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Motivation

Planning with multiple agents is hard
◮ Joint action space is exponential in the number of agents
◮ Agents may be self-interested
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Motivation

Planning with multiple agents is hard
◮ Joint action space is exponential in the number of agents
◮ Agents may be self-interested

Proposed solution: let each agent compute its best response to other
agents

Best response: plan that minimizes the cost to the agent, while
satisfying its goals

Plan for one agent at a time ⇒ use single-agent planners
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Notation

A multi-agent problem (MAP) is a tuple Π = 〈N, F , I , G , A, Ψ, c〉,
where

◮ N = {1, . . . , n}: set of agents
◮ F : set of fluents
◮ I ⊆ F : initial state
◮ G = G1 ∪ . . . ∪ Gn: goal state
◮ A = A1 × . . . × An: set of actions
◮ Ψ : A → {0, 1}: admissibility function
◮ c = (c1, . . . , cn), where ci : A → R is the cost function of agent i
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Notation

A multi-agent problem (MAP) is a tuple Π = 〈N, F , I , G , A, Ψ, c〉,
where

◮ N = {1, . . . , n}: set of agents
◮ F : set of fluents
◮ I ⊆ F : initial state
◮ G = G1 ∪ . . . ∪ Gn: goal state
◮ A = A1 × . . . × An: set of actions
◮ Ψ : A → {0, 1}: admissibility function
◮ c = (c1, . . . , cn), where ci : A → R is the cost function of agent i

Goal: find a plan π = 〈a1, . . . , ak〉 of joint actions from I to G
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Notation (cont.)

Fluents can be partitioned as F = F1 ∪ . . . ∪ Fn ∪ Fpub
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and eff (ai ) ⊆ Fi ∪ Fpub (trivially extended to negative pre-conditions
and effects)
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Notation (cont.)

Fluents can be partitioned as F = F1 ∪ . . . ∪ Fn ∪ Fpub

Each action ai = 〈pre(ai ), eff (ai )〉 ∈ Ai satisfies pre(ai ) ⊆ Fi ∪ Fpub

and eff (ai ) ⊆ Fi ∪ Fpub (trivially extended to negative pre-conditions
and effects)

For each agent i , Gi ⊆ Fi ∪ Fpub (public goals are shared)

The cost of a plan π to agent i is Ci (π) =
∑k

j=1 ci (a
j)
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Admissibility function

Represents concurrency constraints regarding individual actions
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Admissibility function

Represents concurrency constraints regarding individual actions

A joint action a ∈ A is part of the MAP (Ψ(a) = 1) or not (Ψ(a) = 0)

Even though |A| is exponential in n, Ψ can usually be represented
compactly

Our approach requires quickly checking if a joint action is part of Π
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Example

1

2

3

Set of agents sending packages through a network

Fi : current location of package i

Action: send a package across a link of the network
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Example (cont.)

1

2

3

1

Joint action: each agent acts in parallel

Cost to agent i of a joint action = number of agents simultaneously
sending packages across the same link
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Example (cont.)

1

2

3

Figure shows example joint plan

Cost is suboptimal in areas marked with yellow
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Best-Response Planning

Assume that there exists a joint plan π = 〈a1, . . . , ak〉 of length
|π| = k for solving a MAP
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Best-Response Planning

Assume that there exists a joint plan π = 〈a1, . . . , ak〉 of length
|π| = k for solving a MAP

Given an agent i , we define a best-response planning (BRP) problem
as a tuple 〈F ′

, A′
, I ′

, G ′
, c ′〉, where

◮ F ′ = Fi ∪ Fpub ∪ {time(0), . . . , time(k)}
◮ I ′ = (I ∩ F ′) ∪ {time(0)}
◮ G ′ = Gi ∪ {time(k)}
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Best-Response Planning (cont.)

Each joint action of π is of the form aj = (aji , a
j
−i ), where

◮ a
j
i : the individual action of agent i

◮ a
j
−i : the joint action of agents other than i
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Best-Response Planning (cont.)

