Translation-based approaches to Conformant and Contingent Planning

Alexandre Albore and Héctor Palacios

Universitat Pompeu Fabra & Universitat Carlos III de Madrid

ICAPS - June 2011

Albore and Palacios (UPF & UC3M)

Translation-based approaches

ICAPS – June 2011 1 / 99

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

Get it real!

Let's get real, but principled!

Albore and Palacios (UPF & UC3M)

Get it real!

Let's get real, but principled!

Albore and Palacios (UPF & UC3M)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Get it real!

Let's get real, but principled!

Albore and Palacios (UPF & UC3M)

(日本) (四) (日本) (日本)

Problem addressed in this tutorial

Planning is the

Problem of finding the **actions** that **achieve a goal**, starting from an **initial situation**

- Classical planning assume complete information on initial state, actions effects, ...
- Conformant Planning

incomplete information on init state and effects but still one sequence of actions

Contingent Planning is like Conformant but allow observations. Plans are not sequences anymore.

Classical Planning

Albore and Palacios (UPF & UC3M)

ICAPS - June 2011 4 / 99

Conformant Planning

Translation-based approaches

ICAPS - June 2011

5/99

Classical problem for one state of a Conformant (I)

Classical problem for one state of a Conformant (II)

Albore and Palacios (UPF & UC3M)

Conformant Planning (again)

ICAPS - June 2011

Contingent Planning

Translation-based approaches

ICAPS - June 2011

9/99

Translation to Classical planning

Features

- Conformant plans are sequences like classical ones
- but Contingent are not. Something else is needed

(日本) (日本) (日本) (日本)

Classical Planning

Problem of finding a **sequence** of **deterministic** actions that **achieves a goal**, starting from a **given** initial state.

- action cost = 1
- no observations

Expressed in high-level language

```
• Init: p, q
```

```
• Goal: g
```

```
Actions:
```

- a Precondition: p. Effect: r
- b Precondition: q. Effect: $r \rightarrow g$
- c Precondition: *q*. Effect: $\neg q \land r$

• Plan: a, b

Classical Planning

Problem of finding a **sequence** of **deterministic** actions that **achieves a goal**, starting from a **given** initial state.

- action cost = 1
- no observations

Expressed in high-level language

- Init: *p*, *q*
- Goal: g
- Actions:
 - a Precondition: p. Effect: r
 - b Precondition: q. Effect: $r \rightarrow g$
 - c Precondition: *q*. Effect: $\neg q \land r$
- Plan: a, b

Classical Planning Syntax

Classical planning problems *P* are tuples of the form $P = \langle F, I, O, G \rangle$ where

- F: fluent symbols in the problem
- I: set of fluents true in the initial situation
- O: set of operators or actions. Every action a has
 - a precondition Pre(a) given by a set of fluents
 - ► a set of conditional effects C → L where C is a set of fluent literals and L is a single fluent literal.
- G: set of fluents defining the goal

12/99

Classical Planning Model

- Languages such as Strips, ADL, PDDL, ..., represent models in compact form
- A classical planner is a solver over the class of models given by:
 - a state space S
 - a known initial state $s_0 \in S$
 - a set $S_G \subseteq S$ of **goal states**
 - actions $A(s) \subseteq A$ applicable in each $s \in S$
 - ▶ a deterministic transition function s' = f(a, s) for $a \in A(s)$
 - uniform action costs c(a, s) = 1
- Given a problem P, states of its corresponding model are set of fluents of P
- Their solutions (plans) are sequences of applicable actions that map s₀ into S_G

Classical Planning

Albore and Palacios (UPF & UC3M)

ICAPS – June 2011 14 / 99

State-of-the-art Classical Planning

Two main approaches currently:

- Heuristic-search based (McDermott, 1996; Bonet et al., 1997)
- SAT-based (Kautz & Selman, 1992)
- The good news: classical planning works
 - heuristic search-based solve large problems very fast (non-optimally)
- Not so good: limitations
 - No Uncertainty (no probabilities)
 - No Incomplete Information (no sensing)

15

<日 → (目) (目) (回) (ICAPS – June 2011 15/99

State-of-the-art Classical Planning

Two main approaches currently:

- Heuristic-search based (McDermott, 1996; Bonet et al., 1997)
- SAT-based (Kautz & Selman, 1992)
- The good news: classical planning works
 - heuristic search-based solve large problems very fast (non-optimally)
- Not so good: limitations
 - No Uncertainty (no probabilities)
 - No Incomplete Information (no sensing)

Conformant Planning

- Extend classical planning model to
 - incomplete information about initial state and
 - non-deterministic actions
- **Conformant plan**: a **sequence** of actions that achieves the goal for **any possible** initial state and state transition
- Harder than classical planning verifying if sequence of actions is a conformant plan is hard
- For polynomial length, classical planning is NP-complete, but conformant planning is Σ₂^p-complete = NP^{NP}-complete

