
Translation-based approaches to
Conformant and Contingent Planning

Alexandre Albore and Héctor Palacios

Universitat Pompeu Fabra & Universitat Carlos III de Madrid

ICAPS – June 2011

Albore and Palacios (UPF & UC3M) Translation-based approaches 1 ICAPS – June 2011 1 / 99

Get it real!

Let’s get real, but principled!

Albore and Palacios (UPF & UC3M) Translation-based approaches 2 ICAPS – June 2011 2 / 99

Get it real!

Let’s get real, but principled!

Albore and Palacios (UPF & UC3M) Translation-based approaches 2 ICAPS – June 2011 2 / 99

Get it real!

Let’s get real, but principled!

Albore and Palacios (UPF & UC3M) Translation-based approaches 2 ICAPS – June 2011 2 / 99

Problem addressed in this tutorial

Planning is the
Problem of finding the actions that achieve a goal,

starting from an initial situation
Classical planning assume complete information on

initial state, actions effects, . . .
Conformant Planning

incomplete information on init state and effects but still one
sequence of actions

Contingent Planning is like Conformant but
allow observations. Plans are not sequences anymore.

Albore and Palacios (UPF & UC3M) Translation-based approaches 3 ICAPS – June 2011 3 / 99

Classical Planning

Albore and Palacios (UPF & UC3M) Translation-based approaches 4 ICAPS – June 2011 4 / 99

Conformant Planning

Albore and Palacios (UPF & UC3M) Translation-based approaches 5 ICAPS – June 2011 5 / 99

Classical problem for one state of a Conformant (I)

a

a

c

b

e

d

Albore and Palacios (UPF & UC3M) Translation-based approaches 6 ICAPS – June 2011 6 / 99

Classical problem for one state of a Conformant (II)

a a

cb

ed

Albore and Palacios (UPF & UC3M) Translation-based approaches 7 ICAPS – June 2011 7 / 99

Conformant Planning (again)

Albore and Palacios (UPF & UC3M) Translation-based approaches 8 ICAPS – June 2011 8 / 99

Contingent Planning

Albore and Palacios (UPF & UC3M) Translation-based approaches 9 ICAPS – June 2011 9 / 99

Translation to Classical planning

Conformant P Classical P'

Classical
Planner

Plan for P'Plan for P

Features
Conformant plans are sequences like classical ones
but Contingent are not. Something else is needed

Albore and Palacios (UPF & UC3M) Translation-based approaches 10 ICAPS – June 2011 10 / 99

Classical Planning

Problem of finding a sequence of deterministic actions that achieves
a goal, starting from a given initial state.

action cost = 1
no observations

Expressed in high-level language

Init: p,q
Goal: g
Actions:
a Precondition: p. Effect: r
b Precondition: q. Effect: r → g
c Precondition: q. Effect: ¬q ∧ r

Plan: a, b

Albore and Palacios (UPF & UC3M) Translation-based approaches 11 ICAPS – June 2011 11 / 99

Classical Planning

Problem of finding a sequence of deterministic actions that achieves
a goal, starting from a given initial state.

action cost = 1
no observations

Expressed in high-level language

Init: p,q
Goal: g
Actions:
a Precondition: p. Effect: r
b Precondition: q. Effect: r → g
c Precondition: q. Effect: ¬q ∧ r

Plan: a, b

Albore and Palacios (UPF & UC3M) Translation-based approaches 11 ICAPS – June 2011 11 / 99

Classical Planning Syntax

Classical planning problems P are tuples of the form P = 〈F , I,O,G〉
where

F : fluent symbols in the problem
I: set of fluents true in the initial situation
O: set of operators or actions. Every action a has

I a precondition Pre(a) given by a set of fluents
I a set of conditional effects C → L where C is a set of fluent

literals and L is a single fluent literal.

G: set of fluents defining the goal

Albore and Palacios (UPF & UC3M) Translation-based approaches 12 ICAPS – June 2011 12 / 99

Classical Planning Model

Languages such as Strips, ADL, PDDL, . . . , represent models in
compact form
A classical planner is a solver over the class of models given
by:

I a state space S
I a known initial state s0 ∈ S
I a set SG ⊆ S of goal states
I actions A(s) ⊆ A applicable in each s ∈ S
I a deterministic transition function s′ = f (a, s) for a ∈ A(s)
I uniform action costs c(a, s) = 1

Given a problem P, states of its corresponding model are set of
fluents of P
Their solutions (plans) are sequences of applicable actions that
map s0 into SG

Albore and Palacios (UPF & UC3M) Translation-based approaches 13 ICAPS – June 2011 13 / 99

Classical Planning

Albore and Palacios (UPF & UC3M) Translation-based approaches 14 ICAPS – June 2011 14 / 99

State-of-the-art Classical Planning

Two main approaches currently:

Heuristic-search based (McDermott, 1996; Bonet et al., 1997)

SAT-based (Kautz & Selman, 1992)

The good news: classical planning works
I heuristic search-based solve large problems very fast

(non-optimally)
Not so good: limitations

I No Uncertainty (no probabilities)
I No Incomplete Information (no sensing)

Albore and Palacios (UPF & UC3M) Translation-based approaches 15 ICAPS – June 2011 15 / 99

State-of-the-art Classical Planning

Two main approaches currently:

Heuristic-search based (McDermott, 1996; Bonet et al., 1997)

SAT-based (Kautz & Selman, 1992)

The good news: classical planning works
I heuristic search-based solve large problems very fast

(non-optimally)
Not so good: limitations

I No Uncertainty (no probabilities)
I No Incomplete Information (no sensing)

Albore and Palacios (UPF & UC3M) Translation-based approaches 15 ICAPS – June 2011 15 / 99

Conformant Planning

Extend classical planning model to
I incomplete information about initial state and
I non-deterministic actions

Conformant plan: a sequence of actions that achieves the goal
for any possible initial state and state transition
Harder than classical planning

verifying if sequence of actions is a conformant plan is hard

For polynomial length, classical planning is NP-complete, but
conformant planning is Σp

2-complete = NPNP-complete

Albore and Palacios (UPF & UC3M) Translation-based approaches 16 ICAPS – June 2011 16 / 99

Examples

Cleaning robot: there maybe debris in a grid room. A robot can
collect debris in a cell. A conformant plan for cleaning the room is
to collect debris in all the cells.
Heal a patient: patient has a possible set of pathologies. A
sequence of treatment actions that cures a patient for any of such
pathologies is a conformant plan.

Init: illness1 ∨ illness2,alive
Goal: healthy ,alive
Actions:

treat1 Precondition: true. Effect: illness1 → healthy
treat2 Precondition: true. Effect: illness2 → healthy
treat3 Precondition: true. Effect: illness2 → healthy ,

¬illness2 → ¬alive

Albore and Palacios (UPF & UC3M) Translation-based approaches 17 ICAPS – June 2011 17 / 99

Omit precondition if true

Init: illness1 ∨ illness2,alive
Goal: healthy ,alive
Actions:

treat1: illness1 → healthy
treat2: illness2 → healthy
treat3: illness2 → healthy ,

¬illness2 → ¬alive

Albore and Palacios (UPF & UC3M) Translation-based approaches 18 ICAPS – June 2011 18 / 99

Look-n-grab 8x8

Actions: move,
look-and-grab,
putdown
Init: object can be
anywhere.
Goal: object at Trash
Robot should visit
Trash after each
look-and-grab

I

T

Albore and Palacios (UPF & UC3M) Translation-based approaches 19 ICAPS – June 2011 19 / 99

Conformant Planning: the Trouble with Incomplete Info

Problem: A robot must move from an uncertain I into G with
certainty, one cell at a time, in a grid nxn

Conformant and classical planning look similar except for
uncertain I (assuming actions are deterministic).
Yet plans can be quite different:
best conformant plan must move robot to a corner first! (in
order to localize)

Albore and Palacios (UPF & UC3M) Translation-based approaches 20 ICAPS – June 2011 20 / 99

Why it’s important?

What we really want is observations, probabilities, time,
resources, etc, yet

Better Conformant Planning leads to
better Planning with Observations (contingent)

I Contingent-FF uses Conformant-FF’s heuristic
I POND does both: conformant and contingent
I CLG for planning with observations presented in this tutorial

Conformant planning is relevant to any planning setting where
actions are applied to a set of possible configurations.
Classical planning is symbolic reachability, and conformant
is reachability between set of configurations.

Albore and Palacios (UPF & UC3M) Translation-based approaches 21 ICAPS – June 2011 21 / 99

Why it’s important?

What we really want is observations, probabilities, time,
resources, etc, yet

Better Conformant Planning leads to
better Planning with Observations (contingent)

I Contingent-FF uses Conformant-FF’s heuristic
I POND does both: conformant and contingent
I CLG for planning with observations presented in this tutorial

Conformant planning is relevant to any planning setting where
actions are applied to a set of possible configurations.
Classical planning is symbolic reachability, and conformant
is reachability between set of configurations.

Albore and Palacios (UPF & UC3M) Translation-based approaches 21 ICAPS – June 2011 21 / 99

Why it’s important?

What we really want is observations, probabilities, time,
resources, etc, yet

Better Conformant Planning leads to
better Planning with Observations (contingent)

I Contingent-FF uses Conformant-FF’s heuristic
I POND does both: conformant and contingent
I CLG for planning with observations presented in this tutorial

Conformant planning is relevant to any planning setting where
actions are applied to a set of possible configurations.
Classical planning is symbolic reachability, and conformant
is reachability between set of configurations.

Albore and Palacios (UPF & UC3M) Translation-based approaches 21 ICAPS – June 2011 21 / 99

Why it’s important?

What we really want is observations, probabilities, time,
resources, etc, yet

Better Conformant Planning leads to
better Planning with Observations (contingent)

I Contingent-FF uses Conformant-FF’s heuristic
I POND does both: conformant and contingent
I CLG for planning with observations presented in this tutorial

Conformant planning is relevant to any planning setting where
actions are applied to a set of possible configurations.
Classical planning is symbolic reachability, and conformant
is reachability between set of configurations.

Albore and Palacios (UPF & UC3M) Translation-based approaches 21 ICAPS – June 2011 21 / 99

Conformant Planning Syntax

Deterministic conformant planning problems P are tuples
P = 〈F , I,O,G〉 where

F : fluent symbols in the problem
I: set of clauses over F defining the initial situation
O: set of operators or actions. Every action a has

I a precondition Pre(a) given by a set of fluents
I a set of conditional effects C → L where C is a set of fluent

literals and L is a single fluent literal.

