Scaling Up Multi-Agent Planning -A Best-Response Approach

Anders Jonsson, Universitat Pompeu Fabra Michael Rovatsos, University of Edinburgh

• Planning with multiple agents is hard

- Joint action space is exponential in the number of agents
- Agents may be self-interested

3

- Planning with multiple agents is hard
 - Joint action space is exponential in the number of agents
 - Agents may be self-interested
- Proposed solution: let each agent compute its best response to other agents

3

- Planning with multiple agents is hard
 - ► Joint action space is exponential in the number of agents
 - Agents may be self-interested
- Proposed solution: let each agent compute its best response to other agents
- Best response: plan that minimizes the cost to the agent, while satisfying its goals

- Planning with multiple agents is hard
 - ► Joint action space is exponential in the number of agents
 - Agents may be self-interested
- Proposed solution: let each agent compute its best response to other agents
- Best response: plan that minimizes the cost to the agent, while satisfying its goals
- Plan for one agent at a time \Rightarrow use single-agent planners

Notation

- A multi-agent problem (MAP) is a tuple Π = (N, F, I, G, A, Ψ, c), where
 - $N = \{1, \ldots, n\}$: set of agents
 - ► F: set of fluents
 - $I \subseteq F$: initial state
 - $G = G_1 \cup \ldots \cup G_n$: goal state
 - $A = A_1 \times \ldots \times A_n$: set of actions
 - $\Psi: A \rightarrow \{0,1\}$: admissibility function
 - ▶ $c = (c_1, ..., c_n)$, where $c_i : A \to \mathbb{R}$ is the cost function of agent i

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Notation

- A multi-agent problem (MAP) is a tuple Π = (N, F, I, G, A, Ψ, c), where
 - $N = \{1, \ldots, n\}$: set of agents
 - ► *F*: set of fluents
 - $I \subseteq F$: initial state
 - $G = G_1 \cup \ldots \cup G_n$: goal state
 - $A = A_1 \times \ldots \times A_n$: set of actions
 - $\Psi: A \rightarrow \{0,1\}$: admissibility function
 - ▶ $c = (c_1, ..., c_n)$, where $c_i : A \to \mathbb{R}$ is the cost function of agent i
- ullet Goal: find a plan $\pi=\langle a^1,\ldots,a^k
 angle$ of joint actions from I to G

• Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$

- Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$
- Each action a_i = ⟨pre(a_i), eff(a_i)⟩ ∈ A_i satisfies pre(a_i) ⊆ F_i ∪ F_{pub} and eff(a_i) ⊆ F_i ∪ F_{pub} (trivially extended to negative pre-conditions and effects)

- Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$
- Each action a_i = ⟨pre(a_i), eff(a_i)⟩ ∈ A_i satisfies pre(a_i) ⊆ F_i ∪ F_{pub} and eff(a_i) ⊆ F_i ∪ F_{pub} (trivially extended to negative pre-conditions and effects)
- For each agent *i*, $G_i \subseteq F_i \cup F_{pub}$ (public goals are shared)

- Fluents can be partitioned as $F = F_1 \cup \ldots \cup F_n \cup F_{pub}$
- Each action a_i = ⟨pre(a_i), eff(a_i)⟩ ∈ A_i satisfies pre(a_i) ⊆ F_i ∪ F_{pub} and eff(a_i) ⊆ F_i ∪ F_{pub} (trivially extended to negative pre-conditions and effects)
- For each agent *i*, $G_i \subseteq F_i \cup F_{pub}$ (public goals are shared)
- The cost of a plan π to agent *i* is $C_i(\pi) = \sum_{j=1}^k c_i(a^j)$

• Represents concurrency constraints regarding individual actions

Э

- Represents concurrency constraints regarding individual actions
- A joint action $a \in A$ is part of the MAP $(\Psi(a) = 1)$ or not $(\Psi(a) = 0)$

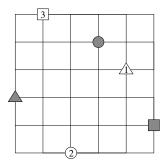
3

- Represents concurrency constraints regarding individual actions
- A joint action $a \in A$ is part of the MAP $(\Psi(a) = 1)$ or not $(\Psi(a) = 0)$
- Even though |A| is exponential in n, Ψ can usually be represented compactly