Examples

- Cleaning robot: there maybe debris in a grid room. A robot can collect debris in a cell. A conformant plan for cleaning the room is to collect debris in all the cells.
- Heal a patient: patient has a possible set of pathologies. A sequence of treatment actions that cures a patient for any of such pathologies is a conformant plan.
- Init: *illness*₁ \vee *illness*₂, *alive* Goal: healthy, alive Actions: treat₁ Precondition: true. Effect: *illness*₁ \rightarrow *healthy* treat₂ Precondition: true. Effect: *illness*₂ \rightarrow *healthy* treat₃ Precondition: true. Effect: *illness*₂ \rightarrow *healthy*, \neg *illness*₂ $\rightarrow \neg$ *alive*

17/99

Omit precondition if true

- Init: *illness*₁ ∨ *illness*₂, *alive*
- Goal: healthy, alive
- Actions:

 $\begin{array}{l} \mbox{treat}_1\colon \textit{illness}_1 \to \textit{healthy} \\ \mbox{treat}_2\colon \textit{illness}_2 \to \textit{healthy} \\ \mbox{treat}_3\colon \textit{illness}_2 \to \textit{healthy}, \\ \neg \textit{illness}_2 \to \neg \textit{alive} \end{array}$

Look-n-grab 8x8

• Actions: move, look-and-grab, putdown

- Init: object can be anywhere.
- Goal: object at Trash
- Robot should visit
 Trash after each
 look-and-grab

	X			
		Ι		
T				

Conformant Planning: the Trouble with Incomplete Info

Problem: A robot must move from an **uncertain** *I* into *G* with **certainty**, one cell at a time, in a grid *n*x*n*

- Conformant and classical planning look similar except for uncertain *I* (assuming actions are deterministic).
- Yet plans can be quite different: best **conformant plan must move robot to a corner first!** (in order to localize)

A = A = A = E = OQO

• What we **really** want is observations, probabilities, time, resources, etc, yet

- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND does both: conformant and contingent
 - CLG for planning with observations presented in this tutorial
- Conformant planning is **relevant** to any planning setting where **actions** are applied to a **set of possible configurations**.
- Classical planning is symbolic reachability, and conformant is reachability between set of configurations.

- What we really want is observations, probabilities, time, resources, etc, yet
- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND does both: conformant and contingent
 - CLG for planning with observations presented in this tutorial
- Conformant planning is **relevant** to any planning setting where **actions** are applied to a **set of possible configurations**.
- Classical planning is symbolic reachability, and conformant is reachability between set of configurations.

21

- What we really want is observations, probabilities, time, resources, etc, yet
- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND does both: conformant and contingent
 - CLG for planning with observations presented in this tutorial
- Conformant planning is **relevant** to any planning setting where **actions** are applied to a **set of possible configurations**.
- Classical planning is symbolic reachability, and conformant is reachability between set of configurations.

- What we really want is observations, probabilities, time, resources, etc, yet
- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND does both: conformant and contingent
 - CLG for planning with observations presented in this tutorial
- Conformant planning is **relevant** to any planning setting where **actions** are applied to a **set of possible configurations**.
- Classical planning is symbolic reachability, and conformant is reachability between set of configurations.

ICAPS – June 2011

Conformant Planning Syntax

Deterministic conformant planning problems *P* are tuples $P = \langle F, I, O, G \rangle$ where

- F: fluent symbols in the problem
- I: set of clauses over F defining the initial situation
- O: set of operators or actions. Every action a has
 - a precondition Pre(a) given by a set of fluents
 - ► a set of conditional effects C → L where C is a set of fluent literals and L is a single fluent literal.
- G: set of literals over F defining the (conjunctive) goal

Conformant Planning: Semantic

- a set $S_0 \subseteq S$ of possible initial states
- a set of possible goals $S_G \subseteq S$ st $s_g \in S_G$ iff $G \subseteq s_g$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function F s.t. F(a, s) = s', the state resulting of applying a on s
- a conformant plan is an **action sequence** that maps **each** initial state s_0 in S_0 into some goal state s_g
- It can be cast as a path-finding problem over belief-states

Conformant Planning: Semantic

- a set $S_0 \subseteq S$ of possible initial states
- a set of possible goals $S_G \subseteq S$ st $s_g \in S_G$ iff $G \subseteq s_g$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function F s.t. F(a, s) = s', the state resulting of applying a on s
- a conformant plan is an **action sequence** that maps **each** initial state s_0 in S_0 into some goal state s_g
- It can be cast as a path-finding problem over belief-states

Conformant Planning: Semantic

- a set $S_0 \subseteq S$ of possible initial states
- a set of possible goals $S_G \subseteq S$ st $s_g \in S_G$ iff $G \subseteq s_g$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function F s.t. F(a, s) = s', the state resulting of applying a on s
- a conformant plan is an **action sequence** that maps **each** initial state s_0 in S_0 into some goal state s_g
- It can be cast as a path-finding problem over belief-states

Conformant Planning

ICAF

Belief space search

 Almost all previous approaches to conformant planning use search on graph whose nodes are set of possible states (belief states)

Key issues:

- Representation: compact and efficient
- Heuristic: for guiding the search

Roadmap of First Part

- Basic Translation Scheme K₀(P)
- General Translation Scheme $K_{T,M}(P)$
- **Complete** Instances of $K_{T,M}(P)$
- Conformant Width of P bounds complexity of translation
- **Poly** translation K_i that is complete if width $\leq i$
- Width of some benchmarks
- Creating a **planner** using $K_{T,M}(P)$
- Other translation-based algorithms

Spoilers!