G: set of literals over F defining the (conjunctive) goal

Albore and Palacios (UPF & UC3M) Translation-based approaches 22 ICAPS – June 2011 22 / 99

Conformant Planning: Semantic

a set S0 ⊆ S of possible initial states
a set of possible goals SG ⊆ S st sg ∈ SG iff G ⊆ sg

actions A(s) ⊆ A applicable in each s ∈ S
a deterministic state transition function F s.t.
F (a, s) = s′, the state resulting of applying a on s

– a conformant plan is an action sequence that maps each initial
state s0 in S0 into some goal state sg

– It can be cast as a path-finding problem over belief-states

Albore and Palacios (UPF & UC3M) Translation-based approaches 23 ICAPS – June 2011 23 / 99

Conformant Planning: Semantic

a set S0 ⊆ S of possible initial states
a set of possible goals SG ⊆ S st sg ∈ SG iff G ⊆ sg

actions A(s) ⊆ A applicable in each s ∈ S
a deterministic state transition function F s.t.
F (a, s) = s′, the state resulting of applying a on s

– a conformant plan is an action sequence that maps each initial
state s0 in S0 into some goal state sg

– It can be cast as a path-finding problem over belief-states

Albore and Palacios (UPF & UC3M) Translation-based approaches 23 ICAPS – June 2011 23 / 99

Conformant Planning: Semantic

a set S0 ⊆ S of possible initial states
a set of possible goals SG ⊆ S st sg ∈ SG iff G ⊆ sg

actions A(s) ⊆ A applicable in each s ∈ S
a deterministic state transition function F s.t.
F (a, s) = s′, the state resulting of applying a on s

– a conformant plan is an action sequence that maps each initial
state s0 in S0 into some goal state sg

– It can be cast as a path-finding problem over belief-states

Albore and Palacios (UPF & UC3M) Translation-based approaches 23 ICAPS – June 2011 23 / 99

Conformant Planning

Albore and Palacios (UPF & UC3M) Translation-based approaches 24 ICAPS – June 2011 24 / 99

Belief space search

Almost all previous approaches to conformant planning use
search on graph whose nodes are set of possible states (belief
states)

Key issues:
I Representation: compact and efficient

I Heuristic: for guiding the search

Albore and Palacios (UPF & UC3M) Translation-based approaches 25 ICAPS – June 2011 25 / 99

Roadmap of First Part

Basic Translation Scheme K0(P)

General Translation Scheme KT ,M(P)

Complete Instances of KT ,M(P)

Conformant Width of P bounds complexity of translation
Poly translation Ki that is complete if width ≤ i
Width of some benchmarks
Creating a planner using KT ,M(P)

Other translation-based algorithms

Spoilers!
Conformant problems mapped into classical ones
Plans obtained using an off-the-shelf classical planner
Translation exponential in worst case

Albore and Palacios (UPF & UC3M) Translation-based approaches 26 ICAPS – June 2011 26 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL

a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

Translation from P into K0(P)

For a conformant problem P = 〈F ,O, I,G〉
F stands for the fluents in P
O for the operators with effects C → L
I for the initial situation (clauses over F -literals)
G for the goal situation (set of F -literals)

Conformant P ⇒ Classical K0(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL,K¬L (two fluents)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L
Init unknown lit L ⇒ ¬KL ∧ ¬K¬L (both false)

Goal L ⇒ KL
Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ a : KC → KL
a : K¬C → ∅
a : ¬K¬C → ¬K¬L

Albore and Palacios (UPF & UC3M) Translation-based approaches 27 ICAPS – June 2011 27 / 99

K0 example

Problem P with
Init: p ∨ q, r , Goal: g
Actions:

a : p → q
b : q → g
c : r → q

< a,b > and < c,b > are conformant plans.
K0(P) is:

Init: Kr , Goal: Kg
Actions:

a : Kp → Kq, a : ¬K¬p → ¬K¬q
b : Kq → Kg, b : ¬K¬q → ¬K¬g
c : Kr → Kq, c : ¬K¬r → ¬K¬q

< c,b > is a classical plan, but < a,b > is not.

Albore and Palacios (UPF & UC3M) Translation-based approaches 28 ICAPS – June 2011 28 / 99

K0 example

Problem P with
Init: p ∨ q, r , Goal: g
Actions:

a : p → q
b : q → g
c : r → q

< a,b > and < c,b > are conformant plans.
K0(P) is:

Init: Kr , Goal: Kg
Actions:

a : Kp → Kq, a : ¬K¬p → ¬K¬q
b : Kq → Kg, b : ¬K¬q → ¬K¬g
c : Kr → Kq, c : ¬K¬r → ¬K¬q

< c,b > is a classical plan, but < a,b > is not.

Albore and Palacios (UPF & UC3M) Translation-based approaches 28 ICAPS – June 2011 28 / 99

K0 example. Cancellation rules

Problem P with
Init: p ∨ q, r , s, Goal: t ,g
Actions:

a : p → ¬r , a : s → t
b : r → g

< b,a > is a conformant plan but < a,b > is not.
K0(P) but without cancellation rules is:

Init: Kr ,Ks, ¬Kp,¬Kq,¬K¬p,¬K¬q, Goal: Kt ,Kg
Actions:

a : Kp → K¬r , a : Ks → Kt ,

a : ¬K¬p → ¬K¬r , a : ¬K¬s → ¬K¬t

b : Kr → Kg,

b : ¬K¬r → ¬K¬g

< a,b > and < b,a > are both classical plans. ERROR
< b,a > is a classical plan but < a,b > is not.

Albore and Palacios (UPF & UC3M) Translation-based approaches 29 ICAPS – June 2011 29 / 99

K0 example. Cancellation rules

Problem P with
Init: p ∨ q, r , s, Goal: t ,g
Actions:

a : p → ¬r , a : s → t
b : r → g

< b,a > is a conformant plan but < a,b > is not.
K0(P) but without cancellation rules is:

Init: Kr ,Ks, ¬Kp,¬Kq,¬K¬p,¬K¬q, Goal: Kt ,Kg
Actions:

a : Kp → K¬r , a : Ks → Kt ,

a : ¬K¬p → ¬K¬r , a : ¬K¬s → ¬K¬t

b : Kr → Kg,

b : ¬K¬r → ¬K¬g

< a,b > and < b,a > are both classical plans. ERROR
< b,a > is a classical plan but < a,b > is not.

Albore and Palacios (UPF & UC3M) Translation-based approaches 29 ICAPS – June 2011 29 / 99

K0 example. Cancellation rules

Problem P with
Init: p ∨ q, r , s, Goal: t ,g
Actions:

a : p → ¬r , a : s → t
b : r → g

< b,a > is a conformant plan but < a,b > is not.
K0(P) but with

out

cancellation rules is:
Init: Kr ,Ks, ¬Kp,¬Kq,¬K¬p,¬K¬q, Goal: Kt ,Kg
Actions:

a : Kp → K¬r , a : Ks → Kt ,
a : ¬K¬p → ¬K¬r , a : ¬K¬s → ¬K¬t
b : Kr → Kg, b : ¬K¬r → ¬K¬g

< a,b > and < b,a > are both classical plans. ERROR
< b,a > is a classical plan but < a,b > is not.

Albore and Palacios (UPF & UC3M) Translation-based approaches 29 ICAPS – June 2011 29 / 99

Basic Properties and Extensions

Translation K0(P) is sound:
I If π is a classical plan that solves K0(P), then π is a conformant

plan for P.
But too incomplete

I often K0(P) will have no solution while P does
I works only when uncertainty is irrelevant

Extension KT ,M(P) we present now can be
both complete and polynomial

Albore and Palacios (UPF & UC3M) Translation-based approaches 30 ICAPS – June 2011 30 / 99

Basic Properties and Extensions

Translation K0(P) is sound:
I If π is a classical plan that solves K0(P), then π is a conformant

plan for P.
But too incomplete

I often K0(P) will have no solution while P does
I works only when uncertainty is irrelevant

Extension KT ,M(P) we present now can be
both complete and polynomial

Albore and Palacios (UPF & UC3M) Translation-based approaches 30 ICAPS – June 2011 30 / 99

Key elements in Translation KT ,M(P)

a set T of tags t : consistent set of assumptions (literals) about
the initial situation I

I 6|= ¬t

a set M of merges m: valid subsets of tags

I |=
∨
t∈m

t

Literals KL/t meaning that L is true given that initially t ; i.e.
K (t0 ⊃ L)

Albore and Palacios (UPF & UC3M) Translation-based approaches 31 ICAPS – June 2011 31 / 99

Intuition of merge actions

Init: Candy in hall (h) ∨ Candy in room (r)
Goal: Hold the candy (c)
Apply pick-from-hall, get Kc/h
Apply pick-from-room, get Kc/r
Then, for sure, holding the candy (Kc) from
merge Kc/h ∧ Kc/r → Kc

Albore and Palacios (UPF & UC3M) Translation-based approaches 32 ICAPS – June 2011 32 / 99

Intuition of merge actions

Init: Candy in hall (h) ∨ Candy in room (r)
Goal: Hold the candy (c)
Apply pick-from-hall, get Kc/h
Apply pick-from-room, get Kc/r
Then, for sure, holding the candy (Kc) from
merge Kc/h ∧ Kc/r → Kc

Albore and Palacios (UPF & UC3M) Translation-based approaches 32 ICAPS – June 2011 32 / 99

Intuition of merge actions

Init: Candy in hall (h) ∨ Candy in room (r)
Goal: Hold the candy (c)
Apply pick-from-hall, get Kc/h
Apply pick-from-room, get Kc/r
Then, for sure, holding the candy (Kc) from
merge Kc/h ∧ Kc/r → Kc

Albore and Palacios (UPF & UC3M) Translation-based approaches 32 ICAPS – June 2011 32 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Translation from P into KT ,M(P)

For a conformant problem P = 〈F ,O, I,G〉

Conformant P ⇒ Classical KT ,M(P)
〈F , I,O,G〉 ⇒ 〈F ′, I′,O′,G′〉

Fluent L ⇒ ¬KL/t ,K¬L/t (for all tags t)
Init: unknown lit L ⇒ ¬KL ∧ ¬K¬L

Init if I |= (t ⊃ L) ⇒ ¬KL/t ∧ ¬K¬L/t
Goal L ⇒ KL

Operator a has prec L ⇒ a has prec KL

Operator a: C → L ⇒

{ for all tags t
a : KC/t → KL/t
a : ¬K¬C/t → ¬K¬L/t

For each lit L and merge m ∈ M with m = {t1, . . . , tn}, add to O′:

mergeL,m : KL/t1 ∧ . . . ∧ KL/tn → KL

Albore and Palacios (UPF & UC3M) Translation-based approaches 33 ICAPS – June 2011 33 / 99

Idea of KT ,M(P)

Given literal L and tag t , atom KL/t means
I K (t0 ⊃ L): KL true if t is true initially

Conformant Problem P:
I Init: x1 ∨ x2,¬g
I Goal: g
I Actions: a1 : x1 → g, a2 : x2 → g

Classical Problem KT ,M(P):
I Init: Kx1/x1,Kx2/x2,K¬g,¬Kg,¬Kx1,¬K¬x1, . . .
I After a1: Kg/x1, Kx1/x1,Kx2/x2, ¬K¬g, ¬Kg, . . .
I After a2: Kg/x2, Kg/x1,Kx1/x2,Kx2/x2,¬K¬g,¬Kg, . . .

