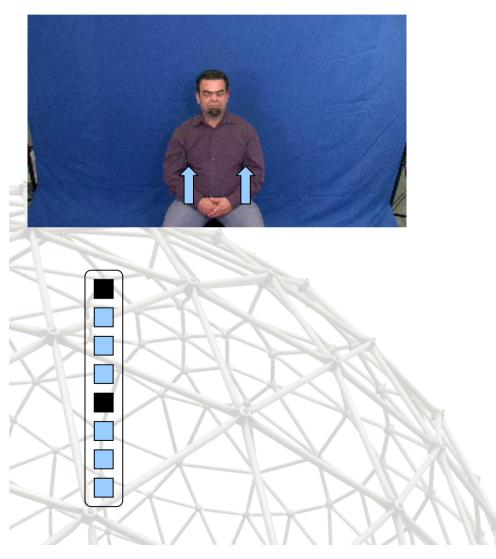
- Sequential Patterns: Sequence of feature subsets
- •Example: 8 features per frame



- Sequential Patterns: Sequence of feature subsets
- •Example: 8 motion features per frame



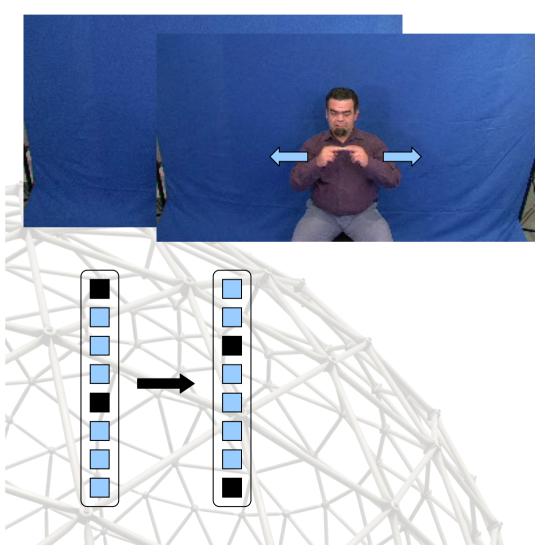
Sequential pattern example for Bridge



Motion not present

Motion present

Sequential pattern example for Bridge



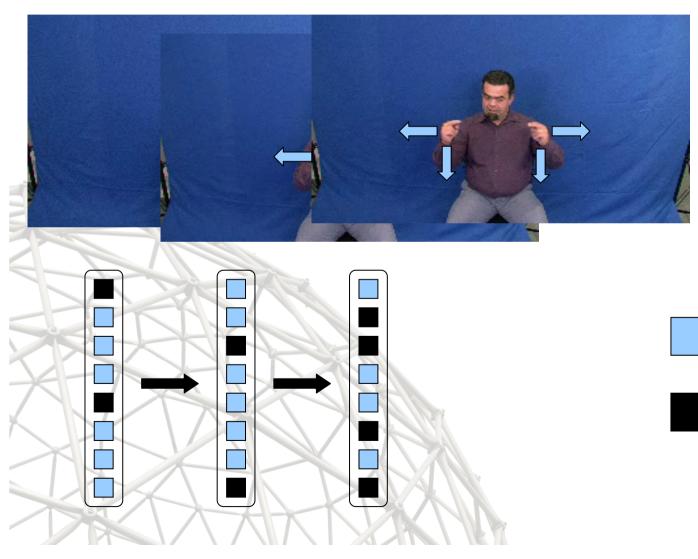
Motion not present

Motion present

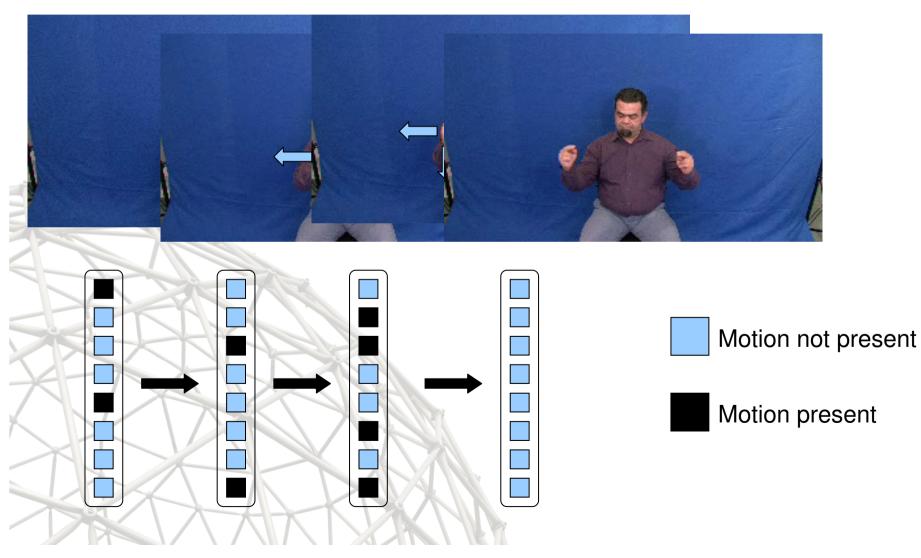
Motion not present

Motion present

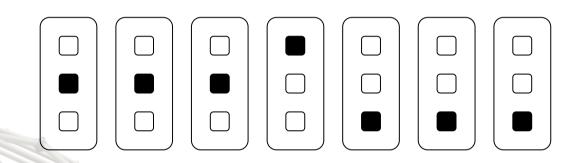
Sequential pattern example for Bridge



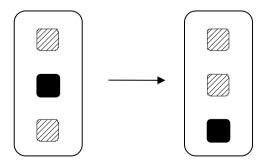
Sequential pattern example for Bridge



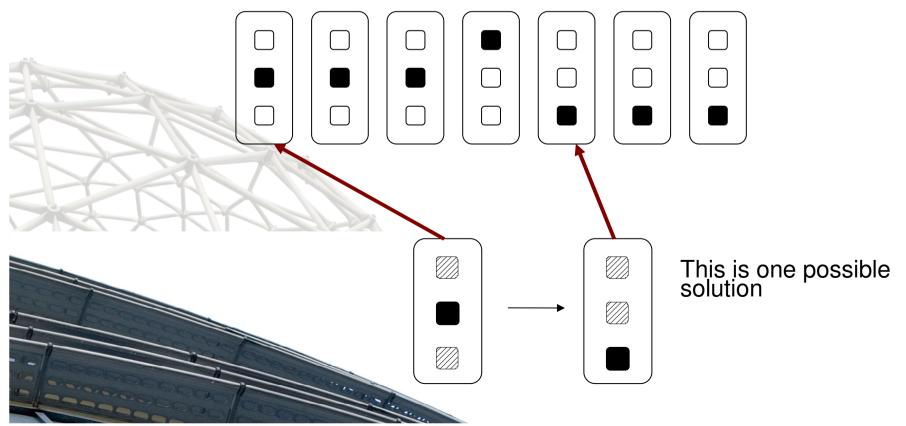
- Matching a sequential pattern to an input sequence:
 - Suppose we are given an input sequence of features



The goal is to find whether this sequence of classification results exists within the input sequence



- Matching a sequential pattern to an input sequence:
 - There are multiple solutions to how a sequential pattern can be found in an input sequence



- Pros:
 - Allows the use of different subsets of features
 - Can handle different speeds in temporal pattern
- Cons:
 - Potential sequential patterns very large: 2^ND
 (D = number of features)

• Example: if we have 200 features, for sequences up to length 5, we have 2^{1000} configurations.

• Assuming we can do 2^{64} searches in a second, we need to wait 2^{936} seconds to do 1 exhaustive search. (Longer than age of the universe).

Learning

•With sequential patterns, a naive approach will be to generate all possible sequence configurations. NOT POSSIBLE (2^{ND} search space)

• Instead, we firstly approach possible sequential patterns as a tree structure.

• Efficient pruning strategies can then vastly reduce the search space, while guaranteeing that discriminative SPs can be found.

Show word spotting vid

Conclusions

- Interpreting the meaning of motion is common across all these examples
- Interpreting the meaning of sign is far more complex than just recognising motion
- While approaches therefore differ to suit complexity new learning approaches which can cope with noise in training are important for all areas
- Needless to say we still need more and varied datasets to move forward and need to be careful about optimising our results over them
 - (hopefully preaching to the converted)