Heuristic Search for Generalized Stochastic Shortest Path MDPs

Andrey Kolobov, Mausam, Daniel S. Weld, Hector Geffner

Discrete MDP Research So Far

Goal-oriented MDPs (GOMDPs)

-Model many interesting scenarios-Efficiently* solvable by heuristic search

-What interesting problems are here? -How do we solve them efficiently?

Interesting Problems Outside SSP

- MAXPROB maximize the probability of reaching the goal
 - Action rewards are 0 (they are irrelevant)
 - Reaching the goal yields reward = 1
 - Past IPPC problems are of this kind
 - Heuristic search doesn't work on them!

Outline

- ➤ Generalized SSP MDPs Definition & Examples
- > Heuristic Search for GSSPs: FRET
- > Experiments
- > Future Work
- > Q&A

Why Is SSP≠GOMDP?

- An MDP M = $\langle S, A, T, R, G, s_0 \rangle$ for which
 - There is a proper policy (reaches the goal with P=1)
 - Every *improper* policy has $V(s) = -\infty$
- Solving an SSP = finding a reward-maximizing (cost-minimizing) policy
- SSP can't contain "free loops"!

Why Is SSP≠ GOMDP: Example

Introducing Generalized SSPs

Generalized SSPs: Definition

- An MDP M = $\langle S, A, T, R, G, s_0 \rangle$ for which
 - There is a proper policy (reaches the goal with P=1)
 - Sum of non-negative rewards accumulated by any policy starting at s₀ is bounded from above
- Solving a GSSP = finding a reward-maximizing
 Markovian policy that reaches the goal

Generalized SSPs: Example

Generalized SSPs: Example

Solution

Not a solution

Outline

- ✓ Generalized SSP MDPs Definition & Examples
- ➤ Heuristic Search for GSSPs: FRET
- > Experiments
- > Future Work
- > Q&A

Digression: Heuristic Search for SSPs

- Reminder: in SSPs, $V^* = B V^*$, where
 - B is the Bellman backup operator
 - $-B V(s) = \max_{a} \{R(s, a) + \sum_{s' \text{ in succ}(s, a)} T(s, a, s')V(s')$
- In SSPs, V* is the unique fixed point of B
 - I.e., $V^* = B \circ B \circ ... B V_0$, V_0 is a heuristic value function

Digression: Heuristic Search for SSPs

 Find-and-Revise framework (Bonet & Geffner, IJCAI 2003) – LRTDP, LAO*, etc:

- Start with an admissible V₀
- Iteratively, find an unconverged state reachable by the current greedy policy, revise its value with B
- Extract the greedy policy from V*

Digression: Heuristic Search for SSPs

- F&R is optimal & resource-efficient. Why?
 - $-V_0$ admissible $=>V_0 \ge V^* =>V_i \ge V^*$
 - F&R "smartly chooses" states to apply B to
 - $-V^*$ is the unique fixed point of B
 - Any V*-greedy policy is optimal

Efficiently Solving GSSPs: Attempt #1

- Remove "free loops", solve SSP with F&R
 - Find loops via transition graph traversal
- But... consider a MAXPROB problem
 - The problem "consists" of 0-reward loops
 - Defeats the point of using heuristic search (F&R)

Efficiently Solving GSSPs: Attempt #2

Just Run F&R!

Attempt #2: What Went Wrong?

- In GSSPs, there are multiple suboptimal admissible fixed points!
 - When starting with V_0 ≥ V^* , F&R hit one of them.
 - B can't change V over traps strongly-connected leaf components in V's greedy transition graph

SSP-style F&R can yield an arbitrarily poor solution

Efficiently Solving GSSPs: FRET

- Find, Revise, Eliminate Traps
 - First heuristic search algorithm for MDPs beyond SSP
 - Provably optimal if the heuristic is admissible
- Main idea
 - Run F&R until convergence
 - Eliminate traps in the policy envelope
 - Repeat until no more traps

FRET Example: Finding V*

FRET Example: Extracting ∏*

Greedy attempt:

 In GSSPs, not every V*-greedy policy is optimal!

FRET Example: Extracting ∏*

- Iteratively "connect" states to the goals
 - Using optimal actions
 - Until s_0 is connected

Why Does FRET It Work?

In GSSPs, V* is a fixed point of B

FRET is optimal if the heuristic is admissible

Outline

- ✓ Generalized SSP MDPs Definition & Examples
- ✓ Heuristic Search for GSSPs: FRET
- > Experiments
- > Future Work
- > Q&A

Experimental Setup

Problems: MAXPROB versions of EBW

• Planners: VI vs FRET

- Heuristics: Zero for VI, One+SixthSense for FRET
 - SixthSense (Kolobov et al., AAAI 2010) soundly identifies some of the "dead ends"; their values are set to 0

Experimental Setup

Outline

- ✓ Generalized SSP MDPs Definition & Examples
- ✓ Heuristic Search for GSSPs: FRET
- // Experiments
- > Future Work
- > Q&A

Future Work

Future Work

Conclusions

- SSP MDPs exclude interesting planning scenarios
- GSSP contains SSP and several other MDP classes
- SSP heuristic search algorithms fail on GSSPs
- FRET is an optimal heuristic search algorithm for solving GSSPs
- What is beyond GSSPs and how do we solve it?

Questions?