- Conformant problems mapped into classical ones
- Plans obtained using an off-the-shelf classical planner
- Translation exponential in worst case

Translation from *P* into $K_0(P)$

For a conformant problem $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

<<p>(日本)

27/99

For a conformant problem $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' angle$
Fluent L	\Rightarrow	KL, K \neg L (two fluents)
Init: known lit <i>L</i>	\Rightarrow	$KL \land \neg K \neg L$
	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
		$(a: KC \rightarrow KL)$
	\Rightarrow	$\left\{ egin{array}{ccc} a: & \neg K \neg C & ightarrow & \neg K \neg L \end{array} ight.$

(日本)

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' angle$
Fluent L	\Rightarrow	KL, $K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
		$(a: KC \rightarrow KL)$
	\Rightarrow	ł
		$igll a: \neg K \neg C o \neg K \neg L$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL, K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \land \neg K \neg L$
	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
Goal L	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
		$fa:$ KC \rightarrow KL
	\Rightarrow	{
		$a: \neg K \neg C \rightarrow \neg K \neg L$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	KL, $K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
unknown lit L	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
Goal L	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
	\Rightarrow	$\left\{ \begin{array}{rrr} a: & \textit{KC} & \rightarrow & \textit{KL} \\ \\ a: & \neg\textit{K}\neg\textit{C} & \rightarrow & \neg\textit{K}\neg\textit{L} \end{array} \right.$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL, K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \land \neg K \neg L$
unknown lit <i>L</i>	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
Goal L	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
	\Rightarrow	$\left\{ egin{array}{ccc} a: & \mathit{KC} & ightarrow & \mathit{KL} \ a: & \neg \mathit{K} \neg \mathit{C} & ightarrow & \neg \mathit{K} \neg \mathit{L} \end{array} ight.$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	KL, $K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
unknown lit L	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
Goal L	\Rightarrow	KL
Operator a has prec L	\Rightarrow	<i>a</i> has prec <i>KL</i>
		$fa:$ KC \rightarrow KL
	\Rightarrow	$\left\{ egin{array}{ccc} a: & eg K eg C & ightarrow & eg K eg L \end{array} ight.$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	KL, $K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \land \neg K \neg L$
unknown lit L	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
Goal L	\Rightarrow	KL
Operator a has prec L	\Rightarrow	<i>a</i> has prec <i>KL</i>
Operator $a: C \rightarrow L$	\Rightarrow	$\left\{ egin{array}{cccc} {m a}: & {\it KC} & ightarrow & {\it KL} \ {m a}: & eg {\it K} \neg {\it C} & ightarrow & eg {\it K} \neg {\it L} \end{array} ight.$
		$(a: \neg K \neg C \rightarrow \neg K \neg L)$

For a conformant problem $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant P	\Rightarrow	Classical $K_0(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	KL, $K \neg L$ (two fluents)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
unknown lit L	\Rightarrow	$ eg KL \wedge eg K \neg L$ (both false)
Goal L	\Rightarrow	KL
Operator a has prec L	\Rightarrow	<i>a</i> has prec <i>KL</i>
		$fa:$ KC \rightarrow KL
Operator $a: C \rightarrow L$	\Rightarrow	$\left\{\begin{array}{rrrr} a: & KC & \rightarrow & KL \\ a: & K\neg C & \rightarrow & \emptyset \\ a: & \neg K\neg C & \rightarrow & \neg K\neg L \end{array}\right.$
		$igll a: \neg K \neg C o \neg K \neg L$

K₀ example

Problem P with

- Init: *p* ∨ *q*, *r*, Goal: *g*
- Actions:
- < a, b > and < c, b > are conformant plans.

 $K_0(P)$ is:

• Init: Kr, Goal: Kg

• Actions:

 $a: Kp \to Kq, a: \neg K \neg p \to \neg K \neg q$ $b: Kq \to Kg, b: \neg K \neg q \to \neg K \neg g$ $c: Kr \to Kq, c: \neg K \neg r \to \neg K \neg q$

• < c, b > is a classical plan, but < a, b > is not.

K₀ example

Problem P with

- Init: $p \lor q, r$, Goal: g
- Actions:

• < a, b > and < c, b > are conformant plans.

 $K_0(P)$ is:

• Init: Kr, Goal: Kg

Actions:

$$\begin{array}{l} a: Kp \rightarrow Kq, \ a: \neg K \neg p \rightarrow \neg K \neg q \\ b: Kq \rightarrow Kg, \ b: \neg K \neg q \rightarrow \neg K \neg g \\ c: Kr \rightarrow Kq, \ c: \neg K \neg r \rightarrow \neg K \neg q \end{array}$$

• < c, b > is a classical plan, but < a, b > is not.

