Policy Construction for MDPs Represented in
Probabilistic PDDL

Boris Lesner and Bruno Zanuttini

GREYC, Université de Caen Basse-Normandie, FRANCE

June 14 2011

Outline

Introduction

Policy construction - RBAB Algorithm
Frameless Action Values
A Complete Action Backup Example
Some Experimental Results

Policy Revision With F-values

2/ 24

Motivations

PPDDL actions represent compactly Markov Decision Processes.

How to compute optimal infinite horizon discounted policies with
PPDDL actions as input ?

The usual way:

» Translate PPDDL into DBNs.
» Use your favorite solver (e.g. SPUDD).

Or, exploit the PPDDL structure directly

» Avoid the cost of translating into DBNs.

» Handles naturally corellated effects.

3/24

Compact Action and Value Function Representation

Grounded PPDDL
» Propositional state variables X = {x1,...,x,}
» State space S = {0, 1}

State updates as Basic Effects
» Basic effect: a set of literals b representing changes on a state.

» Like STRIPS effects, applying b to state s gives state
s’ = s[b] where values of b are forced in s.

Values functions as Algebraic Decision Diagrams
» Compact representation of {0,1}" — R functions

» Efficient operators on functions

4/ 24

PPDDL at a glance

An action a is:
> a precondition: ¢,
» an effect: e,

Effects are recursively defined as:
» x or —x: forces the value of variable x
r1 v: add reward v
¢ > e: effect e occurs when ¢ is true
e1 N---Neg: all of er, ..., e, occurs, e's must be consistent

vV vV v Y

p1€é1| - - |pkex: each e; may occur with probability p;.

Effect—Reward Distribution

For a state s, a PPDDL effect e defines a probability distribution
D(e, s) over basic-effect—reward pairs (b, r).

5/ 24

Policy construction - RBAB Algorithm
Frameless Action Values

6/ 24

Frameless Action-Value Functions (F-Values)

Frame Assumption: the variables unchanged by an action remains
unchanged after taking the action. There are no exogenous effects.

» Assumed by regular action-value functions:

Qi) =, B [r+aVislo)]

» When not assumed, unchanged variables take value as in
s’ € {0,1}%:

Fo(s,s') = E r+~V(s'[b])
v(s;s’) (b,r)wD(e,s)[]

> Frameless action-values embed the regular ones:

Qv (s) = Fi(s;s)

7/ 2

Why F-Values 7

Allows incremental handling of conjunctive effects

et Ne N--- N ek

PPDDL convention:
» Each e; modifies different variables, or at least consistently

Incremental conjunctive effect backup:

» Compute F}, make no assumptions on how variables not
modified by e; change.

> Next, let V < F{J and compute F{? accounting for both e;
and e.

> Repeat.

And more...

8 /24

From PPDDL Effects to F-Values

Backup Rules

Given F-Value V/ there is a rule for each kind of effect e to
compute Fy,.

ADD efficiency
Each rule corresponds to few ADD operations.

9/ 24

Policy construction - RBAB Algorithm

A Complete Action Backup Example

10 / 24

Example Action Backup

Action effect

(r11)A(—x>z)A(0.3-x[0.7y)

Primed & v-discounted
F-value V/ st.

Previous value function V V/(-,5) = vV(s).
N (y=0.8)
/0 /
y z %
VAREAN g
y ; y/ Z/
25 5 125 3.75 ' '
/ \ ¢\<
2 4 1 3

11/ 24

F-Value for an update effect

(rt1)A(—x>2z)A(0.3-x]0.7y)

Previous F-value: V’

FUM(s,s') = V/(s,s') + 1

X X
RS RS
z' y' z'
A AN
4 1 3 3 5 2 4
%/—/
V/ F\(/’/Tl)

12 /24

F-Value for a simple effect

(rt1)A(—x>z)A(0.3-x[0.7y)

Previous F-value: W = F\(/r,ﬂ)

Fiu(s,5)) = W(s, s[2]))
x' x!
/0 /N
yoZ A
/ \ 1 — \ \
COFACTOR | Z, / / \ VAN
3 5 2 4 3 5 4
~—
w Fi,

13/ 24

F-Value for a conditional effect

(r1t1)A(—x>z)A(0.3-x|0.7y)

Previous F-value: W = F\(/r,ﬁ)

F(—\xl>z)(s,s/) _ { F‘fv(s7 5/) if s): X

12 W(s,s") otherwise
X v
x' x' /

/N /0 VAR

X\ y, \\ }// Z/ L A\/\/ \\‘
e I e A A T 4 Z
0 1 3 5 4 3 5 2 4 : S\
, . , r/i y \d
—-x Fﬁ/ W \3 5 2 4,

(rTA(=x>2)

FVI‘, X>z

14 / 24

F-Value for a probabilistic effect

(r 1) A (=x>2) A (0.3-x]0.7y)