Each joint action of π is of the form aj = (aji , a
j
−i ), where

◮ a
j
i : the individual action of agent i

◮ a
j
−i : the joint action of agents other than i

For each ai ∈ Ai , let a = (ai , a
j
−i ) be the joint action that replaces a

j
i

with ai

If Ψ(a) = 1, add an action a′ to A′ such that
◮ pre(a′) = (pre(a) ∩ F ′) ∪ {time(j − 1)}
◮ eff (a′) = (eff (a) ∩ F ′) ∪ {not(time(j − 1)), time(j)}
◮ c ′(a′) = ci (a)
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Best-Response Planning (cont.)

Add noop actions noopi , applicable when agents are done with other
actions
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Best-Response Planning (cont.)

Add noop actions noopi , applicable when agents are done with other
actions

For each ai ∈ Ai , let a = (ai , noop−i ) be the joint action composed of
ai and the noop action for each other agent

Add an action a′ to A′ such that
◮ pre(a′) = (pre(a) ∩ F ′) ∪ {time(k)}
◮ eff (a′) = eff (a) ∩ F ′

◮ c ′(a′) = ci (a)
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Best-Response Planning (cont.)

To compute the best response of agent i to the actions of other
agents, solve the BRP problem using an optimal planner

Replace the actions for i with the actions of the new plan

Iterate over each agent until no agent can improve its cost
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Example (cont.)

1

2

3

Given the actions of agents 2 and 3, agent 1 performs best-response
planning
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Example (cont.)

1

2

3

To agent 1, the new plan is cheaper and still solves the problem

Repeat the process for agent 2
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Example (cont.)

1

2

3

Eventually, no agent can improve their cost by choosing a cheaper
plan
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Congestion Games

In game theory, a congestion game is a tuple 〈N, R , A, c〉, where
◮ N = {1, . . . , n}: set of agents
◮ R = {r1, . . . , rm}: set of resources
◮ A = A1 × . . . × An, where Ai ⊆ 2R − ∅ is the action set of agent i,
◮ c = (cr1 , . . . , crm), where cr : N → R is the cost function of resource r

An action consists in selecting a non-empty subset of resources
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Congestion Games

In game theory, a congestion game is a tuple 〈N, R , A, c〉, where
◮ N = {1, . . . , n}: set of agents
◮ R = {r1, . . . , rm}: set of resources
◮ A = A1 × . . . × An, where Ai ⊆ 2R − ∅ is the action set of agent i,
◮ c = (cr1 , . . . , crm), where cr : N → R is the cost function of resource r

An action consists in selecting a non-empty subset of resources

The utility function of agent i is ui (a) = −
∑

r∈ai
cr (#(r , a))

# : R × A → N counts the number of agents selecting a resource
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Congestion Games (cont.)

Define a potential function Q(a) =
∑

r∈R

∑#(r ,a)
j=1 cr (j)

Given two joint actions (ai , a−i ) and (a′
i , a−i ), it holds that

ui (ai , a−i ) − ui (a
′
i , a−i ) = Q(ai , a−i ) − Q(a′

i , a−i ).
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Congestion Games (cont.)

Define a potential function Q(a) =
∑

r∈R

∑#(r ,a)
j=1 cr (j)

Given two joint actions (ai , a−i ) and (a′
i , a−i ), it holds that

ui (ai , a−i ) − ui (a
′
i , a−i ) = Q(ai , a−i ) − Q(a′

i , a−i ).

Games that satisfy this property are known as potential games

Iterative best-response is guaranteed to converge to Nash equilibrium
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Extending Congestion Games

Define a new utility function u′
i (a) = ui (a) − di (ai ) and a new

potential function Q ′(a) = Q(a) −
∑

j∈N dj(aj)
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Extending Congestion Games

Define a new utility function u′
i (a) = ui (a) − di (ai ) and a new

potential function Q ′(a) = Q(a) −
∑

j∈N dj(aj)

It is easy to show that this is still a potential game:

Q ′(ai , a−i ) − Q ′(a′
i , a−i ) = Q(ai , a−i ) − di (ai ) −

∑

j∈N−{i}

dj(aj) −

− Q(a′
i , a−i ) + di (a

′
i ) +

∑

j∈N−{i}

dj(aj) =

= Q(ai , a−i ) − Q(a′
i , a−i ) − di (ai ) + di (a

′
i ) =

= ui (ai , a−i ) − ui (a
′
i , a−i ) − di (ai ) + di (a

′
i ) =

= u′
i (ai , a−i ) − u′

i (a
′
i , a−i )