K_0 example. Cancellation rules

Problem P with • Init: $p \lor q, r, s$, Goal: t, g Actions: $a: p \rightarrow \neg r, a: s \rightarrow t$ $b: r \rightarrow q$ • < b, a > is a conformant plan but < a, b > is not.

K_0 example. Cancellation rules

Problem P with • Init: $p \lor q, r, s$, Goal: t, g Actions: $a: p \rightarrow \neg r, a: s \rightarrow t$ $b: r \rightarrow q$ • < b, a > is a conformant plan but < a, b > is not. $K_0(P)$ but without cancellation rules is: • Init: Kr. Ks, $\neg Kp$, $\neg Kq$, $\neg K\neg p$, $\neg K\neg q$, Goal: Kt, Kg Actions: $a: Kp \rightarrow K \neg r, a: Ks \rightarrow Kt,$ $b: Kr \rightarrow Ka$. • < a, b > and < b, a > are both classical plans. ERROR

K_0 example. Cancellation rules

Problem P with • Init: $p \lor q, r, s$, Goal: t, g Actions: $a: p \rightarrow \neg r, a: s \rightarrow t$ $b: r \rightarrow q$ • < b, a > is a conformant plan but < a, b > is not. $K_0(P)$ but with cancellation rules is: • Init: $Kr, Ks, \neg Kp, \neg Kq, \neg K \neg p, \neg K \neg q$, Goal: Kt, KqActions: $a: Kp \rightarrow K \neg r, a: Ks \rightarrow Kt,$ $a: \neg K \neg p \rightarrow \neg K \neg r, a: \neg K \neg s \rightarrow \neg K \neg t$ $b: Kr \rightarrow Ka, b: \neg K \neg r \rightarrow \neg K \neg a$ • < b, a > is a classical plan but < a, b > is not.

29/99

Basic Properties and Extensions

- Translation $K_0(P)$ is **sound**:
 - ► If π is a classical plan that solves $K_0(P)$, then π is a conformant plan for *P*.
- But too incomplete
 - ▶ often K₀(P) will have no solution while P does
 - works only when uncertainty is irrelevant
- Extension K_{T,M}(P) we present now can be both complete and polynomial

(日本)

30/99

Basic Properties and Extensions

- Translation $K_0(P)$ is **sound**:
 - ▶ If π is a classical plan that solves $K_0(P)$, then π is a conformant plan for *P*.
- But too incomplete
 - ▶ often K₀(P) will have no solution while P does
 - works only when uncertainty is irrelevant
- Extension K_{T,M}(P) we present now can be both complete and polynomial

Key elements in Translation $K_{T,M}(P)$

 a set T of tags t: consistent set of assumptions (literals) about the initial situation /

$$I \not\models \neg t$$

• a set *M* of merges *m*: valid subsets of tags

$$I \models \bigvee_{t \in m} t$$

• Literals KL/t meaning that *L* is true given that initially *t*; *i.e.* $K(t_0 \supset L)$

Intuition of merge actions

- Init: Candy in hall $(h) \vee$ Candy in room (r)
- Goal: Hold the candy (c)
- Apply pick-from-hall, get Kc/h
- Apply pick-from-room, get Kc/r
- Then, for sure, holding the candy (*Kc*) from merge $Kc/h \wedge Kc/r \rightarrow Kc$

Intuition of merge actions

- Init: Candy in hall (h) \lor Candy in room (r)
- Goal: Hold the candy (c)
- Apply pick-from-hall, get Kc/h
- Apply pick-from-room, get Kc/r
- Then, for sure, holding the candy (Kc) from merge Kc/h ∧ Kc/r → Kc

Intuition of merge actions

- Init: Candy in hall (h) ∨ Candy in room (r)
- Goal: Hold the candy (c)
- Apply pick-from-hall, get Kc/h
- Apply pick-from-room, get Kc/r
- Then, for sure, holding the candy (Kc) from merge Kc/h ∧ Kc/r → Kc

For a conformant problem $P = \langle F, O, I, G \rangle$

イロト 不得 トイヨト イヨト 手出 のなべ

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K \neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
	\Rightarrow	$\begin{cases} \text{for all tags } t \\ a : KC/t \rightarrow KL/t \\ a : \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \wedge \ldots \wedge KL/t_n \rightarrow KL$

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K\neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
Goal L	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
		(for all tags t
	\Rightarrow	$\left\{ a: KC/t \rightarrow KL/t \right\}$
		$\begin{cases} \text{for all tags } t \\ a: KC/t \rightarrow KL/t \\ a: \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \wedge \ldots \wedge KL/t_n \rightarrow KL$

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K \neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
Goal L	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
		(for all tags t
	\Rightarrow	$\left\{ a: KC/t \rightarrow KL/t \right\}$
		$\begin{cases} for all tags t \\ a: KC/t \rightarrow KL/t \\ a: \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \wedge \ldots \wedge KL/t_n \rightarrow KL$

