
Policy Construction for MDPs Represented in
Probabilistic PDDL

Boris Lesner and Bruno Zanuttini

GREYC, Université de Caen Basse-Normandie, FRANCE

June 14 2011

Outline

Introduction

Policy construction - RBAB Algorithm
Frameless Action Values
A Complete Action Backup Example
Some Experimental Results

Policy Revision With F-values

2 / 24

Motivations

PPDDL actions represent compactly Markov Decision Processes.

How to compute optimal infinite horizon discounted policies with
PPDDL actions as input ?

The usual way:
I Translate PPDDL into DBNs.
I Use your favorite solver (e.g. SPUDD).

Or, exploit the PPDDL structure directly
I Avoid the cost of translating into DBNs.
I Handles naturally corellated effects.

3 / 24

Compact Action and Value Function Representation

Grounded PPDDL
I Propositional state variables X = {x1, . . . , xn}
I State space S = {0, 1}X

State updates as Basic Effects
I Basic effect: a set of literals b representing changes on a state.
I Like STRIPS effects, applying b to state s gives state

s ′ = s[b] where values of b are forced in s.

Values functions as Algebraic Decision Diagrams
I Compact representation of {0, 1}n → R functions
I Efficient operators on functions

4 / 24

PPDDL at a glance

An action a is:
I a precondition: φa
I an effect: ea

Effects are recursively defined as:
I x or ¬x : forces the value of variable x
I r ↑ v : add reward v
I φ . e: effect e occurs when φ is true
I e1 ∧ · · · ∧ ek : all of e1, . . . , ek occurs, ei ’s must be consistent
I p1e1| · · · |pkek : each ei may occur with probability pi .

Effect–Reward Distribution
For a state s, a PPDDL effect e defines a probability distribution
D(e, s) over basic-effect–reward pairs 〈b, r〉.

5 / 24

Introduction

Policy construction - RBAB Algorithm
Frameless Action Values
A Complete Action Backup Example
Some Experimental Results

Policy Revision With F-values

6 / 24

Frameless Action-Value Functions (F-Values)

Frame Assumption: the variables unchanged by an action remains
unchanged after taking the action. There are no exogenous effects.

I Assumed by regular action-value functions:

Qe
V (s) = E

〈b,r〉∼D(e,s)
[r + γV (s[b])]

I When not assumed, unchanged variables take value as in
s ′ ∈ {0, 1}X :

F e
V (s, s ′) = E

〈b,r〉∼D(e,s)

[
r + γV (s ′[b])

]
I Frameless action-values embed the regular ones:

Qe
V (s) = F e

V (s, s)

7 / 24

Why F-Values ?

Allows incremental handling of conjunctive effects

e1 ∧ e2 ∧ · · · ∧ ek

PPDDL convention:
I Each ei modifies different variables, or at least consistently

Incremental conjunctive effect backup:
I Compute F e1

V , make no assumptions on how variables not
modified by e1 change.

I Next, let V ← F e1
V and compute F e2

V accounting for both e1
and e2.

I Repeat.

And more. . .
8 / 24

From PPDDL Effects to F-Values

Backup Rules
Given F-Value V ′ there is a rule for each kind of effect e to
compute F e

V ′ .

ADD efficiency
Each rule corresponds to few ADD operations.

9 / 24

Introduction

Policy construction - RBAB Algorithm
Frameless Action Values
A Complete Action Backup Example
Some Experimental Results

Policy Revision With F-values

10 / 24

Example Action Backup

Action effect

(r ↑ 1) ∧ (¬x . z) ∧ (0.3¬x |0.7y)

Previous value function V

x

y z

2.5 5 1.25 3.75

Primed & γ-discounted
F-value V ′ st.
V ′(·, s) = γV (s).
(γ = 0.8)

x ′

y ′ z ′

2 4 1 3

11 / 24

F-Value for an update effect

(r ↑ 1) ∧ (¬x . z) ∧ (0.3¬x |0.7y)

Previous F-value: V ′

F (r↑1)
V ′ (s, s ′) = V ′(s, s ′) + 1

x ′

y ′ z ′

2 4 1 3
V ′

+ 1 =

x ′

y ′ z ′

3 5 2 4

F (r↑1)
V ′

12 / 24

F-Value for a simple effect

(r ↑ 1) ∧ (¬x . z) ∧ (0.3¬x |0.7y)

Previous F-value: W = F (r↑1)
V ′

F z
W (s, s ′) = W (s, s ′[z])

COFACTOR

z ′,

x ′

y ′ z ′

3 5 2 4
W

=

x ′

y ′

3 5 4
F z

W

13 / 24

F-Value for a conditional effect

(r ↑ 1) ∧ (¬x . z) ∧ (0.3¬x |0.7y)

Previous F-value: W = F (r↑1)
V ′

F (¬x.z)
W (s, s ′) =

{
F z

W (s, s ′) if s |= ¬x
W (s, s ′) otherwise

ITE

x

0 1
¬x

,

x ′

y ′

3 5 4
F z

W

,

x ′

y ′ z ′

3 5 2 4
W

=

x ′ x ′

x

y ′ z ′

3 5 42

F (r↑1)∧(¬x.z)
V ′

14 / 24

F-Value for a probabilistic effect

(r ↑ 1) ∧ (¬x . z) ∧ (0.3¬x |0.7y)

