Policy Construction for MDPs Represented in Probabilistic PDDL

Boris Lesner and Bruno Zanuttini

GREYC, Université de Caen Basse-Normandie, FRANCE

June 14 2011

Outline

Introduction

Policy construction - RBAB Algorithm Frameless Action Values A Complete Action Backup Example Some Experimental Results

Policy Revision With F-values

Motivations

PPDDL actions represent compactly Markov Decision Processes.

How to compute optimal infinite horizon discounted policies with PPDDL actions as input ?

The usual way:

- Translate PPDDL into DBNs.
- Use your favorite solver (e.g. SPUDD).

Or, exploit the PPDDL structure directly

- Avoid the cost of translating into DBNs.
- Handles naturally corellated effects.

Compact Action and Value Function Representation

Grounded PPDDL

- ▶ Propositional state variables *X* = {*x*₁,...,*x*_n}
- ▶ State space S = {0,1}^X

State updates as Basic Effects

- ▶ Basic effect: a set of literals *b* representing changes on a state.
- Like STRIPS effects, applying b to state s gives state s' = s[b] where values of b are forced in s.

Values functions as Algebraic Decision Diagrams

- Compact representation of $\{0,1\}^n \to \mathbb{R}$ functions
- Efficient operators on functions

PPDDL at a glance

An action *a* is:

- a precondition: ϕ_a
- ▶ an effect: e_a

Effects are recursively defined as:

- x or $\neg x$: forces the value of variable x
- r ↑ v: add reward v
- $\phi \triangleright e$: effect *e* occurs when ϕ is true
- $e_1 \wedge \cdots \wedge e_k$: all of e_1, \ldots, e_k occurs, e_i 's must be consistent
- ▶ $p_1 e_1 | \cdots | p_k e_k$: each e_i may occur with probability p_i .

Effect-Reward Distribution

For a state *s*, a PPDDL effect *e* defines a probability distribution D(e, s) over basic-effect-reward pairs $\langle b, r \rangle$.

Introduction

Policy construction - RBAB Algorithm Frameless Action Values

A Complete Action Backup Example Some Experimental Results

Policy Revision With F-values

Frameless Action-Value Functions (F-Values)

Frame Assumption: the variables unchanged by an action remains unchanged after taking the action. There are no exogenous effects.

Assumed by regular action-value functions:

$$Q_V^e(s) = \mathop{\mathbf{E}}_{\langle b,r \rangle \sim D(e,s)} [r + \gamma V(s[b])]$$

▶ When not assumed, unchanged variables take value as in $s' \in \{0, 1\}^X$:

$$F_V^e(s,s') = \mathop{\mathbf{E}}_{\langle b,r\rangle\sim D(e,s)} \left[r + \gamma V(s'[b])\right]$$

Frameless action-values embed the regular ones:

$$Q_V^e(s) = F_V^e(s,s)$$

Why F-Values ?

Allows incremental handling of conjunctive effects

 $e_1 \wedge e_2 \wedge \cdots \wedge e_k$

PPDDL convention:

▶ Each *e_i* modifies different variables, or at least consistently

Incremental conjunctive effect backup:

- Compute F_V^{e₁}, make no assumptions on how variables not modified by e₁ change.
- Next, let V ← F^{e1}_V and compute F^{e2}_V accounting for both e1 and e2.
- Repeat.

And more...

From PPDDL Effects to F-Values

Backup Rules

Given F-Value V' there is a rule for each kind of effect e to compute $F_{V'}^e$.

ADD efficiency

Each rule corresponds to few ADD operations.

Introduction

Policy construction - RBAB Algorithm Frameless Action Values A Complete Action Backup Example Some Experimental Results

Policy Revision With F-values

Example Action Backup

Action effect

$$(r \uparrow 1) \land (\neg x \triangleright z) \land (0.3 \neg x | 0.7y)$$

Previous value function V

Primed & γ -discounted F-value V' st. $V'(\cdot, s) = \gamma V(s)$. $(\gamma = 0.8)$

F-Value for an update effect

$$(r \uparrow 1) \land (\neg x \triangleright z) \land (0.3 \neg x | 0.7y)$$

Previous F-value: V'

$$F_{V'}^{(r\uparrow 1)}(s,s') = V'(s,s') + 1$$

F-Value for a simple effect

$$(r \uparrow 1) \land (\neg x \triangleright z) \land (0.3 \neg x | 0.7y)$$

Previous F-value: $W = F_{VV}^{(r\uparrow 1)}$

$$F_W^z(s,s') = W(s,s'[z])$$

F-Value for a conditional effect

$$(r \uparrow 1) \land (\neg x \triangleright z) \land (0.3 \neg x | 0.7y)$$

Previous F-value: $W = F_{V'}^{(r\uparrow 1)}$

F-Value for a probabilistic effect

$$(r \uparrow 1) \land (\neg x \triangleright z) \land (0.3 \neg x | 0.7y)$$

Previous F-value: $W = F_{W'}^{(r\uparrow 1) \land (\neg x \triangleright z)}$

$$F_W^{(0.3 op x \mid 0.7y)}(s,s') = 0.3 imes F_W^{ op x}(s,s') + 0.7 imes F_W^y(s,s')$$