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K \neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \wedge \neg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
Goal L	\Rightarrow	KL
	\Rightarrow	<i>a</i> has prec <i>KL</i>
		(for all tags t
	\Rightarrow	$\begin{cases} \text{for all tags } t \\ a : KC/t \rightarrow KL/t \\ a : \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$
		$\bigcup a: \neg K \neg C/t \rightarrow \neg K \neg L/t$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \wedge \ldots \wedge KL/t_n \rightarrow KL$

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K \neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \land \neg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
Goal L	\Rightarrow	KL
Operator a has prec L	\Rightarrow	<i>a</i> has prec <i>KL</i>
		(for all tags t
	\Rightarrow	$\begin{cases} \text{for all tags } t \\ a: KC/t \rightarrow KL/t \\ a: \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$
		$L a: \neg K \neg C/t \rightarrow \neg K \neg L/t$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \land \ldots \land KL/t_n \to KL$

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle \textit{F},\textit{I},\textit{O},\textit{G} angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K \neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \land \neg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
Goal <i>L</i>	\Rightarrow	KL
Operator <i>a</i> has prec <i>L</i>	\Rightarrow	<i>a</i> has prec <i>KL</i>
Operator $a: C \rightarrow L$	\Rightarrow	$\begin{cases} for all tags t \\ a: KC/t \rightarrow KL/t \\ a: \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \land \ldots \land KL/t_n \to KL$

For a conformant problem $P = \langle F, O, I, G \rangle$

Conformant P	\Rightarrow	Classical $K_{T,M}(P)$
$\langle F, I, O, G angle$	\Rightarrow	$\langle F', I', O', G' \rangle$
Fluent L	\Rightarrow	$KL/t, K \neg L/t$ (for all tags t)
Init: known lit L	\Rightarrow	$KL \wedge eg K \neg L$
if $I \models (t \supset L)$	\Rightarrow	$KL/t \wedge \neg K \neg L/t$
Goal L	\Rightarrow	KL
Operator a has prec L	\Rightarrow	<i>a</i> has prec <i>KL</i>
		(for all tags t
Operator $a: C \rightarrow L$	\Rightarrow	$\begin{cases} for all tags t \\ a: KC/t \rightarrow KL/t \\ a: \neg K \neg C/t \rightarrow \neg K \neg L/t \end{cases}$
		$L a: \neg K \neg C/t \rightarrow \neg K \neg L/t$

For each lit *L* and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$, add to *O*':

 $merge_{L,m}: KL/t_1 \land \ldots \land KL/t_n \rightarrow KL$

33/99

• Given literal *L* and tag *t*, atom *KL/t* means

• $K(t_0 \supset L)$: KL true if t is true initially

• Conformant Problem *P*:

- Init: $x_1 \lor x_2, \neg g$
- Goal: g
- Actions: $a_1: x_1
 ightarrow g, \, a_2: x_2
 ightarrow g$

• Classical Problem $K_{T,M}(P)$:

- $\blacktriangleright \text{ Init: } Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \ldots$
- After $a_1: Kg/x_1, Kx_1/x_1, Kx_2/x_2, \neg K \neg g, \neg Kg, \ldots$
- After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$,...
 - * New action *merge*_g: $Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$
- After merge_g: Kg, Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, ...
- Goal satisfied: Kg

34

ICAPS - June 2011 34 / 99

- Given literal *L* and tag *t*, atom *KL/t* means
 - $K(t_0 \supset L)$: KL true if t is true initially
- Conformant Problem P:
 - ► Init: $x_1 \lor x_2, \neg g$
 - Goal: g
 - Actions: $a_1 : x_1 \rightarrow g, a_2 : x_2 \rightarrow g$
- Classical Problem K_{T,M}(P):
 - Init: $Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \ldots$
 - After a_1 : Kg/x_1 , Kx_1/x_1 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$
 - After a₂: Kg/x₂, Kg/x₁, Kx₁/2
 - New action *merge*_g: $Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$
 - After *merge_g: Kg* Goal satisfied: *Kg*

- Given literal *L* and tag *t*, atom *KL/t* means
 - $K(t_0 \supset L)$: KL true if t is true initially
- Conformant Problem P:
 - ▶ Init: $x_1 \lor x_2, \neg g$
 - Goal: g
 - Actions: $a_1 : x_1 \rightarrow g, a_2 : x_2 \rightarrow g$
- Classical Problem $K_{T,M}(P)$:
 - $\vdash \text{ Init: } Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \ldots$
 - After $a_1: Kg/x_1, Kx_1/x_1, Kx_2/x_2, \neg K \neg g, \neg Kg, \ldots$
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$,...
 - fter meraea: Ka Kalvo Kalvo Kalvo Kosta Kosto k
 - Goal satisfied: Kg

34 / 99

- Given literal *L* and tag *t*, atom *KL/t* means
 - $K(t_0 \supset L)$: KL true if t is true initially
- Conformant Problem P:
 - ► Init: $x_1 \lor x_2, \neg g$
 - Goal: g
 - Actions: $a_1 : x_1 \rightarrow g, a_2 : x_2 \rightarrow g$
- Classical Problem $K_{T,M}(P)$:
 - $\vdash \text{ Init: } Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \ldots$
 - After $a_1: Kg/x_1, Kx_1/x_1, Kx_2/x_2, \neg K \neg g, \neg Kg, \ldots$
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$,...