Previous F-value: W = F (r↑1)∧(¬x.z)
V ′

F (0.3¬x |0.7y)
W (s, s ′) = 0.3× F¬x

W (s, s ′) + 0.7× F y
W (s, s ′)

0.3×

x

z ′

42
F¬x

W

+0.7×

x ′ x ′

x

z ′

342

F y
W

=

x

x ′ x ′

z ′ z ′

4 2 2.7 3.3

F (r↑1)∧(¬x.z)∧(0.3¬x |0.7y)
V ′

15 / 24

From F-values to action values

Qe
V (s) = F e

V (s, s)

With ADDs:
I “unprime” each primed variable and keep consistent branches.
I or with operators: Q = ∃X ′[x1 ↔ x ′1 × · · · × xn ↔ x ′n1× F]

x

x ′ x ′

z ′ z ′

4 2 2.7 3.3

F (r↑1)∧(¬x.z)∧(0.3¬x |0.7y)
V ′

=⇒

x

z

4 2.7 3.3

Q(r↑1)∧(¬x.z)∧(0.3¬x |0.7y)
V ′

16 / 24

Value Iteration with F-Values

Algorithm: Rule Based Action Backup (RBAB)

A simple adaptation of Value Iteration
I V ← 0
I Repeat until convergence:

1. V ′ ← γ × PrimeVars(V)
2. Compute F ea

V ′ for each action a
3. Deduce Qa

V ′ from F ea
V ′

4. V ← maxa Qa
V ′

I Extract policy

17 / 24

Introduction

Policy construction - RBAB Algorithm
Frameless Action Values
A Complete Action Backup Example
Some Experimental Results

Policy Revision With F-values

18 / 24

Evaluation on IPC Domains – 1/2
A best-case domain: search-and-rescue

5 6 7 8 9 10 11 12 13 14 15
0

500

1,000

1,500

2,000

Instance #

Ti
m

e
(s

)

RBAB
SPUDD-matrix
SPUDD-1by1

19 / 24

Evaluation on IPC Domains – 2/2
Impact of the size of problem description: drive domains

The drive domain.

5 6 7 8 9 10 11 12

1,000

2,000

3,000

4,000

Instance #

Ti
m

e
(s

)

RBAB
SPUDD-matrix
SPUDD-1by1

Domain: 3 Action Schemata, Effects:
∧

i pi(ci . ei)|p′i(c ′i . e′i)
20 / 24

Evaluation on IPC Domains – 2/2
Impact of the size of problem description: drive domains

The drive-unrolled domain.

5 6 7 8 9 10 11 12

1,000

2,000

3,000

4,000

Instance #

Ti
m

e
(s

)

RBAB
SPUDD-matrix
SPUDD-1by1

Domain: 9 Action Schemata, Effects:
∧

i pi(ci . ei)|p′i(c ′i . e′i)
20 / 24

Evaluation on IPC Domains – 2/2
Impact of the size of problem description: drive domains

The drive-unrolled2 domain

5 6 7 8 9 10 11 12

1,000

2,000

3,000

4,000

Instance #

Ti
m

e
(s

)

RBAB
SPUDD-matrix
SPUDD-1by1

Domain: 9 Action Schemata, Effects: as compact as possible
20 / 24

Introduction

Policy construction - RBAB Algorithm
Frameless Action Values
A Complete Action Backup Example
Some Experimental Results

Policy Revision With F-values

21 / 24

A Policy Revision Problem

Revision scenario
Agent has:
I Some policy π and it’s value function V .
I A description of an action effect a, and a modified version a′.
I The F-value F a

V .

Revision problem: compute the F-value F a′
V , from F a

V .

Possible applications: model-based Reinforcement Learning,
which incrementally learns action descriptions. Particularly
RTDP-RMAX or RTDP-IE which perform one-step action backups.

22 / 24

Possible Revisions

Adding an effect : a′ = a ∧ e

 F a′
V = F e

F a
V

.

Modifying rewards : a′ = a ∧ (φ . (r ↑ v))

 F a′
V = F a

V + φ× v .

Revising probabilities I :
I From a = φ . (p e|(1− p) >)
I To a′ = φ . (q e|(1− q) >)

 F a′
V = ITE(φ, (1− 1−q

1−p)× F a∧e
V + 1−q

1−p × F a
V ,F a

V)
Revising probabilities II :
I From a = φ . (p e|(1− p) e′)
I To a′ = φ . (q e|(1− q) e′)
I with e and e′ consistent

23 / 24

Conclusion

Frameless Value Functions allows
I Value Iteration from PPDDL MDPs

I No translation into DBNs.
I Efficient with compact effects and non exclusive conditions
I Exploit the efficiency & compactness of ADDs.

I Also offers possibilities for policy revision

Perspectives
I Probabilisting planning (i.e. using initial & goal states)
I Approximate value iteration (like APRICODD)
I Experiment with Affine ADDs.

Thank You.

24 / 24

Conclusion

Frameless Value Functions allows
I Value Iteration from PPDDL MDPs

I No translation into DBNs.
I Efficient with compact effects and non exclusive conditions
I Exploit the efficiency & compactness of ADDs.

I Also offers possibilities for policy revision

Perspectives
I Probabilisting planning (i.e. using initial & goal states)
I Approximate value iteration (like APRICODD)
I Experiment with Affine ADDs.

Thank You.
24 / 24

	Introduction
	Policy construction - RBAB Algorithm
	Frameless Action Values
	A Complete Action Backup Example
	Some Experimental Results

	Policy Revision With F-values