▲ロト ▲圖ト ▲屋ト ▲屋ト

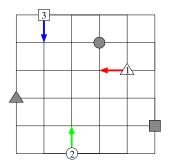
- Represents concurrency constraints regarding individual actions
- A joint action $a \in A$ is part of the MAP $(\Psi(a) = 1)$ or not $(\Psi(a) = 0)$
- Even though |A| is exponential in n, Ψ can usually be represented compactly
- Our approach requires quickly checking if a joint action is part of Π

Example



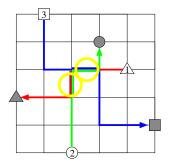
- Set of agents sending packages through a network
- F_i: current location of package i
- Action: send a package across a link of the network

伺下 イヨト イヨト



- Joint action: each agent acts in parallel
- Cost to agent *i* of a joint action = number of agents simultaneously sending packages across the same link

・ 戸 ト ・ ヨ ト ・ ヨ ト



- Figure shows example joint plan
- Cost is suboptimal in areas marked with yellow

Jonsson	&	Rovatsos	C	۱
---------	---	----------	---	---

∃ ► < ∃ ►</p>

Best-Response Planning

• Assume that there exists a joint plan $\pi = \langle a^1, \dots, a^k \rangle$ of length $|\pi| = k$ for solving a MAP

Best-Response Planning

- Assume that there exists a joint plan $\pi = \langle a^1, \dots, a^k \rangle$ of length $|\pi| = k$ for solving a MAP
- Given an agent *i*, we define a best-response planning (BRP) problem as a tuple (*F'*, *A'*, *I'*, *G'*, *c'*), where
 - $F' = F_i \cup F_{pub} \cup \{time(0), \ldots, time(k)\}$
 - $I' = (I \cap F') \cup \{time(0)\}$
 - $G' = G_i \cup \{time(k)\}$

- Each joint action of π is of the form $a^j = (a^j_i, a^j_{-i})$, where
 - a_i^j : the individual action of agent *i*
 - a_{-i}^{j} : the joint action of agents other than *i*

イロト イポト イラト イラト 一日

- Each joint action of π is of the form $a^j = (a^j_i, a^j_{-i})$, where
 - a_i^j : the individual action of agent *i*
 - a_{-i}^{j} : the joint action of agents other than *i*
- For each a_i ∈ A_i, let a = (a_i, a^j_{-i}) be the joint action that replaces a^j_i with a_i

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

- Each joint action of π is of the form $a^j = (a^j_i, a^j_{-i})$, where
 - a_i^j : the individual action of agent *i*
 - a_{-i}^{j} : the joint action of agents other than *i*
- For each a_i ∈ A_i, let a = (a_i, a^j_{-i}) be the joint action that replaces a^j_i with a_i
- If $\Psi(a) = 1$, add an action a' to A' such that
 - ► $pre(a') = (pre(a) \cap F') \cup \{time(j-1)\}$
 - $eff(a') = (eff(a) \cap F') \cup \{not(time(j-1)), time(j)\}$
 - $c'(a') = c_i(a)$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Add noop actions *noop_i*, applicable when agents are done with other actions

3

- Add noop actions *noop_i*, applicable when agents are done with other actions
- For each a_i ∈ A_i, let a = (a_i, noop_{-i}) be the joint action composed of a_i and the noop action for each other agent

ヘロト 人間 ト 人 ヨ ト 一

- Add noop actions *noop_i*, applicable when agents are done with other actions
- For each a_i ∈ A_i, let a = (a_i, noop_{-i}) be the joint action composed of a_i and the noop action for each other agent
- Add an action a' to A' such that

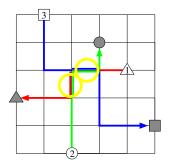
•
$$pre(a') = (pre(a) \cap F') \cup \{time(k)\}$$

•
$$eff(a') = eff(a) \cap F'$$

• $c'(a') = c_i(a)$

ヘロト 人間ト 人注ト 人注ト

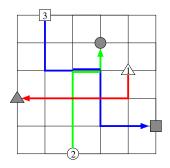
- To compute the best response of agent *i* to the actions of other agents, solve the BRP problem using an optimal planner
- Replace the actions for i with the actions of the new plan
- Iterate over each agent until no agent can improve its cost



• Given the actions of agents 2 and 3, agent 1 performs best-response planning

3

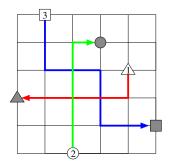
□ ▶ ▲ 臣 ▶ ▲ 臣 ▶



To agent 1, the new plan is cheaper and still solves the problemRepeat the process for agent 2

