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Discrete MDP Research So Far

Goal-oriented MDPs (GOMDPs)

-Model many -What interesting
interesting scenarios problems are here?
-Efficiently* solvable -How do we solve
by heuristic search them efficiently?
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Interesting Problems Outside SSP

e MAXPROB — maximize the probability of
reaching the goal

— Action rewards are O (they are irrelevant)

— Reaching the goal yields reward =1
— Past IPPC problems are of this kind
— Heuristic search doesn’t work on them!
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Why Is SSP#GOMDP?

* AnMDP M =<S§, A, T, R, G, s> for which

— There is a proper policy (reaches the goal with P=1)
— Every improper policy has V(s) = -o°
e Solving an SSP = finding a reward-maximizing

(cost-minimizing) policy

e SSP can’t contain “free loops”!



Why |s SSP# GOMDP: Example
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Introducing Generalized SSPs
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Generalized SSPs: Definition
* AnMDP M =<S§, A, T, R, G, s> for which
— There is a proper policy (reaches the goal with P=1)

— Sum of non-negative rewards accumulated by any
policy starting at s, is bounded from above

e Solving a GSSP = finding a reward-maximizing
Markovian policy that reaches the goal



Generalized SSPs: Example
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Generalized SSPs: Example

Solution
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Digression: Heuristic Search for SSPs

e Reminder: in SSPs, V* = BV*, where

— B is the Bellman backup operator
— B V(s) = max, {R(s, ) + 3¢ i suces,a) TS, @, SIV(S')

e In SSPs, V* is the unique fixed point of B

—l.e,V¥*=BoBo..BV,V,isa heuristic value
function
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Digression: Heuristic Search for SSPs

 Find-and-Revise framework (Bonet & Geffner,
IJCAI 2003) — LRTDP, LAO*, etc:

— Start with an admissible V,

— |teratively, find an unconverged state reachable by
the current greedy policy, revise its value with B

— Extract the greedy policy from V*
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Digression: Heuristic Search for SSPs

* F&R is optimal & resource-efficient. Why?
— V, admissible =>V, 2 V* =>V, > V*

— F&R “smartly chooses” states to apply B to
— V* is the unique fixed point of B

— Any V*-greedy policy is optimal
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Efficiently Solving GSSPs: Attempt

e Remove “free loops”, solve SSP with F&R

— Find loops via transition graph traversal

e But... consider a MAXPROB problem

— The problem “consists” of O-reward loops
— Defeats the point of using heuristic search (F&R)
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Efficiently Solving GSSPs: Attempt #2

e Just Run F&R!

— Start with an admissible V,
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— Done!
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Attempt

2: What Went Wrong?

* In GSSPs, there are multiple suboptimal
admissible fixed points!

— When starting with V, 2 V*, F&R hit one of them.

— B can’t change V over traps — strongly-connected leaf
components in V’s greedy transition graph

o SSP-style F&R can vyield an arbitrarily poor solution
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Efficiently Solving GSSPs: FRET

* Find, Revise, Eliminate Traps
— First heuristic search algorithm for MDPs beyond SSP
— Provably optimal if the heuristic is admissible

e Main idea
— Run F&R until convergence
— Eliminate traps in the policy envelope
— Repeat until no more traps

18



+ O d T M X0

FRET Example: Finding V*
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Find-and-Revise

Eliminate Traps

Find-and-Revise

No traps left —
done!




FRET Example: Extracting TT*

e Greedy attempt:

* In GSSPs, not every V*-greedy policy is
optimal!
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FRET Example: Extracting TT*

e [teratively “connect” states to the goals

— Using optimal actions

— Until s, is connected
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Why Does FRET It Work?

* In GSSPs, V* is a fixed point of B

 FRET is optimal if the heuristic is admissible
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Experimental Setup

* Problems: MAXPROB versions of EBW
e Planners: VI vs FRET

e Heuristics: Zero for VI, One+SixthSense for FRET

— SixthSense (Kolobov et al., AAAI 2010) soundly
identifies some of the “dead ends”; their values are

setto 0
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Future Work
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Future Work
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Conclusions

SSP MDPs exclude interesting planning scenarios
GSSP contains SSP and several other MDP classes
SSP heuristic search algorithms fail on GSSPs

FRET is an optimal heuristic search algorithm for
solving GSSPs

What is beyond GSSPs and how do we solve it?



Questions?