F New action mergeg : Kg/x1 ∧ Kg/x2 → Kg
I After mergeg : Kg, Kg/x2,Kg/x1,Kx1/x2,Kx2/x2,¬K¬g, . . .
I Goal satisfied: Kg

Albore and Palacios (UPF & UC3M) Translation-based approaches 34 ICAPS – June 2011 34 / 99

Idea of KT ,M(P)

Given literal L and tag t , atom KL/t means
I K (t0 ⊃ L): KL true if t is true initially

Conformant Problem P:
I Init: x1 ∨ x2,¬g
I Goal: g
I Actions: a1 : x1 → g, a2 : x2 → g

Classical Problem KT ,M(P):
I Init: Kx1/x1,Kx2/x2,K¬g,¬Kg,¬Kx1,¬K¬x1, . . .
I After a1: Kg/x1, Kx1/x1,Kx2/x2, ¬K¬g, ¬Kg, . . .
I After a2: Kg/x2, Kg/x1,Kx1/x2,Kx2/x2,¬K¬g,¬Kg, . . .

F New action mergeg : Kg/x1 ∧ Kg/x2 → Kg
I After mergeg : Kg, Kg/x2,Kg/x1,Kx1/x2,Kx2/x2,¬K¬g, . . .
I Goal satisfied: Kg

Albore and Palacios (UPF & UC3M) Translation-based approaches 34 ICAPS – June 2011 34 / 99

Idea of KT ,M(P)

Given literal L and tag t , atom KL/t means
I K (t0 ⊃ L): KL true if t is true initially

Conformant Problem P:
I Init: x1 ∨ x2,¬g
I Goal: g
I Actions: a1 : x1 → g, a2 : x2 → g

Classical Problem KT ,M(P):
I Init: Kx1/x1,Kx2/x2,K¬g,¬Kg,¬Kx1,¬K¬x1, . . .
I After a1: Kg/x1, Kx1/x1,Kx2/x2, ¬K¬g, ¬Kg, . . .
I After a2: Kg/x2, Kg/x1,Kx1/x2,Kx2/x2,¬K¬g,¬Kg, . . .

F New action mergeg : Kg/x1 ∧ Kg/x2 → Kg
I After mergeg : Kg, Kg/x2,Kg/x1,Kx1/x2,Kx2/x2,¬K¬g, . . .
I Goal satisfied: Kg

Albore and Palacios (UPF & UC3M) Translation-based approaches 34 ICAPS – June 2011 34 / 99

Idea of KT ,M(P)

Given literal L and tag t , atom KL/t means
I K (t0 ⊃ L): KL true if t is true initially

Conformant Problem P:
I Init: x1 ∨ x2,¬g
I Goal: g
I Actions: a1 : x1 → g, a2 : x2 → g

Classical Problem KT ,M(P):
I Init: Kx1/x1,Kx2/x2,K¬g,¬Kg,¬Kx1,¬K¬x1, . . .
I After a1: Kg/x1, Kx1/x1,Kx2/x2, ¬K¬g, ¬Kg, . . .
I After a2: Kg/x2, Kg/x1,Kx1/x2,Kx2/x2,¬K¬g,¬Kg, . . .

F New action mergeg : Kg/x1 ∧ Kg/x2 → Kg
I After mergeg : Kg, Kg/x2,Kg/x1,Kx1/x2,Kx2/x2,¬K¬g, . . .
I Goal satisfied: Kg

Albore and Palacios (UPF & UC3M) Translation-based approaches 34 ICAPS – June 2011 34 / 99

Idea of KT ,M(P)

Given literal L and tag t , atom KL/t means
I K (t0 ⊃ L): KL true if t is true initially

Conformant Problem P:
I Init: x1 ∨ x2,¬g
I Goal: g
I Actions: a1 : x1 → g, a2 : x2 → g

Classical Problem KT ,M(P):
I Init: Kx1/x1,Kx2/x2,K¬g,¬Kg,¬Kx1,¬K¬x1, . . .
I After a1: Kg/x1, Kx1/x1,Kx2/x2, ¬K¬g, ¬Kg, . . .
I After a2: Kg/x2, Kg/x1,Kx1/x2,Kx2/x2,¬K¬g,¬Kg, . . .

F New action mergeg : Kg/x1 ∧ Kg/x2 → Kg
I After mergeg : Kg, Kg/x2,Kg/x1,Kx1/x2,Kx2/x2,¬K¬g, . . .
I Goal satisfied: Kg

Albore and Palacios (UPF & UC3M) Translation-based approaches 34 ICAPS – June 2011 34 / 99

Example of T ,M

Given I = {p ∨ q, v ∨ ¬w}, T and M can be:

T = {{},p,q, v ,¬w}
M = {{p,q}, {v ,¬w}}

T ′ = {{}, {p, v}, {q, v}, . . .}
M ′ = . . .

Albore and Palacios (UPF & UC3M) Translation-based approaches 35 ICAPS – June 2011 35 / 99

Interesting properties of the translation KT ,M?

Soundness: are correct the plans we are obtaining?
I If not, are they useful?

Completeness: is there a classical plan if there is a conformant
one?

I Is there a one-to-one relationship between conformant and
classical plans?

Performance: what are the limitations of a planner based on this
translation?

I What is the size of the resulting problem?
I How do current classical planners perform on the translation?

Albore and Palacios (UPF & UC3M) Translation-based approaches 36 ICAPS – June 2011 36 / 99

Properties of Translation KT ,M

If T contains only the empty tag, KT ,M(P) reduces to K0(P)

KT ,M(P) is always sound

We will see that...
For suitable choices of T ,M translation is complete
. . . and sometimes polynomial as well

Albore and Palacios (UPF & UC3M) Translation-based approaches 37 ICAPS – June 2011 37 / 99

Soundness

If sequence of actions π makes KL/t true in KT ,M(P),
π makes L true in P starting from all the initial states satisfying t
At least one of the tags t is true
Then, merging KL is sound

Theorem (Soundness KT ,M(P))
If π is a plan that solves the classical planning problem KT ,M(P),
then the action sequence π′ that results from π by dropping the merge
actions is a plan that solves the conformant planning problem P.

Albore and Palacios (UPF & UC3M) Translation-based approaches 38 ICAPS – June 2011 38 / 99

Soundness

If sequence of actions π makes KL/t true in KT ,M(P),
π makes L true in P starting from all the initial states satisfying t
At least one of the tags t is true
Then, merging KL is sound

Theorem (Soundness KT ,M(P))
If π is a plan that solves the classical planning problem KT ,M(P),
then the action sequence π′ that results from π by dropping the merge
actions is a plan that solves the conformant planning problem P.

Albore and Palacios (UPF & UC3M) Translation-based approaches 38 ICAPS – June 2011 38 / 99

Soundness

KL/t1

KL/tn

.

.

.

KG/t1

KG/tn

.

.

.

<a1, ..., ak> merge

KG/t1

KG/tn

.

.

KG

S0i |= t1 <a1, ..., ak> Si |= G

S01

.

.

S0m

.

.

S1

.

.

Sm

.

.

Albore and Palacios (UPF & UC3M) Translation-based approaches 39 ICAPS – June 2011 39 / 99

A complete but exponential instance of KT ,M(P): Ks0

Ks0 is a complete instance of KT ,M(P), by setting
T to { {}, s1

0, . . . , s
n
0 }, and

M to { {s1
0, . . . , s

n
0} }

where s1
0, . . . , s

n
0 are the possible initial states of P.

Only one merge for the disjunction of possible initial states
Intuition

I Applying actions in Ks0 keeps track of each fluent L for each
possible initial state s0: KL/s0

I Merge goals using KG/s1
0 ∧ . . . ∧ KG/sn

0 → KG
This instance is complete, but exponential in the number of
fluents

I . . . although not a bad conformant planner

Albore and Palacios (UPF & UC3M) Translation-based approaches 40 ICAPS – June 2011 40 / 99

A complete but exponential instance of KT ,M(P): Ks0

Ks0 is a complete instance of KT ,M(P), by setting
T to { {}, s1

0, . . . , s
n
0 }, and

M to { {s1
0, . . . , s

n
0} }

where s1
0, . . . , s

n
0 are the possible initial states of P.

Only one merge for the disjunction of possible initial states
Intuition

I Applying actions in Ks0 keeps track of each fluent L for each
possible initial state s0: KL/s0

I Merge goals using KG/s1
0 ∧ . . . ∧ KG/sn

0 → KG
This instance is complete, but exponential in the number of
fluents

I . . . although not a bad conformant planner

Albore and Palacios (UPF & UC3M) Translation-based approaches 40 ICAPS – June 2011 40 / 99

A complete but exponential instance of KT ,M(P): Ks0

Ks0 is a complete instance of KT ,M(P), by setting
T to { {}, s1

0, . . . , s
n
0 }, and

M to { {s1
0, . . . , s

n
0} }

where s1
0, . . . , s

n
0 are the possible initial states of P.

Only one merge for the disjunction of possible initial states
Intuition

I Applying actions in Ks0 keeps track of each fluent L for each
possible initial state s0: KL/s0

I Merge goals using KG/s1
0 ∧ . . . ∧ KG/sn

0 → KG
This instance is complete, but exponential in the number of
fluents

I . . . although not a bad conformant planner

Albore and Palacios (UPF & UC3M) Translation-based approaches 40 ICAPS – June 2011 40 / 99

A complete but exponential instance of KT ,M(P): Ks0

Ks0 is a complete instance of KT ,M(P), by setting
T to { {}, s1

0, . . . , s
n
0 }, and

M to { {s1
0, . . . , s

n
0} }

where s1
0, . . . , s

n
0 are the possible initial states of P.

Only one merge for the disjunction of possible initial states
Intuition

I Applying actions in Ks0 keeps track of each fluent L for each
possible initial state s0: KL/s0

I Merge goals using KG/s1
0 ∧ . . . ∧ KG/sn

0 → KG
This instance is complete, but exponential in the number of
fluents

I . . . although not a bad conformant planner

Albore and Palacios (UPF & UC3M) Translation-based approaches 40 ICAPS – June 2011 40 / 99

Example: complete but compact instance of KT ,M

Consider the problem Pn
I Init: x1 ∨ · · · ∨ xn
I Goal: g
I Actions: ai : xi → g

Ks0(Pn) size is exponential on n
I 2n − 1 initial states

But having a merge {x1, . . . , xn} (and according tags) generates
KT ,M(Pn) complete

I Enough with merge Kg/x1 ∧ . . . ∧ Kg/xn → Kg
I Linear on n

How can we generate compact instances of KT ,M?

Albore and Palacios (UPF & UC3M) Translation-based approaches 41 ICAPS – June 2011 41 / 99

Example: complete but compact instance of KT ,M

Consider the problem Pn
I Init: x1 ∨ · · · ∨ xn
I Goal: g
I Actions: ai : xi → g

Ks0(Pn) size is exponential on n
I 2n − 1 initial states

But having a merge {x1, . . . , xn} (and according tags) generates
KT ,M(Pn) complete

I Enough with merge Kg/x1 ∧ . . . ∧ Kg/xn → Kg
I Linear on n

How can we generate compact instances of KT ,M?

Albore and Palacios (UPF & UC3M) Translation-based approaches 41 ICAPS – June 2011 41 / 99

Example: complete but compact instance of KT ,M

Consider the problem Pn
I Init: x1 ∨ · · · ∨ xn
I Goal: g
I Actions: ai : xi → g

Ks0(Pn) size is exponential on n
I 2n − 1 initial states

But having a merge {x1, . . . , xn} (and according tags) generates
KT ,M(Pn) complete

I Enough with merge Kg/x1 ∧ . . . ∧ Kg/xn → Kg
I Linear on n

How can we generate compact instances of KT ,M?