New action $merge_g: Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$

After *merge_g: Kg* Goal satisfied: *Kg*

- Given literal *L* and tag *t*, atom *KL/t* means
 - $K(t_0 \supset L)$: KL true if t is true initially
- Conformant Problem P:
 - ► Init: $x_1 \lor x_2, \neg g$
 - Goal: g
 - Actions: $a_1 : x_1 \rightarrow g, a_2 : x_2 \rightarrow g$
- Classical Problem $K_{T,M}(P)$:
 - Init: $Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \ldots$
 - After $a_1: Kg/x_1, Kx_1/x_1, Kx_2/x_2, \neg K \neg g, \neg Kg, \ldots$
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$,...

New action *merge*_g: $Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$

- After merge_g: Kg, Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, ...
- Goal satisfied: Kg

Example of *T*, *M*

Given $I = \{p \lor q, v \lor \neg w\}$, *T* and *M* can be:

$$T = \{\{\}, p, q, v, \neg w\} \quad T' = \{\{\}, \{p, v\}, \{q, v\}, \ldots\}$$
$$M = \{\{p, q\}, \{v, \neg w\}\} M' = \ldots$$

35

<ロ ト < 部 ト < ヨ ト < ヨ ト 三 コ の Q () ICAPS – June 2011 35 / 99 Interesting properties of the translation $K_{T,M}$?

• Soundness: are correct the plans we are obtaining?

- If not, are they useful?
- **Completeness**: is there a classical plan if there is a conformant one?
 - Is there a one-to-one relationship between conformant and classical plans?
- **Performance**: what are the limitations of a planner based on this translation?
 - What is the size of the resulting problem?
 - How do current classical planners perform on the translation?

Properties of Translation $K_{T,M}$

- If T contains only the empty tag, $K_{T,M}(P)$ reduces to $K_0(P)$
- $K_{T,M}(P)$ is always sound

We will see that ...

- For suitable choices of *T*,*M* translation is complete
- ... and sometimes polynomial as well

Soundness

- If sequence of actions π makes KL/t true in K_{T,M}(P),
 π makes L true in P starting from all the initial states satisfying t
- At least one of the tags t is true
- Then, merging *KL* is sound

Theorem (Soundness $K_{T,M}(P)$)

If π is a **plan that solves the classical** planning problem $K_{T,M}(P)$, then the action sequence π' that results from π by dropping the merge actions is a **plan that solves the conformant** planning problem P.

Soundness

- If sequence of actions π makes KL/t true in K_{T,M}(P),
 π makes L true in P starting from all the initial states satisfying t
- At least one of the tags t is true
- Then, merging KL is sound

Theorem (Soundness $K_{T,M}(P)$)

If π is a **plan that solves the classical** planning problem $K_{T,M}(P)$, then the action sequence π' that results from π by dropping the merge actions is a **plan that solves the conformant** planning problem P.

Soundness

Albore and Palacios (UPF & UC3M)

s 39

ICAPS – June 2011

39 / 99

K_{s0} is a **complete** instance of $K_{T,M}(P)$, by setting

- T to $\{ \{\}, s_0^1, \ldots, s_0^n \}$, and
- *M* to { $\{s_0^1, \ldots, s_0^n\}$ }

where s_0^1, \ldots, s_0^n are the **possible initial states** of *P*.

- Only **one merge** for the disjunction of possible initial states
- Intuition
 - ► Applying actions in K_{s0} keeps track of each fluent L for each possible initial state s₀: KL/s₀
 - Merge goals using $KG/s_0^1 \land \ldots \land KG/s_0^n \to KG$
- This instance is **complete**, but **exponential** in the number of fluents
 - ...although not a bad conformant planner

イロト 不得 トイヨト イヨト 正言 のなる

K_{s0} is a **complete** instance of $K_{T,M}(P)$, by setting

- T to $\{ \{ \}, s_0^1, \dots, s_0^n \}$, and
- *M* to $\{\{s_0^1, \ldots, s_0^n\}\}$

where s_0^1, \ldots, s_0^n are the **possible initial states** of *P*.

- Only one merge for the disjunction of possible initial states

40/99

 K_{s0} is a **complete** instance of $K_{T,M}(P)$, by setting

- T to $\{ \{\}, s_0^1, \ldots, s_0^n \}$, and
- *M* to { $\{s_0^1, \ldots, s_0^n\}$ }

where s_0^1, \ldots, s_0^n are the **possible initial states** of *P*.

