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Overview

• Talk is about recognising spatio temporal patterns

• Activity Recognition
– Holistic features

– Weakly supervised learning

• Sign Language Recognition
– Using weak supervision

– Using linguistics

– EU Project Dicta-Sign

• Facial Feature tracking
– Lip motion

– Non manual features
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Activity Recognition
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Action/Activity Recognition
• Densely detect corners 

– (x,y), (x,t), (y,t)

– Provides both spatial and temporal 

information

• Spatially encode local neighbourhood

– Quantise corner types

– Encode local spatio-temporal relationship 

• Apply data mining 

– Find frequently reoccurring feature 

combinations using the association rule 

mining e.g Apriori algorithm 

• Repeat process hierarchically
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Action/Activity Recognition
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KTH Action Recognition
• Classifier is pixel based frame wise voting scheme

• KTH Dataset 94.5%(95.7%) 24fps

• Multi-KTH: Multiple People and  Camera motion 

panning, zoom

75.2%70%85%75%77%69%US

65.4%61%51%58%81%76%Uemura et al

AvgWalkJogBoxWaveClap

Gilbert, Illingworth, Bowden, Action Recognition Using Mined Hierarchical Compound Features, IEEE 
TPAMI, May 2011 (vol. 33 no. 5), pp. 883-897
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Hollywood Action Recognition

• More recent and realistic dataset

• A number of actions within 
Hollywood movies

• Hollywood
– 57%@6 fps
– No context

• Hollywood2
– 51%
– No context
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Video Mining and Grouping

• Iteratively Cluster image and video
– Efficient and intuitive 

• The user selects media that semantically belongs to 
the same class 
– uses machine learning to “pull” this and other related 

content together.

– Minimal training period and no hand labelled training 
groundtruth

– Uses two text based mining techniques for efficiency with 
large datasets

• Min Hash

• A Priori

Gilbert, Bowden, iGroup : Weakly supervised image and video grouping, ICCV2011
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Results – YouTube dataset

• User generated dataset,

– 1200 videos, 35 secs per iteration

• Pull true pos media together

• Push false positive 

media apart

• Over 15 iterations of pulling and pushing the media, accuracy 
of correct group label increases from 60.4% to 81.7% 

FP:TP:

TP: TP:
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Sign Recognition
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Sign Language Recognition

• Sign Language consists of
– Hand motion

– Finger spelling

– Non Manual Features

– Complex linguistic constructs that have no 
parallel in speech

• The problem with Sign is lack of large 
corpuses of labelled training data



Centre for Vision Speech and Signal Processing

Sign Language

• Labelling large data sets is time 

consuming and requires expertise.

• Vast amount of sign data is 

broadcast daily on the BBC.

• BBC data arrives with its own 

weak label in the form of a 

subtitle.

• Can we learn what a sign looks 

like using the subtitle data?

– Yes… But it’s not as easy as it 

sounds!
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Mined results for the signs 

Army and Obese

Mining Signs

Cooper H M, Bowden R, Learning Signs from 

Subtitles: A Weakly Supervised Approach to Sign 

Language Recognition.CVPR09. pp2568-2574.
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Sign Language 

Recognition

• New project with Zisserman (Oxford) and 
Everingham (Leeds)
– Learning to Recognise Dynamic Visual Content from 

Broadcast Footage

• Currently working on the project Dicta-Sign

• Parallel corpora across 4 sign languages

• Automated tools for annotation using HamNoSys

• Web2.0 tools for the Deaf Community
– Demonstration: Sign Wiki
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HamNoSys

• Linguistic documentation of sign data

• Pictorial representation of phonemes

– e.g:
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Handshape Orientation Location Movement Constructs

Open Finger Torso Straight Symmetry
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HamNoSys Example

��<=�&�>?@

� left - right mirror

�<=��<=��<=��<=�&&&& hand shape/orientation

�>�>�>�> Right side of torso

???? contact with torso

@@@@ downwards motion
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• Automated tools help for annotation

• Useful in recognition as they generalise

• Features follow subset of HamNoSys

• Location

• Motion

• Handshape

Direction                     Relative together/apart             Synchronous

motion

Motion Features
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Mapping Hands to HamNoSys

• Align PDTS with HamNoSys

– Identify which hand shapes are likely in which frame

– Extract features for that frame e.g. HOG, GIST, Sobel, moments

• RDF, multiclass classifier
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Handshape demonstrator
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Motion Features

• Features are not mutually exclusive and 
can fire in combination.
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Dictionary Overview

Centre for Vision Speech and Signal Processing
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• 984 isolated signs, single signer, 5 rep

• Using feature types individually or in pairs

• Using all types of features in combination

Results

Results

Returned
Motion Location Handshape

Motion +

Handshape

Motion +

Location

Location +

Handshape

1 25.1% 60.5% 3.4% 36.0% 66.5% 66.2%

10 48.7% 82.2% 17.3% 60.7% 82.7% 86.9%
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Results

Returned

1st Order

Transitions

2nd Order

Transitions

WTA  Handshape

+ 2nd Order

WTA Handshape

+ 1st Order

1 68.4% 71.4% 54.0% 52.7%

10 85.3% 85.9% 59.9% 59.1%
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Live Demo

Classifier 

Bank

Query Sign Results

Kinect Tracking

Extracted
Motion

Features

TrainingTraining
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Kinect Demo
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Moving to 3D features
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Scene Particle approach

• Scene Particle approach:

– Particle Filter inspired.