Albore and Palacios (UPF & UC3M) Translation-based approaches 41 ICAPS – June 2011 41 / 99

Example: complete but compact instance of KT ,M

Consider the problem Pn
I Init: x1 ∨ · · · ∨ xn
I Goal: g
I Actions: ai : xi → g

Ks0(Pn) size is exponential on n
I 2n − 1 initial states

But having a merge {x1, . . . , xn} (and according tags) generates
KT ,M(Pn) complete

I Enough with merge Kg/x1 ∧ . . . ∧ Kg/xn → Kg
I Linear on n

How can we generate compact instances of KT ,M?

Albore and Palacios (UPF & UC3M) Translation-based approaches 41 ICAPS – June 2011 41 / 99

Covering Translation

Definition (Covering Translation)
A covering translation is a valid translation KT ,M(P) that includes one
merge m = t1, . . . , tn that covers L, for each precondition and goal
literal L in P.

Theorem (Completeness)
Covering translations KT ,M(P) are complete; i.e., if π is a conformant
plan for P, then there is a classical plan π′ for KT ,M(P) such that π is
π′ with the merge actions removed.

Albore and Palacios (UPF & UC3M) Translation-based approaches 42 ICAPS – June 2011 42 / 99

Covering

Key notions:

Relevant clauses of a literal L: CI(L)

A tag t satisfies a clause C
A set of tags m satisfies a clause C,

a.k.a. m covers C

Albore and Palacios (UPF & UC3M) Translation-based approaches 43 ICAPS – June 2011 43 / 99

Relevance

Definition
Informally, L is relevant to L′ basically when a : C → L′ in P with
L ∈ C, plus transitivity, etc

Remark: preconditions do not contribute to relevance.

Given actions with rules a : A,B → C, b : C → D, b : B → ¬C.
A is relevant to A,C,D.
B is relevant to B,C,D,¬C.
¬A is relevant to ¬A,¬C,¬D.
. . .

Albore and Palacios (UPF & UC3M) Translation-based approaches 44 ICAPS – June 2011 44 / 99

Relevant Clauses

Suppose problem P with I =

p ∨ ¬p
bailoutbanks ∨ ¬bailoutbanks

zapatero ∨merkel ∨ berlusconi ∨ chavez
cucumber ∨ ¬cucumber

· · ·
Suppose both p and ¬p are relevant to goal G.
Also suppose bailoutbanks is relevant to goal G, but
¬bailoutbanks is not. All other literals are not relevant.
Will not get a solution by reasoning on
bailoutbanks ∨ ¬bailoutbanks
Enough to reason on p ∨ ¬p, the only relevant clause.

Albore and Palacios (UPF & UC3M) Translation-based approaches 45 ICAPS – June 2011 45 / 99

Relevant Clauses

Suppose problem P with I =

p ∨ ¬p
bailoutbanks ∨ ¬bailoutbanks

zapatero ∨merkel ∨ berlusconi ∨ chavez
cucumber ∨ ¬cucumber

· · ·
Suppose both p and ¬p are relevant to goal G.
Also suppose bailoutbanks is relevant to goal G, but
¬bailoutbanks is not. All other literals are not relevant.
Will not get a solution by reasoning on
bailoutbanks ∨ ¬bailoutbanks
Enough to reason on p ∨ ¬p, the only relevant clause.

Albore and Palacios (UPF & UC3M) Translation-based approaches 45 ICAPS – June 2011 45 / 99

Relevant Clauses

Suppose problem P with I =

p ∨ ¬p
bailoutbanks ∨ ¬bailoutbanks

zapatero ∨merkel ∨ berlusconi ∨ chavez
cucumber ∨ ¬cucumber

· · ·
Suppose both p and ¬p are relevant to goal G.
Also suppose bailoutbanks is relevant to goal G, but
¬bailoutbanks is not. All other literals are not relevant.
Will not get a solution by reasoning on
bailoutbanks ∨ ¬bailoutbanks
Enough to reason on p ∨ ¬p, the only relevant clause.

Albore and Palacios (UPF & UC3M) Translation-based approaches 45 ICAPS – June 2011 45 / 99

Relevant Clauses (2)

Definition
Relevant Clause A clause c in I is relevant to a literal L in P if all literals
L′ ∈ C are relevant to L.
The set of clauses in I relevant to L is denoted as CI(L).

Next step: tag t satisfy a clause C.

Albore and Palacios (UPF & UC3M) Translation-based approaches 46 ICAPS – June 2011 46 / 99

Relevant Clauses (2)

Definition
Relevant Clause A clause c in I is relevant to a literal L in P if all literals
L′ ∈ C are relevant to L.
The set of clauses in I relevant to L is denoted as CI(L).

Next step: tag t satisfy a clause C.

Albore and Palacios (UPF & UC3M) Translation-based approaches 46 ICAPS – June 2011 46 / 99

Satisfy

Warning: cannot afford expensive inference while building
translation K (P).

I But we need to check I |= (t ⊃ L) for adding KL/t to the initial state.
I No general inference on clauses. Use unit-resolution – enough

when clauses in Prime Implicate form.
Given tag t , consistent set of literals.

t satisfies C = L1 ∨ · · · ∨ Ln if some Li is in the consequences of t
given I, i.e. I |= (t ⊃ L)

Let m a valid disjunctions of tags
m satisfies a clause C if each tag t satisfies C

Albore and Palacios (UPF & UC3M) Translation-based approaches 47 ICAPS – June 2011 47 / 99

Example Satisfy

Suppose I = {oneof (x1, . . . , xn),oneof (y1, . . . , yn)}, and xi is relevant
to any xj ,¬xj , yi is relevant to any yj ,¬yj .
Notice than oneof (x1, . . . , xn) means x1 ∨ . . .∨ xn and ¬xi ∨¬xj , for any
i 6= j .

The tag {x1, y1} satisfies all clauses.
because the consequence of {x1, y1} is
{x1, y1,¬x2,¬y2, . . . ,¬xn,¬xn}.

The merge m = {x1, . . . , xn} satisfies CI(xn), and m is valid.
The merge m′ = {{x1, y1}, . . . , {xn, yn}, } satisfies CI(xn), but m′ is
not valid.

Albore and Palacios (UPF & UC3M) Translation-based approaches 48 ICAPS – June 2011 48 / 99

Grid problem

Albore and Palacios (UPF & UC3M) Translation-based approaches 49 ICAPS – June 2011 49 / 99

Example Satisfy (2)

Suppose I = {oneof (x1, . . . , xn),oneof (y1, . . . , yn)}, and xi is relevant
to any xj ,¬xj , yi is relevant to any yj ,¬yj . Also suppose xi is relevant to
any yj ,¬yj , and yi is relevant to xj ,¬xj . Everything is relevant to
everything.

the tag {x1, y1} satisfies both clauses.
The merge m = {x1, . . . , xn} does not satisfy CI(xn), even though
m is valid.
The merge m′ = {{x1, y1}, . . . , {xn, yn}, } does satisfy CI(xn), but
m′ is not valid.
The merge m′′ = {x1, . . . , xn} × {y1, . . . , yn} does satisfy CI(xn),
and m′′ is valid.

Albore and Palacios (UPF & UC3M) Translation-based approaches 50 ICAPS – June 2011 50 / 99

Covering Translation

Definition (Covering Merges)
A valid merge m in a translation KT ,M(P) covers a literal L if m
satisfies CI(L), the set of clauses in I relevant to L

Definition (Covering Translation)
A covering translation is a valid translation KT ,M(P) that includes one
merge m = t1, . . . , tn that covers L, for each precondition and goal
literal L in P.

Theorem (Completeness)
Covering translations KT ,M(P) are complete; i.e., if π is a conformant
plan for P, then there is a classical plan π′ for KT ,M(P) such that π is
π′ with the merge actions removed.

Albore and Palacios (UPF & UC3M) Translation-based approaches 51 ICAPS – June 2011 51 / 99

Example of Covering Translation

Example: Ks0

The merge {s1
0, . . . , s

n
0} is covering because (1) is valid (2) each initial

state si
0 satisfies each clause

Example: oneof
If CI(L) = {L1 ∨ · · · ∨ Ln,¬Li ∨ ¬Lj for all i 6= j}, then the merge
{L1, . . . ,Ln} is covering because (1) disjunction in I are valid and (2)
each Li implies ¬Lj (for j 6= i) and then Li satisfies each clause in CI(L)

Albore and Palacios (UPF & UC3M) Translation-based approaches 52 ICAPS – June 2011 52 / 99

Example of Covering Translation

Example: Ks0

The merge {s1
0, . . . , s

n
0} is covering because (1) is valid (2) each initial

state si
0 satisfies each clause

Example: oneof
If CI(L) = {L1 ∨ · · · ∨ Ln,¬Li ∨ ¬Lj for all i 6= j}, then the merge
{L1, . . . ,Ln} is covering because (1) disjunction in I are valid and (2)
each Li implies ¬Lj (for j 6= i) and then Li satisfies each clause in CI(L)

Albore and Palacios (UPF & UC3M) Translation-based approaches 52 ICAPS – June 2011 52 / 99

Cover it!

Covering translation guarantee completeness.
How do we get a covering translation?

In principle we want small T ,M
Naive: just combinations of clauses is unbounded on size

... but sometimes is a good idea.

Albore and Palacios (UPF & UC3M) Translation-based approaches 53 ICAPS – June 2011 53 / 99

Width

Definition (Width of Literal)

The conformant width of a literal L, written w(L), is the size of the
smallest set of clauses C in C∗I (L) such that cover c(C) satisfies CI(L).

Roughly, cover c(C) is combination of literals of clauses C
C∗I (L) = relevant clauses CI(L) ∪ tautologies for unknown literals
p ∨ ¬p
Idea: smallest C can be made of

I Clauses in CI(L)
I Last resort: combination of tautologies p ∨ ¬p

Then, w(L) is at most n, the number of unknown fluents
If CI(L) is empty, w(L) = 0

Albore and Palacios (UPF & UC3M) Translation-based approaches 54 ICAPS – June 2011 54 / 99

Width

Definition (Width of Literal)

The conformant width of a literal L, written w(L), is the size of the
smallest set of clauses C in C∗I (L) such that cover c(C) satisfies CI(L).

Roughly, cover c(C) is combination of literals of clauses C
C∗I (L) = relevant clauses CI(L) ∪ tautologies for unknown literals
p ∨ ¬p
Idea: smallest C can be made of

I Clauses in CI(L)
I Last resort: combination of tautologies p ∨ ¬p

Then, w(L) is at most n, the number of unknown fluents
If CI(L) is empty, w(L) = 0

Albore and Palacios (UPF & UC3M) Translation-based approaches 54 ICAPS – June 2011 54 / 99

Width

Definition (Width of Literal)

The conformant width of a literal L, written w(L), is the size of the
smallest set of clauses C in C∗I (L) such that cover c(C) satisfies CI(L).