- Only one merge for the disjunction of possible initial states
- Intuition
 - ► Applying actions in K_{s0} keeps track of each fluent L for each possible initial state s₀: KL/s₀
 - Merge goals using $KG/s_0^1 \land \ldots \land KG/s_0^n \to KG$
- This instance is complete, but exponential in the number of fluents

...although not a bad conformant planner

 K_{s0} is a **complete** instance of $K_{T,M}(P)$, by setting

- T to $\{ \{\}, s_0^1, \ldots, s_0^n \}$, and
- *M* to { {*s*¹₀,...,*s*ⁿ₀} }

where s_0^1, \ldots, s_0^n are the **possible initial states** of *P*.

- Only one merge for the disjunction of possible initial states
- Intuition
 - ► Applying actions in K_{s0} keeps track of each fluent L for each possible initial state s₀: KL/s₀
 - Merge goals using $KG/s_0^1 \land \ldots \land KG/s_0^n \to KG$
- This instance is complete, but exponential in the number of fluents
 - ... although not a bad conformant planner

- Consider the problem *P_n*
 - Init: $x_1 \vee \cdots \vee x_n$
 - Goal: g
 - Actions: $a_i : x_i \rightarrow g$
- K_{s0}(P_n) size is exponential on n
 - ▶ 2ⁿ 1 initial states
- But having a merge $\{x_1, \ldots, x_n\}$ (and according tags) generates $K_{T,M}(P_n)$ complete
 - Enough with merge $Kg/x_1 \land \ldots \land Kg/x_n \rightarrow Kg$
 - Linear on *n*
- How can we generate compact instances of K_{T,M}?

- Consider the problem *P_n*
 - Init: $x_1 \vee \cdots \vee x_n$
 - Goal: g
 - Actions: $a_i : x_i \rightarrow g$
- $K_{s0}(P_n)$ size is exponential on n
 - ▶ 2ⁿ − 1 initial states
- But having a merge $\{x_1, \ldots, x_n\}$ (and according tags) generates $K_{T,M}(P_n)$ complete
 - Enough with merge $Kg/x_1 \land \ldots \land Kg/x_n \rightarrow Kg$
 - Linear on *n*
- How can we generate compact instances of K_{T,M}?

- Consider the problem *P_n*
 - Init: $x_1 \vee \cdots \vee x_n$
 - Goal: g
 - Actions: $a_i : x_i \rightarrow g$
- $K_{s0}(P_n)$ size is exponential on n
 - ▶ 2ⁿ − 1 initial states
- But having a merge {x₁,..., x_n} (and according tags) generates K_{T,M}(P_n) complete
 - Enough with merge $Kg/x_1 \land \ldots \land Kg/x_n \to Kg$
 - Linear on n

How can we generate compact instances of K_{T,M}?

A 目 > A 目 > A 目 > 目 = のQQ

41/99

- Consider the problem *P_n*
 - Init: $x_1 \vee \cdots \vee x_n$
 - Goal: g
 - Actions: $a_i : x_i \rightarrow g$
- $K_{s0}(P_n)$ size is exponential on n
 - ▶ 2ⁿ − 1 initial states
- But having a merge {x₁,..., x_n} (and according tags) generates K_{T,M}(P_n) complete
 - Enough with merge $Kg/x_1 \land \ldots \land Kg/x_n \rightarrow Kg$
 - Linear on n
- How can we generate compact instances of K_{T,M}?

41/99

Covering Translation

Definition (Covering Translation)

A covering translation is a valid translation $K_{T,M}(P)$ that **includes one merge** $m = t_1, \ldots, t_n$ **that covers** *L*, for each precondition and goal literal *L* in *P*.

Theorem (Completeness)

Covering translations $K_{T,M}(P)$ are complete; i.e., if π is a conformant plan for P, then there is a classical plan π' for $K_{T,M}(P)$ such that π is π' with the merge actions removed.

Covering

Key notions:

- **Relevant** clauses of a literal L: $C_l(L)$
- A tag t satisfies a clause C
- A set of tags *m* satisfies a clause *C*, a.k.a. *m* covers *C*

Relevance

Definition

Informally, L is relevant to L' basically when $a: C \to L'$ in P with $L \in C$, plus transitivity, etc.

Remark: preconditions do not contribute to relevance.

Given actions with rules $a : A, B \rightarrow C, b : C \rightarrow D, b : B \rightarrow \neg C$.

- A is relevant to A, C, D.
- B is relevant to $B, C, D, \neg C$.
- $\neg A$ is relevant to $\neg A, \neg C, \neg D$.

Ο...

・ 同 ト ・ 日 ト ・ 日 日 - 日 日 日

Relevant Clauses

Suppose problem P with I =

p ∨ ¬p bailoutbanks ∨ ¬bailoutbanks zapatero ∨ merkel ∨ berlusconi ∨ chavez cucumber ∨ ¬cucumber

- Suppose both p and $\neg p$ are relevant to goal G.
- Also suppose *bailoutbanks* is relevant to goal G, but ¬*bailoutbanks* is not. All other literals are not relevant.
- Will not get a solution by reasoning on bailoutbanks ∨ ¬bailoutbanks
- Enough to reason on $p \lor \neg p$, the only *relevant* clause.