From F-values to action values

$$Q_V^e(s) = F_V^e(s,s)$$

With ADDs:

- "unprime" each primed variable and keep consistent branches.
- or with operators: $Q = \exists X'[x_1 \leftrightarrow x'_1 \times \cdots \times x_n \leftrightarrow x'_n 1 \times F]$

Value Iteration with F-Values

Algorithm: Rule Based Action Backup (RBAB)

A simple adaptation of Value Iteration

- ► *V* ← 0
- Repeat until convergence:
 - 1. $V' \leftarrow \gamma \times \text{PrimeVars}(V)$
 - 2. Compute $F_{V'}^{e_a}$ for each action *a*
 - 3. Deduce $Q_{V'}^a$ from $F_{V'}^{e_a}$
 - 4. $V \leftarrow \max_a Q_{V'}^a$
- Extract policy

Introduction

Policy construction - RBAB Algorithm

Frameless Action Values A Complete Action Backup Example Some Experimental Results

Policy Revision With F-values

Evaluation on IPC Domains -1/2

A best-case domain: search-and-rescue 2,000 -RBAB SPUDD-matrix --- SPUDD-1by1 1,500 Line (s) 1,000 500 0 5 6 7 8 11 12 13 14 15 9 10 Instance

Evaluation on IPC Domains -2/2

Impact of the size of problem description: drive domains

Domain: 3 Action Schemata, Effects: $\bigwedge_i p_i(c_i \triangleright e_i) | p'_i(c'_i \triangleright e'_i)$

Evaluation on IPC Domains -2/2

Impact of the size of problem description: drive domains

Domain: 9 Action Schemata, Effects: $\bigwedge_i p_i(c_i \triangleright e_i) | p'_i(c'_i \triangleright e'_i)$

Evaluation on IPC Domains -2/2

Impact of the size of problem description: drive domains

Domain: 9 Action Schemata, Effects: as compact as possible

Introduction

Policy construction - RBAB Algorithm Frameless Action Values A Complete Action Backup Example Some Experimental Results

Policy Revision With F-values

A Policy Revision Problem

Revision scenario

Agent has:

- Some policy π and it's value function V.
- A description of an action effect a, and a modified version a'.
- The F-value F^a_V.

Revision problem: compute the F-value $F_V^{a'}$, from F_V^a .

Possible applications: model-based Reinforcement Learning, which incrementally learns action descriptions. Particularly RTDP-RMAX or RTDP-IE which perform one-step action backups.

Possible Revisions

Adding an effect : $a' = a \wedge e$

$$\rightsquigarrow F_V^{a'} = F_{F_V^a}^e.$$

Modifying rewards : $a' = a \land (\phi \triangleright (r \uparrow v))$ $\rightsquigarrow F_V^{a'} = F_V^a + \phi \times v.$

Revising probabilities I :

From
$$a = \phi \triangleright (p \ e | (1 - p) \top)$$

• To
$$a' = \phi \triangleright (\mathbf{q} \ e | (1 - \mathbf{q}) \top)$$

 $\rightsquigarrow F_V^{a'} = \text{ITE}(\phi, (1 - \frac{1-q}{1-p}) \times F_V^{a \wedge e} + \frac{1-q}{1-p} \times F_V^a, F_V^a)$ Revising probabilities II :

From
$$a = \phi \triangleright (p e | (1 - p) e')$$

• To
$$a' = \phi \triangleright (\mathbf{q} \ e | (1 - \mathbf{q}) \ e')$$

with e and e' consistent

Conclusion

Frameless Value Functions allows

- Value Iteration from PPDDL MDPs
 - No translation into DBNs.
 - Efficient with compact effects and non exclusive conditions
 - Exploit the efficiency & compactness of ADDs.
- Also offers possibilities for policy revision

Perspectives

- Probabilisting planning (i.e. using initial & goal states)
- Approximate value iteration (like APRICODD)
- Experiment with Affine ADDs.

Conclusion

Frameless Value Functions allows

- Value Iteration from PPDDL MDPs
 - No translation into DBNs.
 - Efficient with compact effects and non exclusive conditions
 - Exploit the efficiency & compactness of ADDs.
- Also offers possibilities for policy revision

Perspectives

- Probabilisting planning (i.e. using initial & goal states)
- Approximate value iteration (like APRICODD)
- Experiment with Affine ADDs.

Thank You.