Roughly, cover c(C) is combination of literals of clauses C
C∗I (L) = relevant clauses CI(L) ∪ tautologies for unknown literals
p ∨ ¬p
Idea: smallest C can be made of

I Clauses in CI(L)
I Last resort: combination of tautologies p ∨ ¬p

Then, w(L) is at most n, the number of unknown fluents
If CI(L) is empty, w(L) = 0

Albore and Palacios (UPF & UC3M) Translation-based approaches 54 ICAPS – June 2011 54 / 99

Width

Definition (Width of Literal)

The conformant width of a literal L, written w(L), is the size of the
smallest set of clauses C in C∗I (L) such that cover c(C) satisfies CI(L).

Roughly, cover c(C) is combination of literals of clauses C
C∗I (L) = relevant clauses CI(L) ∪ tautologies for unknown literals
p ∨ ¬p
Idea: smallest C can be made of

I Clauses in CI(L)
I Last resort: combination of tautologies p ∨ ¬p

Then, w(L) is at most n, the number of unknown fluents
If CI(L) is empty, w(L) = 0

Albore and Palacios (UPF & UC3M) Translation-based approaches 54 ICAPS – June 2011 54 / 99

Width

Definition (Width of Literal)

The conformant width of a literal L, written w(L), is the size of the
smallest set of clauses C in C∗I (L) such that cover c(C) satisfies CI(L).

Roughly, cover c(C) is combination of literals of clauses C
C∗I (L) = relevant clauses CI(L) ∪ tautologies for unknown literals
p ∨ ¬p
Idea: smallest C can be made of

I Clauses in CI(L)
I Last resort: combination of tautologies p ∨ ¬p

Then, w(L) is at most n, the number of unknown fluents
If CI(L) is empty, w(L) = 0

Albore and Palacios (UPF & UC3M) Translation-based approaches 54 ICAPS – June 2011 54 / 99

Width

Definition (Width of Problem)
The conformant width of a problem P, written as w(P), is
w(P) = maxL w(L), where L ranges over the precondition and goal
literals in P.

Calculate w(L) requires find a subset of clauses of C∗I (L) whose
cover satisfies CI(L)

→ exponential on size of C∗I (L)

But verify whether w(L) ≤ i is polynomial for fixed i
→ For each subset of i clauses, try to get a cover

Albore and Palacios (UPF & UC3M) Translation-based approaches 55 ICAPS – June 2011 55 / 99

Width (examples)

If CI(L) is oneof (x1, . . . , xm), then w(L) = 1 because
C = {x1 ∨ · · · ∨ xm} generates the cover c(C) = {{x1}, . . . , {xm}}
that satisfies CI(L).
If CI(L) is (p ∨ ¬p) and (q ∨ ¬q), then w(L) = 2 as
the smallest C in C∗I (L) whose cover satisfies CI(L) is
CI(L) itself.
Sqr-center. Init = oneof(x1, . . . , xn), oneof(y1, . . . , yn).
Goal = xcenter , ycenter . Actions: up, down, left, right.
Rules like up: yi → yi+1 ∧ ¬yi

I Has width 1 because xi not relevant to yj

Albore and Palacios (UPF & UC3M) Translation-based approaches 56 ICAPS – June 2011 56 / 99

Width (examples)

If CI(L) is oneof (x1, . . . , xm), then w(L) = 1 because
C = {x1 ∨ · · · ∨ xm} generates the cover c(C) = {{x1}, . . . , {xm}}
that satisfies CI(L).
If CI(L) is (p ∨ ¬p) and (q ∨ ¬q), then w(L) = 2 as
the smallest C in C∗I (L) whose cover satisfies CI(L) is
CI(L) itself.
Sqr-center. Init = oneof(x1, . . . , xn), oneof(y1, . . . , yn).
Goal = xcenter , ycenter . Actions: up, down, left, right.
Rules like up: yi → yi+1 ∧ ¬yi

I Has width 1 because xi not relevant to yj

Albore and Palacios (UPF & UC3M) Translation-based approaches 56 ICAPS – June 2011 56 / 99

Width (examples)

If CI(L) is oneof (x1, . . . , xm), then w(L) = 1 because
C = {x1 ∨ · · · ∨ xm} generates the cover c(C) = {{x1}, . . . , {xm}}
that satisfies CI(L).
If CI(L) is (p ∨ ¬p) and (q ∨ ¬q), then w(L) = 2 as
the smallest C in C∗I (L) whose cover satisfies CI(L) is
CI(L) itself.
Sqr-center. Init = oneof(x1, . . . , xn), oneof(y1, . . . , yn).
Goal = xcenter , ycenter . Actions: up, down, left, right.
Rules like up: yi → yi+1 ∧ ¬yi

I Has width 1 because xi not relevant to yj

Albore and Palacios (UPF & UC3M) Translation-based approaches 56 ICAPS – June 2011 56 / 99

Translation Ki(P)

Definition (Translation Ki)
The translation Ki(P) is obtained from KT ,M(P) where

If w(P) ≤ i , then one merge m = c(C) for the selected clauses C
of each precond and goal literal L in P.
Otherwise, one merge m = c(C) for L for each set C of i clauses
in C∗I (L).
T is the collection of tags appearing in those merges and the
empty tag.

Theorem (Properties Ki)
For a fixed i, the translation Ki(P) is sound, polynomial, and if
w(P) ≤ i , covering and complete.

Albore and Palacios (UPF & UC3M) Translation-based approaches 57 ICAPS – June 2011 57 / 99

Translation Ki(P)

Definition (Translation Ki)
The translation Ki(P) is obtained from KT ,M(P) where

If w(P) ≤ i , then one merge m = c(C) for the selected clauses C
of each precond and goal literal L in P.
Otherwise, one merge m = c(C) for L for each set C of i clauses
in C∗I (L).
T is the collection of tags appearing in those merges and the
empty tag.

Theorem (Properties Ki)
For a fixed i, the translation Ki(P) is sound, polynomial, and if
w(P) ≤ i , covering and complete.

Albore and Palacios (UPF & UC3M) Translation-based approaches 57 ICAPS – June 2011 57 / 99

Translation Ki(P)

Definition (Translation Ki)
The translation Ki(P) is obtained from KT ,M(P) where

If w(P) ≤ i , then one merge m = c(C) for the selected clauses C
of each precond and goal literal L in P.
Otherwise, one merge m = c(C) for L for each set C of i clauses
in C∗I (L).
T is the collection of tags appearing in those merges and the
empty tag.

Theorem (Properties Ki)
For a fixed i, the translation Ki(P) is sound, polynomial, and if
w(P) ≤ i , covering and complete.

Albore and Palacios (UPF & UC3M) Translation-based approaches 57 ICAPS – June 2011 57 / 99

Width of Conformant Benchmarks

Domain-Parameter # Unknown Fluents Width
1 Safe-n combinations n 1
2 UTS-n locs n 1
3 Ring-n rooms 4n 1
4 Bomb-in-the-toilet-n bombs n 1
5 Comm-n signals n 1
6 Square-Center-n × n grid 2n 1
7 Cube-Center-n × n × n cube 3n 1
8 Grid-n shapes of n keys n ×m 1
9 Logistics n pack m locs n ×m 1

10 Coins-n coins m locs n ×m 1
11 Block-Tower-n Blocks n × (n − 1) + 3n + 1 same
12 Sortnet-n bits n n
13 Adder n pairs of bits 2n 2n
14 Look-and-Grab m objs from n × n locs n × n ×m m
15 1-dispose m objs from n × n locs n × n ×m m

Albore and Palacios (UPF & UC3M) Translation-based approaches 58 ICAPS – June 2011 58 / 99

Width of some problems

Blocks have maximal width.
But blocks, with a magic action to achieve the goal

I Trivial (solved by K0)
Look-n-grab for m objs has width m, but does not depend on size
of the grid.

I Why? Every clause relevant to handempty, that is relevant to all
goals

Albore and Palacios (UPF & UC3M) Translation-based approaches 59 ICAPS – June 2011 59 / 99

Conformant Width: intuitions

It is not necessary to deal with all relevant clauses CI(L) to
achieve KL, for L goal or precond

I some of them are enough for deciding the others
I How many? w(L)

Let PN a problem of size N, having w(PN) = i for any N. It maybe
that for Ki(PN):

I the number of tags grows linear on N, but . . .
I the number of initial states of PN grows exponentially on N
I How can be Ki complete?

A tag t summarize information about all the initial states consistent
with t

Albore and Palacios (UPF & UC3M) Translation-based approaches 60 ICAPS – June 2011 60 / 99

Conformant Width: intuitions

It is not necessary to deal with all relevant clauses CI(L) to
achieve KL, for L goal or precond

I some of them are enough for deciding the others
I How many? w(L)

Let PN a problem of size N, having w(PN) = i for any N. It maybe
that for Ki(PN):

I the number of tags grows linear on N, but . . .
I the number of initial states of PN grows exponentially on N
I How can be Ki complete?

A tag t summarize information about all the initial states consistent
with t

Albore and Palacios (UPF & UC3M) Translation-based approaches 60 ICAPS – June 2011 60 / 99

Basis

Given P a conformant problem and S ⊆ S0 a subset of the
possible initial states of P.
Let P[S] the conformant problem that is like P but with the set of
initial states restricted to S.

Definition
S is a basis for P iff any conformant plan for P[S] is a conformant plan
for P.

Theorem
Conformant problems P with width(P) ≤ i have basis of size |S|
exponential in i. (Even if |S0| is exponential on number of fluents)

You can plan just for a basis (if you are able to find one)! Why?

Albore and Palacios (UPF & UC3M) Translation-based approaches 61 ICAPS – June 2011 61 / 99

Basis

Given P a conformant problem and S ⊆ S0 a subset of the
possible initial states of P.
Let P[S] the conformant problem that is like P but with the set of
initial states restricted to S.

Definition
S is a basis for P iff any conformant plan for P[S] is a conformant plan
for P.

Theorem
Conformant problems P with width(P) ≤ i have basis of size |S|
exponential in i. (Even if |S0| is exponential on number of fluents)

You can plan just for a basis (if you are able to find one)! Why?

Albore and Palacios (UPF & UC3M) Translation-based approaches 61 ICAPS – June 2011 61 / 99

Basis examples

Oneof
Consider a problem P with I = {x1 ∨ · · · ∨ xn,¬xi ∨¬xj for all i 6= j}.
A basis maybe:

{x1,¬x2, . . . ,¬xn}
{¬x1, x2, . . . ,¬xn}

· · ·
{¬x1,¬x2, . . . , xn}

Consider a problem P with I = {x1 ∨ · · · ∨ xn}.
A basis is the same previous set of states.

Why is this a basis for both problems?

Albore and Palacios (UPF & UC3M) Translation-based approaches 62 ICAPS – June 2011 62 / 99

Monotonicity

<a1, ..., ak>

r1

.

.
rn

.

.

r1

.

.
rm

.

.

L
s’

s
rel(s’,L) rel(s,L)≤n m ⊆

then
<a1, ..., ak> L

Albore and Palacios (UPF & UC3M) Translation-based approaches 63 ICAPS – June 2011 63 / 99

There exist a Basis!

Giving literal L and a covering merge m = {t1, . . . , tn, for any state
s there exist i s.t. rel(t∗i ,L) ⊆ rel(s,L).
Pick si s.t. rel(t∗i ,L) ⊆ rel(si ,L) and there is no sj s.t.
rel(sj ,L) ⊂ rel(si ,L).

