Advances in Phonetics-based Sub-Unit Modeling for Transcription, Alignment and Sign Language Recognition.

Vassilis Pitsikalis¹, Stavros Theodorakis¹, Christian Vogler² and Petros Maragos¹

¹ School of Electrical and Computer Engineering, National Technical University of Athens

² Institute for Language and Speech Processing/Gallaudet University

Overview

- 1. Gestures, signs, and goals
- 2. Sign language data and visual processing
- 3. Data-Driven Sub-Units without Phonetic Evidence for Recognition
- 4. Phonetic modeling
 - What is it?
 - Annotations vs phonetics
 - Conversion of annotations to structured phonetic description
 - Training and alignment
- 5. Recognition experiments
- 6. Conclusions

1. Gestures versus Signs

Gestures

- Isolated hand, body, and facial movements
- Can be broken down into primitives (but rarely are in gesture recognition work)
- Few constraints, other than convention

Signs

- Hand body and facial movements, both in isolation and as part of sentences
- Can be broken down into primitives (cheremes/phonemes/ph ones)
- Numerous phonetic, morphological, and syntactic constraints

SL Recognition vs Gesture Recognition

- Continuous SL recognition is invariably more complex than gestures, but:
 - Isolated sign recognition (i.e. the forms found in a dictionary) is essentially the same as gesture recognition
 - Methods that work well on isolated sign recognition should work well on gesture recognition
 - Exploit 30+ years of research into structure of signs

4

Subunit Modeling

Two fundamentally different ways to break down signs into parts:

- Data-driven
- Phonetics-based (i.e. linguistics)
- Similar benefits:
 - □ Scalability
 - Robustness
 - Reduce required training data

Goals of this Presentation

- Work with large vocabulary (1000 signs)
- Compare data-driven and phonetic breakdown of signs into subunits
- Advance state of the field in phonetic breakdown of signs

2. Sign Language Data

- Corpus of 1000 Greek Sign Language Lemmata
 - □ 5 repetitions per sign
 - Signer-dependent, 2 signers (only 1 used for this paper)
 - □ HD video, 25 fps interlaced
- Tracking and feature extraction
 - Pre-processing, Configuration, Statistics, Skin color training

Interlaced data and pre-processing

Interlaced

De-interlaced

Refined Skin color masks

2nd Version Full Resolution, Frame rate_{Workshop on Gesture Recognition, June 20, 2011}

Tracking Video, GSL Lemmas Corpus

3. Data-Driven Subunit Modeling

- Extremely popular in SL recognition lately
- Good results
- Different approaches exist
 - ours is based on distinguishing between
 dynamic and static subunits

Dynamic-Static SU Recognition

- Dynamic (Movement)-Static (Position) Segmentation: Intuitive, Segments + Labels
- Separate Modeling, SUs, Clustering wrt.
 Feature type (e.g. static vs. dynamic features);
 Parameters (e.g. Model Order) and Architecture (HMM, GMM); Normalize features
- Training, Data-Driven Lexicon
- Recognize SUs, Signs

Dynamic-Static SU Extraction

V. Pitsikalis, S. Theodorakis and P. Maragos, **Data-Driven Sub-Units and Modeling Structure** for Continuous Sign Language Recognition with Multiple Cues, LREC, 2010

Dynamic-Static SU extraction

Dynamic clusters

Static clusters

4. Phonetic Modeling

- Based on modeling signs linguistically
- Little recent work

Phonetics

- Phonetics: the study of the sounds that constitute a word
- Equivalently: the study of the elements that constitute a sign (i.e. its "pronunciation")

The Role of Phonetics

- Words consist of smaller parts, e.g.: □ cat → /k/ /æ/ /t/
- So do signs, e.g.:
 - \Box CHAIR \rightarrow (HS, orientation, location, movement)
 - □ Parts well-known: 30+ years of research
 - □ Less clear: a good structured model
- Gestures can borrow from sign inventory

The Role of Phonetics in Recognition

- The most successful speech recognition systems model words in terms of their constituent phones/phonemes, not in terms of data-driven subunits
 - □ Adding new words to dictionary
 - □ Linguistic knowledge & robustness
- Why don't sign language recognition systems do this?
 - Phonetics are complex, and phonetic annotations/lexica are expensive to create

Annotation vs Phonetic Structure

- There is a difference between annotations (writing down) of a word and its phonetic structure, required for recognition
 - Annotations cannot be applied directly to recognition, although an expert can infer the full pronunciation and structure from an annotation
- Annotations for signed languages are much less time consuming than writing the full phonetic structure

Annotation of a Sign

Basic HamNoSys annotation of CHAIR:

Symmetry

Handshape

Orientation Location

Movement

Repetition

Phonetic Structure of Signs

- Postures, Detentions, Transitions, Steady Shifts (PDTS)
 - > improved over 1989 Movement-Hold model

How Expensive is Phonetic Modeling?

Basic HamNoSys annotation of CHAIR:

Over 70 characters compared to just 8!

Ო■≏₩₯ ◘□•♦♦⊐₩♡

☎♦☐७■•२♦२◘■ ∂೮№& @

Automatic Extraction of Phonetic Structure

- First contribution: Automatically extract phonetic structure of sign from HamNoSys
- Combines convenience of annotations with required detail for recognition
- Recovers segmentation, postures, transitions, and relative timing of hands
- Based on symbolic analysis of movements, symmetries, etc.

Training and Alignment of Phonetic SUs

- Second contribution: Train classifiers based on phonetic structure, and align with data to recover frame boundaries
 - Frame boundaries not needed for recognition, but can be used for further data-driven analysis
- Classifiers based on HMMs why?
 - □ Proven track record for this type of task
 - No explicit segmentation required, just concatenate SUs, use Baum-Welch training
 - □ Trivial to scale up lexicon size to 1000s of signs

Phonetic Models to HMM

Phonetic Subunit Training, Alignment

Transition/Epenthesis Segments

Superimposed Initial-End Frames + Arrow

Posture/Detention Segments

Single Frame

Frames	Туре	PDTS label		
1:12	Е	rest-position — location-head		
13:13	Р	location-head		
14:25	Т	directedmotion, curve-r, direction-o, second-direction-do,		
		tense-true		
26:27	Р	location-torso, side=right_beside		
28:50	Т	directedmotion, direction-dr, small		
51:51	Р	location-torso, side=right_beside_down		
52:66	Е	location-torso, side=right_beside_down rest-position		

workshop on desture кесодпіцоп, June 20, 2011

Phonetic Sub-units

Postures

PSU	Туре	PDTS Label
P-forehead P-stomach P-shoulder	P P P	location=forehead location=stomach location=shouldertop,
P-head-top	Р	side=right_beside location=head-top

Workshop on Gesture Recognition, June 20, 2011

4. Recognition based on both Data-Driven SUs + Phonetic Transcriptions

Data-Driven vs. Phonetic Subunits Recognition

5. Conclusions and The Big Picture

- Rich SL corpora annotations are rare (in contrast to speech)
- Human annotations of sign language (HamNoSys) are expensive, subjective, contain errors, inconsistencies
- HamNoSys contain no time structure
- Data-Driven approaches Efficient but construct abstract SubUnits
- Convert HamNoSys to PDTS; Gain Time Structure and Sequentiality
- Construct meaningful phonetics-based SUs
- Further exploit the PDTS+Phonetic-SUs
 - Correct Human Annotations Automatically
 - Valuable for SU based SL Recognition, Continuous SLR, Adaptation, Integration of Multiple Streams

Thank you !

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 231135. Theodore Goulas contributed the HamNoSys annotations for GSL.