Previous F-value: W = F\(/flTl)/\(_'sz)

F\(/‘(3.3—\X|O.7y)(575/) = 0.3 x FyiX(s, S/) 107 % F%/(S, s/)

= / o
L0 N
4 2 27 33
FADA(x02)A(0.3-x(0.7y)
V/

15 / 24

From F-values to action values

Q5(s) = Fils,s)]

With ADDs:
» “unprime” each primed variable and keep consistent branches.
» or with operators: Q@ = IX'[x1 <> x| X -+ X Xp > X1 X F]

X
r/ \\A
x' x' X
YN / \
Z/ L7 ’ Z/ = // V4
r/, 2 ¥ v y \1

4 2 27 33 4 27 33

~ ~~ ~ —
F(rTl)/\(—\xDz)/\(O.3—\x|0.7y) (rt1)A(=x>2)A(0.3-x]0.7y)

V/ QV/

16 / 24

Value lteration with F-Values

Algorithm: Rule Based Action Backup (RBAB)

A simple adaptation of Value lteration
» V0

» Repeat until convergence:

1. V' + v x PrimeVars(V)

2. Compute Fy;, for each action a
3. Deduce Qf, from F

4.V + max, QY

» Extract policy

17 / 24

Policy construction - RBAB Algorithm

Some Experimental Results

18 / 24

Evaluation on IPC Domains — 1/2

A best-case domain: search-and-rescue

2,000 4
—o— RBAB
—a— SPUDD-matrix
1,500 | —e— SPUDD-1byl
<v1 000 |
k=
'—

500 +

5 6 7 8 9 10 11 12 13 14 15
Instance #

19 / 24

Evaluation on IPC Domains — 2/2

Impact of the size of problem description: drive domains

The drive domain.

4,000 T |_o— RBAB
—m— SPUDD-matrix

5 6 7 8 9 10 11 12
Instance #

Domain: 3 Action Schemata, Effects: A; pi(ci > €)|pi(c/ > €))
20/ 24

Evaluation on IPC Domains — 2/2

Impact of the size of problem description: drive domains

The drive-unrolled domain.

4,000 T |_o— RBAB
—m— SPUDD-matrix

O
£2,000
'_
1,000 |
[{3 I '
5 6 7 8 9 10 11 12

Instance #

Domain: 9 Action Schemata, Effects: A; pi(ci > €)|pi(c/ > €))
20/ 24

Evaluation on IPC Domains — 2/2

Impact of the size of problem description: drive domains

The drive-unrolled2 domain

4,000 T |_o— RBAB
—m— SPUDD-matrix

=
£2,000
'_
1,000 |
[L — ' '
5 6 7 8 9 10 11 12

Instance #

Domain: 9 Action Schemata, Effects: as compact as possible
20 / 24

Policy Revision With F-values

21/ 24

A Policy Revision Problem

Revision scenario
Agent has:

» Some policy 7 and it’s value function V.
» A description of an action effect a, and a modified version a’.
> The F-value F}.

Revision problem: compute the F-value F, from F3.

Possible applications: model-based Reinforcement Learning,
which incrementally learns action descriptions. Particularly
RTDP-RMAX or RTDP-IE which perform one-step action backups.

22 /24

Possible Revisions

Adding an effect : &/ =aNe

a _ re
- F = Fg,.

Modifying rewards : 3’ = a A (¢ (r 1 v))
~w Fg=F3 +¢xv.

Revising probabilities | :

» Froma=¢r(pel(l—p)T)

> Tod =¢>(gel(l—q)T)

w Fy =TTE(¢, (1 — =) x F"* + =4 x F§, FY)

Revising probabilities Il :

» Froma=¢>(pe|(l—p)¢)

> Toad' =¢r(gel(l-q)e)

» with e and €’ consistent

23 /24

Conclusion

Frameless Value Functions allows
» Value lteration from PPDDL MDPs

» No translation into DBNs.
» Efficient with compact effects and non exclusive conditions
» Exploit the efficiency & compactness of ADDs.

» Also offers possibilities for policy revision

Perspectives
» Probabilisting planning (i.e. using initial & goal states)
» Approximate value iteration (like APRICODD)
» Experiment with Affine ADDs.

24 / 24

Conclusion

Frameless Value Functions allows
» Value lteration from PPDDL MDPs

» No translation into DBNs.
» Efficient with compact effects and non exclusive conditions
» Exploit the efficiency & compactness of ADDs.

» Also offers possibilities for policy revision

Perspectives
» Probabilisting planning (i.e. using initial & goal states)
» Approximate value iteration (like APRICODD)
» Experiment with Affine ADDs.

Thank You.

24 / 24

	Introduction
	Policy construction - RBAB Algorithm
	Frameless Action Values
	A Complete Action Backup Example
	Some Experimental Results

	Policy Revision With F-values