Hint: like picking the set of ’smaller’ si ’

The set {s1, . . . , sn} is a basis!

Hint:
You don’t need to use KT ,M . If you are able to identify a basis S,
do free-style conformant plan with initial states S.
If you use a subset of initial states S that is not a basis, you will
not get sound solutions.

I Will be useful for relaxations/heuristics.

Albore and Palacios (UPF & UC3M) Translation-based approaches 64 ICAPS – June 2011 64 / 99

There exist a Basis!

Giving literal L and a covering merge m = {t1, . . . , tn, for any state
s there exist i s.t. rel(t∗i ,L) ⊆ rel(s,L).
Pick si s.t. rel(t∗i ,L) ⊆ rel(si ,L) and there is no sj s.t.
rel(sj ,L) ⊂ rel(si ,L).

Hint: like picking the set of ’smaller’ si ’

The set {s1, . . . , sn} is a basis!

Hint:
You don’t need to use KT ,M . If you are able to identify a basis S,
do free-style conformant plan with initial states S.
If you use a subset of initial states S that is not a basis, you will
not get sound solutions.

I Will be useful for relaxations/heuristics.

Albore and Palacios (UPF & UC3M) Translation-based approaches 64 ICAPS – June 2011 64 / 99

Other instances of KT ,M?

Remember you just need:
I Valid set of tags T
I Merges: valid disjunctions of tags in M.

Grab clauses in I and do whatever you method you have to do so.
Hint: get your favorite SAT-solver/model-enumeration technique and
salt as you need.

Clear semantics of KT ,M tell you the consequences of using
invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.
In any state where you get ¬KL/t ∧ ¬K¬L/t , you know you lost
track of L for any initial state satisfying t .

Monitor execution!

Albore and Palacios (UPF & UC3M) Translation-based approaches 65 ICAPS – June 2011 65 / 99

Other instances of KT ,M?

Remember you just need:
I Valid set of tags T
I Merges: valid disjunctions of tags in M.

Grab clauses in I and do whatever you method you have to do so.
Hint: get your favorite SAT-solver/model-enumeration technique and
salt as you need.

Clear semantics of KT ,M tell you the consequences of using
invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.
In any state where you get ¬KL/t ∧ ¬K¬L/t , you know you lost
track of L for any initial state satisfying t .

Monitor execution!

Albore and Palacios (UPF & UC3M) Translation-based approaches 65 ICAPS – June 2011 65 / 99

Other instances of KT ,M?

Remember you just need:
I Valid set of tags T
I Merges: valid disjunctions of tags in M.

Grab clauses in I and do whatever you method you have to do so.
Hint: get your favorite SAT-solver/model-enumeration technique and
salt as you need.

Clear semantics of KT ,M tell you the consequences of using
invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.
In any state where you get ¬KL/t ∧ ¬K¬L/t , you know you lost
track of L for any initial state satisfying t .

Monitor execution!

Albore and Palacios (UPF & UC3M) Translation-based approaches 65 ICAPS – June 2011 65 / 99

Other instances of KT ,M?

Remember you just need:
I Valid set of tags T
I Merges: valid disjunctions of tags in M.

Grab clauses in I and do whatever you method you have to do so.
Hint: get your favorite SAT-solver/model-enumeration technique and
salt as you need.

Clear semantics of KT ,M tell you the consequences of using
invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.
In any state where you get ¬KL/t ∧ ¬K¬L/t , you know you lost
track of L for any initial state satisfying t .

Monitor execution!

Albore and Palacios (UPF & UC3M) Translation-based approaches 65 ICAPS – June 2011 65 / 99

Translation Kmodels(P)

Definition
The translation Kmodels(P) from the general KT ,M(P)

Merge m for each precond and goal L:
models* of CI(L) that are consistent with I

Theorem
The translation Kmodels(P) is sound and complete.

Key points:
– Kmodels is equivalent to KS0 when all the clauses in I are

relevant to all the precondition and goal literals L.
– But Kmodels exponential on number of vars in CI(L), while KS0

exponential in the number of unknown vars in I.

Albore and Palacios (UPF & UC3M) Translation-based approaches 66 ICAPS – June 2011 66 / 99

Translation Kmodels(P)

Definition
The translation Kmodels(P) from the general KT ,M(P)

Merge m for each precond and goal L:
models* of CI(L) that are consistent with I

Theorem
The translation Kmodels(P) is sound and complete.

Key points:
– Kmodels is equivalent to KS0 when all the clauses in I are

relevant to all the precondition and goal literals L.
– But Kmodels exponential on number of vars in CI(L), while KS0

exponential in the number of unknown vars in I.

Albore and Palacios (UPF & UC3M) Translation-based approaches 66 ICAPS – June 2011 66 / 99

The planner T0

Conformant Planner T0, winner at IPC-2006, was based on K1 +
FF, an effective classical planner.

I Using SAT-based conformant planner when FF did not find solution
in K1

version for IPC-2008 K1 + Kmodels
I CpA(H) was the winner.

Albore and Palacios (UPF & UC3M) Translation-based approaches 67 ICAPS – June 2011 67 / 99

T0 optimizations

Non-uniform tags: tags for L are only literals in CI(L)

Remove from PDDL KL/t and cond-effects that does not affect
merge results
If using Ks0, Kmodels or Ki for width ≤ i cancellation can be
tracked by support rules

I Given rule C → L, instead of both
KC → KL and ¬K¬C → ¬K¬L

I keep only KC → KL ∧ ¬K¬L

For invariant oneof(x1, . . . , xn): keep Kxi updated. Example:

K¬x1 ∧ . . . ∧ K¬xn−1 → Kxn

Sometimes for width > 1, can be solved if allowing merge not only
for precs and goal

Albore and Palacios (UPF & UC3M) Translation-based approaches 68 ICAPS – June 2011 68 / 99

Translating P into K1(P): size

P Translation K1(P)

Problem #Fluents #Effects time (secs) #Fluents #Effects
Bomb-100-100 402 40200 1,36 1304 151700

Sqr-64-ctr 130 504 2,34 16644 58980
Sqr-120-ctr 242 952 12,32 58084 204692

Logistics-4-10-10 872 7640 1,44 1904 16740
1-Dispose-8-3 486 1984 26,72 76236 339410

Look-n-Grab-8-1-1 356 2220 4,03 9160 151630

After some simplifications made for T0 to the PDDL
Translation is not the bottleneck

Albore and Palacios (UPF & UC3M) Translation-based approaches 69 ICAPS – June 2011 69 / 99

Performance on current classical planners?

Size of grounded instances
Support for conditional effects
Sensibility of heuristics

Thanks FF for
accepting big grounded PDDLs
dealing with lots of conditional effects

We still got issues with LAMA.

Albore and Palacios (UPF & UC3M) Translation-based approaches 70 ICAPS – June 2011 70 / 99

Digression: on conditional effects

Conditional effects are very expressive!
one of the few ADL extensions than cannot be compiled away with
some blow-up

If classical planning is symbolical reachability where
differences from an state to another are

I verified easily (STRIPS preconditions)
I represented compactly (STRIPS add and delete)

Conditional effects are
I essentially different because simultaneous changes by the same

action
I also a compact representation of change

Button line: good support of conditional effects is needed
from classical planners. Challenge accepted!

I Current planners are tested with hand-made problems with a few
cond-effects.

I Even simple cases are not well treated.

Albore and Palacios (UPF & UC3M) Translation-based approaches 71 ICAPS – June 2011 71 / 99

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

Sampling: pick a set of initial states and plan for them.
I A complete sample will be a basis!

Recall P[S] is the conformant problem P but restricted to the set
of initial states S.
Let KS(P) = Ks0(P[S]). Complete if S is a basis!
Define new instance K i

S(P) that is
I Exponential on i , the size of tags.
I Always complete.
I Not always sound.
I Sound if conformant width w(P) ≤ i .

Albore and Palacios (UPF & UC3M) Translation-based approaches 72 ICAPS – June 2011 72 / 99

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

Sampling: pick a set of initial states and plan for them.
I A complete sample will be a basis!

Recall P[S] is the conformant problem P but restricted to the set
of initial states S.
Let KS(P) = Ks0(P[S]). Complete if S is a basis!
Define new instance K i

S(P) that is
I Exponential on i , the size of tags.
I Always complete.
I Not always sound.
I Sound if conformant width w(P) ≤ i .

Albore and Palacios (UPF & UC3M) Translation-based approaches 72 ICAPS – June 2011 72 / 99

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

Sampling: pick a set of initial states and plan for them.
I A complete sample will be a basis!

Recall P[S] is the conformant problem P but restricted to the set
of initial states S.
Let KS(P) = Ks0(P[S]). Complete if S is a basis!
Define new instance K i

S(P) that is
I Exponential on i , the size of tags.
I Always complete.
I Not always sound.
I Sound if conformant width w(P) ≤ i .

Albore and Palacios (UPF & UC3M) Translation-based approaches 72 ICAPS – June 2011 72 / 99

Sampling (2)

K i
S(P) is KS(P) with a base of size exponential on i .
I Why may K i

S(P) be unsound?
I Relaxation of KT ,M allows to always get a solution!

Almost classic belief state planner using K i
S(P) for heuristic.

I Tricky part was choosing a good approximated basis.
Spoiler: minimal cardinality on propositional logic!

See (Shani & Brafman, 2011), that is based on KT ,M for using
sampling in contingent planning.

Albore and Palacios (UPF & UC3M) Translation-based approaches 73 ICAPS – June 2011 73 / 99

Sampling (2)

K i
S(P) is KS(P) with a base of size exponential on i .
I Why may K i

S(P) be unsound?
I Relaxation of KT ,M allows to always get a solution!

Almost classic belief state planner using K i
S(P) for heuristic.

I Tricky part was choosing a good approximated basis.
Spoiler: minimal cardinality on propositional logic!

See (Shani & Brafman, 2011), that is based on KT ,M for using
sampling in contingent planning.

Albore and Palacios (UPF & UC3M) Translation-based approaches 73 ICAPS – June 2011 73 / 99

Sampling (2)

K i
S(P) is KS(P) with a base of size exponential on i .
I Why may K i

S(P) be unsound?
I Relaxation of KT ,M allows to always get a solution!

Almost classic belief state planner using K i
S(P) for heuristic.

I Tricky part was choosing a good approximated basis.
Spoiler: minimal cardinality on propositional logic!

See (Shani & Brafman, 2011), that is based on KT ,M for using
sampling in contingent planning.

Albore and Palacios (UPF & UC3M) Translation-based approaches 73 ICAPS – June 2011 73 / 99

Related Work

Belief state search (Bonet & Geffner, 2000)
I Translation to classical planning allows to use

F in many cases a very compact representation
F classical planning heuristics

0-approximation (Baral & Son, 1997)
I Incomplete semantic used for conformant planning
I Extended to be complete with exponential saving respect to

standard semantic (Son & Tu, 2006)
I Some problems are exponential for complete 0-approximation, but

have width 1
F CpA (Tran et al, 2009) has optimization for not being exponential in

some of these problems.