Jonsson	&	Rovatsos	C	ļ
---------	---	----------	---	---

∃ ► < ∃ ►</p>



• Eventually, no agent can improve their cost by choosing a cheaper plan

3

Congestion Games

- In game theory, a congestion game is a tuple $\langle N, R, A, c \rangle$, where
 - $N = \{1, \ldots, n\}$: set of agents
 - $R = \{r_1, \ldots, r_m\}$: set of resources
 - ▶ $A = A_1 \times \ldots \times A_n$, where $A_i \subseteq 2^R \emptyset$ is the action set of agent i,
 - ▶ $c = (c_{r_1}, ..., c_{r_m})$, where $c_r : \mathbb{N} \to \mathbb{R}$ is the cost function of resource r
- An action consists in selecting a non-empty subset of resources

イロト イロト イヨト 一日

Congestion Games

- In game theory, a congestion game is a tuple $\langle N, R, A, c \rangle$, where
 - $N = \{1, \ldots, n\}$: set of agents
 - $R = \{r_1, \ldots, r_m\}$: set of resources
 - $A = A_1 \times \ldots \times A_n$, where $A_i \subseteq 2^R \emptyset$ is the action set of agent i,
 - ▶ $c = (c_{r_1}, \dots, c_{r_m})$, where $c_r : \mathbb{N} \to \mathbb{R}$ is the cost function of resource r
- An action consists in selecting a non-empty subset of resources
- The utility function of agent *i* is $u_i(a) = -\sum_{r \in a_i} c_r(\#(r, a))$
- $\#: R \times A \rightarrow \mathbb{N}$ counts the number of agents selecting a resource

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Congestion Games (cont.)

- Define a potential function $Q(a) = \sum_{r \in R} \sum_{j=1}^{\#(r,a)} c_r(j)$
- Given two joint actions (a_i, a_{-i}) and (a'_i, a_{-i}) , it holds that $u_i(a_i, a_{-i}) u_i(a'_i, a_{-i}) = Q(a_i, a_{-i}) Q(a'_i, a_{-i})$.

Congestion Games (cont.)

- Define a potential function $Q(a) = \sum_{r \in R} \sum_{j=1}^{\#(r,a)} c_r(j)$
- Given two joint actions (a_i, a_{-i}) and (a'_i, a_{-i}) , it holds that $u_i(a_i, a_{-i}) u_i(a'_i, a_{-i}) = Q(a_i, a_{-i}) Q(a'_i, a_{-i})$.
- Games that satisfy this property are known as potential games
- Iterative best-response is guaranteed to converge to Nash equilibrium

イロト イヨト イヨト イヨト 三日

Extending Congestion Games

• Define a new utility function $u'_i(a) = u_i(a) - d_i(a_i)$ and a new potential function $Q'(a) = Q(a) - \sum_{j \in N} d_j(a_j)$

3

▲ロト ▲圖ト ▲屋ト ▲屋ト

Extending Congestion Games

- Define a new utility function $u'_i(a) = u_i(a) d_i(a_i)$ and a new potential function $Q'(a) = Q(a) \sum_{j \in N} d_j(a_j)$
- It is easy to show that this is still a potential game:

$$\begin{array}{lll} Q'(a_i,a_{-i})-Q'(a_i',a_{-i}) &=& Q(a_i,a_{-i})-d_i(a_i)-\sum_{j\in N-\{i\}}d_j(a_j)-\\ &-& Q(a_i',a_{-i})+d_i(a_i')+\sum_{j\in N-\{i\}}d_j(a_j)=\\ &=& Q(a_i,a_{-i})-Q(a_i',a_{-i})-d_i(a_i)+d_i(a_i')=\\ &=& u_i(a_i,a_{-i})-u_i(a_i',a_{-i})-d_i(a_i)+d_i(a_i')=\\ &=& u_i'(a_i,a_{-i})-u_i'(a_i',a_{-i})\end{array}$$

3

▲ロト ▲圖ト ▲屋ト ▲屋ト

Congestion Planning

• Let $R = \{r_1, \ldots, r_m\}$ be a set of resources, each with a cost function $c'_r : \mathbb{N} \to \mathbb{R}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Congestion Planning

- Let $R = \{r_1, \ldots, r_m\}$ be a set of resources, each with a cost function $c'_r : \mathbb{N} \to \mathbb{R}$
- A congestion planning problem (CPP) is a MAP augmented with R and c' = (c'_{r1},...,c'_{rm}) such that each action a_i is associated with a subset of resources R(a_i) ⊆ R and