Jonsson & Rovatsos () Best-Response Planning 18 / 27



Congestion Planning

Let R = {r1, . . . , rm} be a set of resources, each with a cost function
c ′
r : N → R
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) such that each action ai is associated with a
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Congestion Planning

Let R = {r1, . . . , rm} be a set of resources, each with a cost function
c ′
r : N → R

A congestion planning problem (CPP) is a MAP augmented with R
and c ′ = (c ′

r1
, . . . , c ′

rm
) such that each action ai is associated with a

subset of resources R(ai ) ⊆ R and
1 Fpub = ∅
2 Ψ(a) = 1 for each joint action a ∈ A
3 The cost function of agent i is ci (a) =

∑
r∈R(ai )

c ′

r (#(r , a)) + di (ai )
4 A noop action noopi uses no resources and incurs no cost, i.e.

R(noopi ) = ∅ and di (noopi ) = 0
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Congestion Planning (cont.)

Theorem

For congestion planning problems, best-response planning is guaranteed to

converge to a Nash equilibrium.

Proof.

For each joint plan π = 〈a1, . . . , ak〉, define a potential function
Q(π) =

∑k
j=1 Q ′(aj). Consider two plans π and π

′ that only differ on the
action choice of agent i . We have

Q(π) − Q(π′) =
k∑

j=1

(Q ′(aj) − Q ′(aj
′
)) =

k∑

j=1

(u′
i (a

j) − u′
i (a

j ′)) =

=
k∑

j=1

(ci (a
j ′) − ci (a

j)) = Ci (π
′) − Ci (π).
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Example (cont.)

1

2

3

Example MAP is a CPP!

No public fluents nor goals

Resources = links, cost of a link = number of agents using it
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Experiments

Two sets of experiments with BRP

First set: network example, for different numbers of nodes and agents

Second set: IPC domains with multi-agent flavor

For each BRP problem, generate corresponding problem in PDDL

Use HSPf [Haslum 2008] to plan optimally
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Network Example

Example of a congestion planning problem

Finding initial plan is easy (just assume no other agents are using
resources)

By the previous theorem, BRP is guaranteed to converge to a Nash
equilibrium

For 100 nodes and 100 agents, BRP converges in 10 minutes
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IPC Domains

Multi-agent problems from Logistics, Rovers, and Satellite

Use DisCSP planner [Nissim et al. 2010] to find initial plans

In Rovers, HSPf fails to solve BRP problems, so we use LAMA
[Richter & Westphal 2010] to generate suboptimal plans
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IPC Domains (cont.)

DisCSP BR-Optimal BR-Satisficing

Prob. T C M T I C M T I C M

Log 3 1 1.3 10 9 0.2 1 10 9 - - - -
Log 4 2 307.0 14 12 0.6 3 14 6 - - - -

Rov 3 53.0 33 13 - - - - 179.6 2 34 13
Rov 4 408.4 44 14 - - - - 414.8 2 45 14
Rov 5 784.2 55 15 - - - - 2170.7 3 55 15
Rov 6 3958.7 66 16 - - - - 2235.2 2 66 16

Sat 2 0.5 7 4 0.2 2 7 4 0.8 2 7 4
Sat 4 1.2 14 6 1.5 2 14 4 5.7 3 14 6
Sat 6 3.4 21 8 19.4 2 21 4 13.5 2 21 8
Sat 8 25.5 28 10 178.0 2 28 4 37.6 2 28 10

Jonsson & Rovatsos () Best-Response Planning 25 / 27



Conclusion

A single-agent approach to multi-agent planning

Each agent optimizes its own cost

For congestion planning problems, guaranteed to converge

In practice, converges in three IPC domains
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Future Work

Determine convergence guarantees for larger classes of MAPs

Use single-agent approach to generate initial plans

Best-response planning when public goals are not shared by agents

Advances in single-agent planning will benefit BRP
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