Albore and Palacios (UPF & UC3M) Translation-based approaches 74 ICAPS – June 2011 74 / 99

Related Work

Belief state search (Bonet & Geffner, 2000)
I Translation to classical planning allows to use

F in many cases a very compact representation
F classical planning heuristics

0-approximation (Baral & Son, 1997)
I Incomplete semantic used for conformant planning
I Extended to be complete with exponential saving respect to

standard semantic (Son & Tu, 2006)
I Some problems are exponential for complete 0-approximation, but

have width 1
F CpA (Tran et al, 2009) has optimization for not being exponential in

some of these problems.

Albore and Palacios (UPF & UC3M) Translation-based approaches 74 ICAPS – June 2011 74 / 99

T0 vs CpA

KT ,M based: local context for each literals. Complete: context is
enough for achieving the problem
0-approximation extended to be complete: minimal global
context for achieving the problem
KT ,M maybe be exponential better than the 0-approx.
Merging one-of helps CpA
We get classical problem. CpA: search algorithm, heuristics.
But classical problem can be quite big. CpA may have advantage.
More recent planners CNF ,DNF explore different
representations and transitions functions.

Albore and Palacios (UPF & UC3M) Translation-based approaches 75 ICAPS – June 2011 75 / 99

T0 vs CpA

KT ,M based: local context for each literals. Complete: context is
enough for achieving the problem
0-approximation extended to be complete: minimal global
context for achieving the problem
KT ,M maybe be exponential better than the 0-approx.
Merging one-of helps CpA
We get classical problem. CpA: search algorithm, heuristics.
But classical problem can be quite big. CpA may have advantage.
More recent planners CNF ,DNF explore different
representations and transitions functions.

Albore and Palacios (UPF & UC3M) Translation-based approaches 75 ICAPS – June 2011 75 / 99

T0 vs CpA

KT ,M based: local context for each literals. Complete: context is
enough for achieving the problem
0-approximation extended to be complete: minimal global
context for achieving the problem
KT ,M maybe be exponential better than the 0-approx.
Merging one-of helps CpA
We get classical problem. CpA: search algorithm, heuristics.
But classical problem can be quite big. CpA may have advantage.
More recent planners CNF ,DNF explore different
representations and transitions functions.

Albore and Palacios (UPF & UC3M) Translation-based approaches 75 ICAPS – June 2011 75 / 99

Summary of first part

A general KT ,M translation scheme for mapping from conformant
P into classical P ′

A number of interesting instances: K0, Ks0, Ki

Characterization of the complexity of the complete KT ,M in term of
the conformant width
Translation scheme Ki that is always polynomial and complete if
conformant width ≤ i
A conformant planner T0 based on instances of KT ,M

Albore and Palacios (UPF & UC3M) Translation-based approaches 76 ICAPS – June 2011 76 / 99

References

[Baral & Son, ILPS-1997]. Baral, C., & Son, T. C. Approximate reasoning about actions in
presence of sensing and incomplete information. ILPS-1997.

[Bonet & Geffner, AIPS-2000]. Bonet, B., & Geffner, H. Planning with incomplete
information as heuristic search in belief space. AIPS-2000.

[Son & Tu, KR-2006]. Son, T. C., & Tu, P. H. On the completeness of approximation based
reasoning and planning in action theories with incomplete information. KR-2006.

[Tran et al, PADL-2009]. Tran, D., Nguyen, H., Pontelli, E., & Son, T. C. Improving
performance of conformant planners: Static analysis of declarative planning domain
specifications. PADL-2009.

[Palacios & Geffner, JAIR-2009]. Compiling Uncertainty Away in Conformant Planning
Problems with Bounded Width. Palacios, H., & Geffner, H.. JAIR 2009.

[Albore et al, ICAPS-2011]Effective Heuristics and Belief Tracking for Planning with
Incomplete Information. Albore, A., Ramirez, M., & Geffner, H. ICAPS-2011.

[Shani & Brafman, IJCAI-2011]. Replanning in Domains with Partial Information and
Sensing Actions. Shani, G., & Brafman, Ronen. IJCAI-2011.

More references on the second part!

Albore and Palacios (UPF & UC3M) Translation-based approaches 77 ICAPS – June 2011 77 / 99

Translation-based
Approaches to Conformant
and Contingent Planning

Part II

Contingent Planning

• Conformant problem =
 classical problem + incomplete information

• Contingent problem =
 conformant problem + sensing actions

•STRIPS Problem P= <F, I, A, G> with three extensions:

- I is a well-formed formula over F, encoding uncertainty

- Actions a ∈ A may have conditional effects

- Sensing actions

Action selection in Wumpus

from Russell & Norvig

What should the agent do next?

Contingent Planning:
 Sensing and Incomplete Information

• Finding a solution in presence of partial or incomplete information.

- The belief states space size which is combinatorially large.
- Difficult to obtain informed heuristics in belief space.

• The solution strongly depends on the observation outcome.

- The size of the solution grows exponentially with the number
of possible observations.

Thus verification and/or generation of a plan takes
exponential time.

• Contingent problems cannot be translated into classical ones, as
they have different solution forms (trees vs. sequences).

• Offline planning: provide solution tree for all possible contingencies

• Online planning: action sequence generated on-the-fly (interleaving
planning and execution).

• As for conformant planning, translation compiles beliefs away:
states represent “belief states” over P.

A Translation-based approach
 to Contingent Planning

Compiling into classical planning:
the CLG approach

• Contingent problem P translated into fully observable but
non-deterministic problem XT,M(P).

- Sensing is modeled as actions with non-deterministic effects

- XT,M(P) has complete information!
Solutions to XT,M(P) yield solutions for P!

...but how to deal with sensing?
Search has to make explicit effort to obtain information.

• Later on, we will guide the search using relaxation X+(P), that is
also a classical planning problem.

Translation XT,M(P)

• Contingent problem P = Conformant problem Pʼ + Sensing actions.

• XT,M(P) = KT,M(Pʼ) + Deductive Actions + Sensing Actions

- Deductive actions:

tag refutation:

contingent merge:

- Sensing actions obs(L) from P encoded in XT,M(P) as
non-deterministic actions:

obs(L) : ¬KL ∧ ¬K¬L→ KL |K¬L

�

t∈m,m∈ML

(KL/t ∨K¬t) → KL

KL/t ∧K¬L → K¬t

Complete Translation XS0 (P)

• Translation XS0 (P) is special case of XT,M(P) with:

- T equal to the set of all possible initial states of P

- M containing a merge m=T for each precondition and goal literal
L of P.

Theorem: XS0 (P) is sound and complete.

This translation is suitable when number of initial states is low;
in worst case exponential in number of uncertain fluents.

Example: Problem P

•Fluents: opened-door1, opened-door2, corridor, door1,
door2, panel, gold-found

•Init:
oneof(opened-door1, opened-door2) ∧ at(corridor)
∧¬gold-found

•Goal: gold-found

•Actions: goto(?pos, ?dest), open(?door)

•Observation: inspect-panel

door 1
door 2

corridor

panel

Example: Problem P

•Fluents: opened-door1, opened-door2, corridor, door1,
door2, panel, gold-found

•Init:
oneof(opened-door1, opened-door2) ∧ at(corridor)
∧¬gold-found

•Goal: gold-found

•Actions: goto(?pos, ?dest), open(?door)

•Observation: inspect-panel

corridor
door2

door1

panel

Example
Problem P - Actions

goto(?pos, ?dest):

pre: at(?pos)

effect: at(?dest) ∧ ¬ at(?pos)

open(?door):

pre: at(?door) ∧ opened(?door)

effect: gold-found

inspect-panel:

pre: at(panel)

observation:
 opened-door1
| ¬ opened-door1

corridor
door2

door1

panel

Example
XS0 (P) translation

•Tags (2 possible states):

s1 ⊨ opened-door1 ∧ ¬ opened-door2

s2 ⊨ opened-door2 ∧ ¬ opened-door1

•Merge: {s1, s2}

•Init:
 K opened-door1/s1 ∧ K ¬ opened-door2/s1
 K opened-door2/s2 ∧ K ¬ opened-door1/s2
 K at(corridor)/* ∧ K¬gold-found/* ∧ ¬K...

Example with XS0 (P) translation
A possible Plan

Plan:

goto(panel),
inspect-panel,
goto(observed-open-door),
open(observed-open-door).

corridor
door2

door1

panel

Example with XS0 (P) translation
A possible Plan

Plan:

goto(panel),
inspect-panel,
goto(observed-open-door),
open(observed-open-door).

Init

Goal

D1 D2

goto(corridor,panel)

inspect-panel

goto(panel, door1) goto(panel,door2)

open(door1) open(door2)

Goal

corridor
door2

door1

panel

Example with XS0 (P) translation
goto(corridor, panel)

Init:
K at(corridor)/s1 ∧
K at(corridor)/s2 ∧ K at(corridor)
∧ ...

Init

s1

goto(corridor,panel)

Example with XS0 (P) translation
goto(corridor, panel)

Init:
K at(corridor)/s1 ∧
K at(corridor)/s2 ∧ K at(corridor)
∧ ...

Init

s1

goto(corridor,panel)

goto(corridor, panel):

pre: K at(corridor)

effect: K at(panel) ∧ K¬at(corridor) ∧ K at(panel)/ t ∧
K¬at(corridor)/ t ∧ ...

Example with XS0 (P) translation
goto(corridor, panel)

Init

s1

goto(corridor,panel)

goto(corridor, panel):

pre: K at(corridor)

effect: K at(panel) ∧ K¬at(corridor) ∧ K at(panel)/ t ∧
K¬at(corridor)/ t ∧ ...

s1:
K at(panel)/s1 ∧
K at(panel)/s2 ∧ K at(panel)
∧ ...

Example with XS0 (P) translation
inspect-panel

s1:
K at(panel)/s1 ∧ K at(panel)/s2 ∧
K at(panel)∧ ...

Init

s1

goto(corridor,panel)

Example with XS0 (P) translation
inspect-panel

s1:
K at(panel)/s1 ∧ K at(panel)/s2 ∧
K at(panel)∧ ...

inspect-panel

pre: K at(panel)

observation:
 ¬K opened-door1 ∧ ¬K¬ opened-door1
 → K opened-door1 | K ¬ opened-door1

Init

s1

goto(corridor,panel)

inspect-panel

Example with XS0 (P) translation
inspect-panel

inspect-panel

pre: K at(panel)

observation:
 ¬K opened-door1 ∧ ¬K¬ opened-door1
 → K opened-door1 | K ¬ opened-door1

D1:
K at(panel)/s1 ∧ K at(panel)/s2 ∧
K at(panel)∧ ¬K¬ opened-door1 ∧
K opened-door1 ∧...

Init

s1

D1

goto(corridor,panel)

inspect-panel

Example with XS0 (P) translation
tag-refutation: KL/t ∧K ¬L →K¬t

D1:
K at(panel)/s1 ∧K at(panel)/s2 ∧
K at(panel)∧ K opened-door1 ∧
K¬opened-door1/s2 ∧ ...