– Multiple hypotheses.

– No smoothing artifacts.

– Easily parallelisable.

– Kinect: 10 secs per frame .

– Multi-view: 2 mins per 

frame.

Hadfield, Bowden. Kinecting the dots: Particle Based Scene Flow from depth sensors, 

ICCV2011
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Scene Particles

• Middlebury stereo dataset:

• Structure 20x better.

• Motion mag. 5x better.

Approach Structure Op. Flow Z Flow AAE

Scene Particle 0.31 0.16 0.00 3.43

Basha 2010 6.22 1.32 0.01 0.12

Huguet 2007 5.55 5.79 8.24 0.69
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3D Tracking

• Scene Particle system.

• Adaptive skin model.

• 6D (x+dx) clustering.

• 3D trajectories.
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Kinect Data Set

• 20 Signs

– Randomly chosen GSL

– Some similar motions (e.g. April and Athens)

• 6 people ~7 repetitions per sign

• OpenNI / NITE skeleton data

• Extracted HamNoSys motion and location 
features

• Motion Features same as 2D case plus 
the Z plane motions.

Centre for Vision Speech and Signal Processing
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3D Kinect Results

Centre for Vision Speech and Signal Processing

• User Independent (5 subject train,1 test)

• All Users (leave one out method)

Test

Subject

Markov Chain Sequential Patterns

Top 1 Top 4 Top 1 Top 4

B 56% 80% 72% 91%

E 61% 79% 80% 98%

H 30% 45% 67% 89%

N 55% 86% 77% 95%

S 58% 75% 78% 98%

J 63% 83% 80% 98%

Average 54% 75% 76% 95%

All 79% 92% 92% 99.9%
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Facial Feature Tracking
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Facial Feature Tracking

• Primarily built for lip reading

• Flocks of Linear Predictors

– provide fast accurate 
regresser functions for 
tracking

– generic, can track any 
object or feature

– accurate tracking of 
any facial feature

– allows accurate pose 
estimation

Ong, Bowden, Robust Facial Feature Tracking Using Shape-Constrained Multi-

Resolution Selected Linear Predictors, IEEE TPAMI, accepted, to appear



Linear Predictors 
(Marchand et al 1999, Jurie & Dhome 2002, Matas et al 2006) 

a

c
b Y

δP= [  Ia – I'a,
Ib – I'b,
lc – I'c ]

Y = HδP

• Reference Point + Support Pixels (a,b,c) 

• Linear mapping (H) from support pixel 

intensity difference to translation vector



• Linear Predictor “Bunches”

– Single LPs are not stable enough for tracking 

image features

– Use a set (“bunch”) of

LPs instead

– Final prediction = 

consensus of the most
common predicted

translation

Linear Predictors



• Linear Predictor “Bunches”

– Single LPs are not stable enough for tracking 

image features

– Use a set (“bunch”) of

LPs instead

– Final prediction = 

consensus of the most
common predicted

translation

Linear Predictors
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Tracking lips with Linear Predictors
X Translation Y Translation
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Facial Feature Tracking



Sequential Patterns

• Sequential Patterns: Sequence of feature subsets

•Example: 8 features per frame
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• Sequential Patterns: Sequence of feature subsets

•Example: 8 features per frame
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• Sequential Patterns: Sequence of feature subsets

•Example: 8 motion features per frame
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• Sequential pattern example for Bridge

Motion not present

Motion present
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• Sequential pattern example for Bridge

Motion not present

Motion present
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• Sequential pattern example for Bridge

Motion not present

Motion present
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• Sequential pattern example for Bridge

Motion not present

Motion present



Sequential Patterns

• Matching a sequential pattern to an input 

sequence:

– Suppose we are given an input sequence of features

The goal is to find 
whether this sequence 
of classification results 
exists within the input 
sequence
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• Matching a sequential pattern to an input 

sequence:

– There are multiple solutions to how a sequential pattern can 
be found in an input sequence

This is one possible 
solution
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• Pros:

• Allows the use of different subsets of features

• Can handle different speeds in temporal pattern

• Cons: 

• Potential sequential patterns very large: 2^ND 
(D = number of features)

• Example: if we have 200 features, for sequences 

up to length 5, we have 2^{1000} configurations. 

• Assuming we can do 2^{64} searches in a second, 

we need to wait 2^{936} seconds to do 1 exhaustive 
search. (Longer than age of the universe).
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• Learning

•With sequential patterns, a naive approach will 
be to generate all possible sequence 

configurations. NOT POSSIBLE (2^{ND} search 
space) 

• Instead, we firstly approach possible 
sequential patterns as a tree structure.

• Efficient pruning strategies can then vastly 
reduce the search space, while guaranteeing 
that discriminative SPs can be found.
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• Show word spotting vid
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Conclusions

• Interpreting the meaning of motion is common across all 
these examples

• Interpreting the meaning of sign is far more complex 
than just recognising motion

• While approaches therefore differ to suit complexity new 

learning approaches which can cope with noise in 
training are important for all areas

• Needless to say we still need more and varied datasets 
to move forward and need to be careful about optimising 

our results over them 

– (hopefully preaching to the converted)