・ロト ・四ト ・ヨト ・ ヨト

Congestion Planning

- Let $R = \{r_1, \ldots, r_m\}$ be a set of resources, each with a cost function $c'_r : \mathbb{N} \to \mathbb{R}$
- A congestion planning problem (CPP) is a MAP augmented with R and c' = (c'_{r1},...,c'_{rm}) such that each action a_i is associated with a subset of resources R(a_i) ⊆ R and

1)
$$F_{pub} = \emptyset$$

- 2 $\Psi(a) = 1$ for each joint action $a \in A$
- 3 The cost function of agent *i* is $c_i(a) = \sum_{r \in R(a_i)} c'_r(\#(r, a)) + d_i(a_i)$
- ④ A noop action *noop_i* uses no resources and incurs no cost, i.e. $R(noop_i) = \emptyset$ and $d_i(noop_i) = 0$

Congestion Planning (cont.)

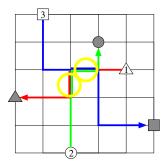
Theorem

For congestion planning problems, best-response planning is guaranteed to converge to a Nash equilibrium.

Proof.

For each joint plan $\pi = \langle a^1, \ldots, a^k \rangle$, define a potential function $Q(\pi) = \sum_{j=1}^k Q'(a^j)$. Consider two plans π and π' that only differ on the action choice of agent *i*. We have

$$egin{aligned} Q(\pi) - Q(\pi') &= \sum_{j=1}^k (Q'(a^j) - Q'(a^{j'})) = \sum_{j=1}^k (u_i'(a^j) - u_i'(a^{j'})) = \ &= \sum_{j=1}^k (c_i(a^{j'}) - c_i(a^j)) = C_i(\pi') - C_i(\pi). \end{aligned}$$



- Example MAP is a CPP!
- No public fluents nor goals
- Resources = links, cost of a link = number of agents using it

* E > * E >

Experiments

- Two sets of experiments with BRP
- First set: network example, for different numbers of nodes and agents
- Second set: IPC domains with multi-agent flavor
- For each BRP problem, generate corresponding problem in PDDL
- Use HSP_f [Haslum 2008] to plan optimally

- Example of a congestion planning problem
- Finding initial plan is easy (just assume no other agents are using resources)
- By the previous theorem, BRP is guaranteed to converge to a Nash equilibrium
- For 100 nodes and 100 agents, BRP converges in 10 minutes

- 4 伊ト 4 ヨト 4 ヨト

IPC Domains

- Multi-agent problems from Logistics, Rovers, and Satellite
- Use DisCSP planner [Nissim et al. 2010] to find initial plans
- In Rovers, HSP_f fails to solve BRP problems, so we use LAMA [Richter & Westphal 2010] to generate suboptimal plans

IPC Domains (cont.)

	Dis	CSP		BR-Optimal			BR-Satisficing				
Prob.	Т	C	Μ	Т		C	Μ	Т	I	C	Μ
Log_3_1	1.3	10	9	0.2	1	10	9	-	-	-	-
Log_4_2	307.0	14	12	0.6	3	14	6	-	-	-	-
Rov_3	53.0	33	13	-	-	-	-	179.6	2	34	13
Rov_4	408.4	44	14	-	-	-	-	414.8	2	45	14
Rov_5	784.2	55	15	-	-	-	-	2170.7	3	55	15
Rov_6	3958.7	66	16	-	-	-	-	2235.2	2	66	16
Sat_2	0.5	7	4	0.2	2	7	4	0.8	2	7	4
Sat_4	1.2	14	6	1.5	2	14	4	5.7	3	14	6
Sat_6	3.4	21	8	19.4	2	21	4	13.5	2	21	8
Sat_8	25.5	28	10	178.0	2	28	4	37.6	2	28	10

Jonsson & Rovatsos ()

Ξ

イロト イヨト イヨト イヨト

Conclusion

- A single-agent approach to multi-agent planning
- Each agent optimizes its own cost
- For congestion planning problems, guaranteed to converge
- In practice, converges in three IPC domains

- 4 同下 - 4 三下 - 4 三下

Future Work

- Determine convergence guarantees for larger classes of MAPs
- Use single-agent approach to generate initial plans
- Best-response planning when public goals are not shared by agents
- Advances in single-agent planning will benefit BRP