Init

D1

goto(corridor,panel)

inspect-panel

Example with XS0 (P) translation
tag-refutation: KL/t ∧K ¬L →K¬t

D1:
K at(panel)/s1 ∧K at(panel)/s2 ∧
K at(panel)∧ K opened-door1 ∧
K¬opened-door1/s2 ∧ ...

tag-refutation

pre: true

effect:
 K¬opened-door1/s2 ∧ K opened-door1 → K ¬ s2

Init

D1

goto(corridor,panel)

inspect-panel

Example with XS0 (P) translation
tag-refutation: KL/t ∧K ¬L →K¬t

tag-refutation

pre: true

effect:
 K¬opened-door1/s2 ∧ K opened-door1 → K ¬ s2

D1ʼ:
K at(panel)/s1 ∧ K at(panel)/s2 ∧
 K at(panel)∧ K opened-door1 ∧
 K¬opened-door1/s2 ∧ K ¬s2 ∧...

Init

goto(corridor,panel)

inspect-panel

D1ʼ

Example with XS0 (P) translation
tag-refutation: KL/t ∧K ¬L →K¬t

D1ʼ:
K at(panel)/s1 ∧ K at(panel)/s2 ∧
 K at(panel)∧ K opened-door1 ∧
 K¬opened-door1/s2 ∧ K ¬s2 ∧...

Init

goto(corridor,panel)

inspect-panel

...and from now on, no uncertainty is left
⇒classical planning problem (solved like K0)

D1ʼ

General Translations that are Complete

• Let O(L) be the observables relevant to L.

• Let CIO(L) be the clauses in relevant to L or O(L).

• is assumed to be in prime implicate form.

Definition: A valid translation XT,M(P) is covering if
 for each precondition and goal literal L of P,
 M contains a merge m for L that satisfies each clause in CIO(L).

Theorem: Covering translations are sound and complete.

I

I

Width and Complexity

• Width of a problem w(P) is roughly the size of the tags
needed for completeness.

• The translation Xi(P) is a special case of XT,M(P), with tags
of size ≤ i.

• For fixed i, translation Xi(P) is polynomial, and complete if
w(P) ≤ i.

• Most contingent benchmarks turn out to have width 1.

where are we?

where are we?

• XT,M(P), fully-observable non-deterministic problem, done

where are we?

• XT,M(P), fully-observable non-deterministic problem, done

• Relaxation X+(P) to guide the search

Relaxation X+(P)

• Drop “delete” effects, (like in classical planning).

• Move preconditions in as conditions [Hoffmann & Brafman, 2005].

• Make sensing actions obs(L) deterministic, by adding
contingent knowledge operator M:

•Use M-literal ML as preconditions of action a in XT,M(P),
if L is precondition of a in P.

• X+(P) is a classical planning problem. Solutions for XT,M(P)
are solutions X+(P).

obs(L) : ¬KL ∧ ¬K¬L→ ML ∧M¬L ∧ o(L)

Relaxing on action preconditions

Init

Goal

D1 D2

goto(corridor,panel)

inspect-panel

goto(panel, door1) goto(panel,door2)

open(door1) open(door2)

Goal

Init

Goal

goto(corridor,panel)

inspect-panel

goto(panel, door1)

goto(panel,door2)

open(door1)

open(door2)

Example with X+(P)

S:
K at(panel)/opened-door1 ∧
K at(panel)/opened-door2 ∧
K at(panel)∧ M at(panel) ∧...

Effects of an observation in X+(P)

Example with X+(P)

S:
K at(panel)/opened-door1 ∧
K at(panel)/opened-door2 ∧
K at(panel)∧ M at(panel) ∧...

Effects of an observation in X+(P)

inspect-panel:

pre: M at(panel)

observation:
 ¬Kopened-door1 ∧ ¬K¬ opened-door1
 → M opend-door1 ∧ M ¬ opened-door1 ∧ o(opened-door1)

Example with X+(P)

S:
K at(panel)/opened-door1 ∧
K at(panel)/opened-door2 ∧
K at(panel)∧ M at(panel) ∧...

Effects of an observation in X+(P)

inspect-panel:

pre: M at(panel)

observation:
 ¬Kopened-door1 ∧ ¬K¬ opened-door1
 → M opend-door1 ∧ M ¬ opened-door1 ∧ o(opened-door1)

added by M-K rule:
KL → ML

Example with X+(P)

Sʼ:
K at(panel)/opened-door1 ∧
K at(panel)/opened-door2 ∧ K at(panel)∧
M at(panel) ∧ M opened-door1 ∧
M ¬ opened-door1 ∧ o(opened-door1) ∧ ...

Effects of an observation in X+(P)

inspect-panel:

pre: M at(panel)

observation:
 ¬Kopened-door1 ∧ ¬K¬ opened-door1
 → M opend-door1 ∧ M ¬ opened-door1 ∧ o(opened-door1)

Example with X+(P)
applying derivation rules

Sʼ:
K at(panel)∧ M at(panel) ∧ M gold-at(door1) ∧
M ¬ gold-at(door1) ∧ o(gold-at(door1)) ∧ ...

Example with X+(P)
applying derivation rules

Sʼ:
K at(panel)∧ M at(panel) ∧ M gold-at(door1) ∧
M ¬ gold-at(door1) ∧ o(gold-at(door1)) ∧ ...

M-contingent merge:

effect:
 M¬ opened-door1 → M opened-door2

Example with X+(P)
applying derivation rules

Sʼʼ:
K at(panel)∧ M at(panel) ∧ M gold-at(door1) ∧
M ¬ gold-at(door1) ∧ o(gold-at(door1)) ∧
M gold-at(door2) ∧ ...

M-contingent merge:

effect:
 M¬ opened-door1 → M opened-door2

Example with X+(P)
a possible plan
• In X+(P), the preconditions of the actions open(door1) and

open(door2) hold in the relaxed translation.

• A solution plan would be, from Init:
1. goto(corridor, panel)
2. inspect-panel, (observation)
3. goto(panel, door1)
4. open(door1) → K gold-found/opened-door1
5. goto(door1,door2)
6. open(door2) → K gold-found/opened-door2

• After last action, the goal would be reached because of merge rule:
K gold-found/opened-door1 ∧ K gold-found/opened-door2
 → K gold-found

Closed Loop Greedy Planner

X+(P)

Environment
observation• The CLG planner uses:

- translation X1(P) to keep
track of beliefs;

- relaxation X1+(P), that is a
classical planning problem,
to select action to do next.

X1(P)

action

saction

FF planner

saction

Using assumptions on sensing outcome

•Freespace assumption [Koenig at al. 2003]

•Safe Assumption-based planning: belief monitoring and
LTL assumptions [Albore & Bertoli 2006]

•Preferences on observation outcome [Likhachev & Stentz 2009]

•Sampling and replanning [Shani & Brafman 2011]

• Based on CLGʼs and T0ʼs ideas

Another approach on how to Solve
contingent problems with classical planners

•Conditions under wich partially observable problems can be
solved by classical planners.

•Simple problem [Bonet & Geffner 2011]:

- non-unary clauses in Init are all invariant

- no hidden fluent appear in the body of a conditional effect

•Width of P = 1

•Connected space.

Planning under optimism

•Kʼ(P) fully-observable non-deterministic problem (based on K0)
solved by a classical translation K(P), using 2 rules:

•Assumption: if (C,L) is a sensing action, then

pre: KC ∧ ¬KL ∧ ¬K¬L effect: KL

pre: KC ∧ ¬KL ∧ ¬K¬L effect: K¬L

•KC → KL for invariants ¬C ∨ L in P

•A prefix of the plan is always executable, until KC is achieved.
Then the assumption can be revealed by sensing.

Planning under optimism

• If the assumption turns out to be false, then replan

• If the space is connected, replanning is always
possible, and reaching the goal is guaranteed if a
solution exists.

Dead-ends [Albore & Geffner 2009]

• Dead-ends are situations for which there is no strong solution:

- Belief state is a dead-end when at least one state is a
dead-end.

- State is a dead-end when the goal cannot be reached even
given full observability (e.g. minesweeper).

• Contingent and POMDPs planners will deliver no solution
when initial belief is a dead-end.

• Yet these situations are quite common...

Example with no full solution plan

S G

• The cells in the middle column can be
blocked.

• 25 possible wall configurations.

• Only 1 wall configuration brings to a dead-end situation.

• Full contingent solution is however non-existent.

Planners for Problems with
No Strong Solutions

•When there is not a strategy that works in all cases,
we may look for a strategy working in most cases.

•Non-solvable contingent planning problems can be
converted into solvable ones by introducing assumptions.

•The aim is finding a solution for the maximum number of
states in the belief state.

•CLG+ = CLGonline + assumptive-actions + costs.

Encoding Assumptions Into CLG+

(pay-for-tags)

• Assuming K¬ t to make it possible to merge KL

• Assumptive actions are encoded in XT,M(P) as deterministic
actions with high cost:

• Consequences:

- Plans with assumption are the last option when generating
relaxed plans,

- Thus cost optimisation will result in plan strategies that are
as strong as possible.

¬Kt ∧ ¬K¬t → K¬t

�

t∈m,m∈ML

(KL/t ∨K¬t) → KL

Use of Assumptions

• Assumptions are integrated in 3 steps, for action selection:

1. Donʼt use them.

2. Use in relaxed plan but not execute it (ie. excluded from
helpful actions of FF). Observations can help later.

3. Allow to execute them as last resort.
Like “betting”, taking a risk.

Problems with Dead-end States

• Some situations might be dead-end.

• These problems are not solvable by existing contingent
or POMDPs planners (infinite heuristic)

• Examples: Wumpus, Navigation in Unknown Map,
Learning Unknown Model when observation allow to
uncover action effects.

Problems with Pure Dead-end States

• Insoluble problems even if no state is initially dead-end any
policy will work for some states, but not for others.

• These problems are solved by "betting", executing an
assumption, to get out from the impasse.

• In case the bet is wrong, the execution naturally fails.

• But it is a risk that has to be taken.

• Example: Minesweeper, certain instances of Wumpus domain

Problems with High Contingent Width

• Contingent width is a measure of the complexity of the
problem.

• Roughly, the size of the tags needed to have a complete
translation XT,M(P).

• Problems with a high contingent width are solvable problems
with a contingent width > 1

• Example: Binary tree of doors.

Summary of Second Part

• Translation XT,M(P) for contingent problems

• Conditions for completeness and contingent width

• Heuristic relaxation X+(P)

• Solving contingent problems with classical planners

• Dealing with dead-ends, CLG+ planner

Summary of the tutorial

• The presented approaches for conformant and contingent
planning relies on:

• Translate problems into classical planning.

• Use such translations for action application and to obtain
useful heuristics to guide the search.

• In the case of conformant planning, both action applications
and heuristics were done simoultaniously.

• Translation-based approach has a clear semantics including:

• Conditions for completness and soundness;
• Structural properties characterizing the size of complete

translations (width).

• Planners based on complete and sound translations are
competitive.

• Better performance can be obtained by

• focusing on special cases (ʻsimpleʼ problems, with dead-ends)
• obtaining heuristics from unsound but feasible translations

Conclusions

	Classical and Conformant Planning
	Classical Planning
	Conformant Planning

	Translations to Classical
	Basic K0
	KT,M
	Instances of KT,M
	Compact Instances
	T0

	Conclusions
	Appendix
	Using Classical
	Satisfy
	Covering
	Width
	T0

	Conclusions
	Related
	Current

