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Research Questions

1. How do topics evolve over time?

2. How do Twitter-based user profiles evolve over time?

3. Can we exploit Twitter-based profiles for personalizing
users’ Social Web experience?

Personalized recommendations

In time:
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Dataset
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What are topics? How can we represent a topic?

\

1. How do topics evolve over time?
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Representing a topic: via entities (and
hashtags)
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1. How do topics evolve over time?
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Popularity of related entities over time =
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Popularity of related entities over time (cont.)
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1. How do topics evolve over time?
- Observations

Importance of entities that represent a topic varies over time
(long-term vs. short-term lifespan of entities)

—J Representation of a topic (topic profile) depends on
the time when it is requested
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(When) is Bob interested into the topic?

2. How do the interests of individual
users into a topic change over time?

TUDelft Analyzing Temporal Dynamics in Twitter Profiles for Personalized Recommendations 13




When do users become interested?
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Users’ interests over time
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Users’ interests over time (cont.)
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2. How do the interests of individual users into
a topic change over time??
- Observations

» Most users, who are interested into the topic, become
interested within a few days

o Lifespan of users’ interest;:
Long-term adopters

Short-term adopters

e High overlap between early adopters and long-term
adopters
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Personalized recommendations

In time:

time
——

interest

3. Can we exploit Twitter-based profiles
for personalizing users’ Social Web
experience?
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Twitter-based user profiles

Profile type:
User Profile: i) Hashtag-based vs. ii) Entity-based
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Twitter-based Profiles for Personalization

» Task: Recommending Web sites (= tweets with URLS)

* Recommender algorithm: cosine similarity between
profile and tweets

» Ground truth: re-tweets of users
» Candidate items: URLs posted on day X
» Evaluation period: 12 days (Jan 20t — Jan 30% 2011)

Recommendations = ?
P(u/t))=? ¢---

time

day X
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Entity-based
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Which user modeling strategy is best for
computing personalized recommendations?

Time-sensitive
profiles improve

recommendation
quality
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“"Best” user modeling strategy varies
for different types of users

Hashtag-based user
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Conclusions and Future Work

1. Topics on Twitter:
 Importance of entities for a topic varies over time (long-term vs. short-

term entities)

2. User interests over time;
- Majority of users becomes quickly (few days) interested in a topic

- Long-term adopters vs. Short-term adopters

3. Twitter-based profiles for personalization:
- Time-sensitive user modeling improves recommendation quality

- Selection of user modeling strategy should take the type of user into
account:
- Long-term adopters: hashtag-based
- Short-term adopters: entity-based

Future work: for what type of personalization tasks can we
exploit what type of Twitter profiles?  http:/iwis.ewi.tudelft.nl/tweetum/
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Thank you!

Fabian Abel, Qi1 Gao, Geert-Jan Houben, Ke Tao

Twitter: @persweb
http://wis.ewi.tudelft.nl/tweetum/
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Problems of today’s Web Systems
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What we do: Persogal Web
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Analysis and
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Twitter

ZO0,000,000 Twitter users
60,000,000 tweets per day

859%0 of the tweets related to “news”

2 guestions...
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