45

ICAPS - June 2011 45 / 99

・ 同 ト ・ 日 ト ・ 日 日 - 日 日 日

Relevant Clauses

Suppose problem P with I =

p ∨ ¬p bailoutbanks ∨ ¬bailoutbanks zapatero ∨ merkel ∨ berlusconi ∨ chavez cucumber ∨ ¬cucumber

- Suppose both p and $\neg p$ are relevant to goal G.
- Also suppose *bailoutbanks* is relevant to goal G, but ¬*bailoutbanks* is not. All other literals are not relevant.
- Will not get a solution by reasoning on bailoutbanks ∨ ¬bailoutbanks
- Enough to reason on $p \lor \neg p$, the only *relevant* clause.

45

ICAPS - June 2011 45 / 99

(4) 周 (4) 日 (4) 1 H (4) H (4

Relevant Clauses

Suppose problem P with I =

p ∨ ¬p bailoutbanks ∨ ¬bailoutbanks zapatero ∨ merkel ∨ berlusconi ∨ chavez cucumber ∨ ¬cucumber

- Suppose both *p* and $\neg p$ are relevant to goal *G*.
- Also suppose *bailoutbanks* is relevant to goal G, but ¬*bailoutbanks* is not. All other literals are not relevant.
- Will not get a solution by reasoning on bailoutbanks ∨ ¬bailoutbanks
- Enough to reason on $p \lor \neg p$, the only *relevant* clause.

・ 同 ト ・ 日 ト ・ 日 日 - 日 日 日

Relevant Clauses (2)

Definition

Relevant Clause A clause *c* in *I* is relevant to a literal *L* in *P* if all literals $L' \in C$ are relevant to *L*. The set of clauses in *I* relevant to *L* is denoted as $C_l(L)$.

Next step: tag t satisfy a clause C.

・同下 ・ 日下 ・ 日下 三日

Relevant Clauses (2)

Definition

Relevant Clause A clause *c* in *I* is relevant to a literal *L* in *P* if all literals $L' \in C$ are relevant to *L*. The set of clauses in *I* relevant to *L* is denoted as $C_l(L)$.

Next step: tag t satisfy a clause C.

Satisfy

- **Warning**: cannot afford expensive inference while building translation K(P).
 - ▶ But we need to check $I \models (t \supset L)$ for adding KL/t to the initial state.
 - No general inference on clauses. Use unit-resolution enough when clauses in Prime Implicate form.
- Given tag t, consistent set of literals.

t satisfies $C = L_1 \lor \cdots \lor L_n$ if some L_i is in the consequences of *t* given *I*, *i.e.* $I \models (t \supset L)$

• Let *m* a valid disjunctions of tags

m satisfies a clause C if each tag t satisfies C

Example Satisfy

Suppose $I = \{oneof(x_1, ..., x_n), oneof(y_1, ..., y_n)\}$, and x_i is relevant to any $x_j, \neg x_j, y_i$ is relevant to any $y_j, \neg y_j$. Notice than $oneof(x_1, ..., x_n)$ means $x_1 \lor ... \lor x_n$ and $\neg x_i \lor \neg x_j$, for any $i \neq j$.

- The tag $\{x_1, y_1\}$ satisfies all clauses. because the consequence of $\{x_1, y_1\}$ is $\{x_1, y_1, \neg x_2, \neg y_2, \dots, \neg x_n, \neg x_n\}.$
- The merge $m = \{x_1, \ldots, x_n\}$ satisfies $C_l(x_n)$, and m is valid.
- The merge *m*′ = {{*x*₁, *y*₁}, ..., {*x*_n, *y*_n}, } satisfies *C*_{*l*}(*x*_n), but *m*′ is not valid.

Grid problem

Albore and Palacios (UPF & UC3M)

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・ ICAPS - June 2011

49/99

Example Satisfy (2)

Suppose $I = \{oneof(x_1, ..., x_n), oneof(y_1, ..., y_n)\}$, and x_i is relevant to any $x_j, \neg x_j$, y_i is relevant to any $y_j, \neg y_j$. Also suppose x_i is relevant to any $y_j, \neg y_j$, and y_i is relevant to $x_j, \neg x_j$. Everything is relevant to everything.

- the tag $\{x_1, y_1\}$ satisfies both clauses.
- The merge m = {x₁,..., x_n} does not satisfy C_l(x_n), even though m is valid.
- The merge $m' = \{\{x_1, y_1\}, ..., \{x_n, y_n\}, \}$ does satisfy $C_l(x_n)$, but m' is not valid.
- The merge $m'' = \{x_1, \ldots, x_n\} \times \{y_1, \ldots, y_n\}$ does satisfy $C_l(x_n)$, and m'' is valid.

Covering Translation

Definition (Covering Merges)

A valid merge *m* in a translation $K_{T,M}(P)$ covers a literal *L* if *m* satisfies $C_l(L)$, the set of clauses in *l* relevant to *L*

Definition (Covering Translation)

A covering translation is a valid translation $K_{T,M}(P)$ that **includes one merge** $m = t_1, \ldots, t_n$ **that covers** *L*, for each precondition and goal literal *L* in *P*.

Theorem (Completeness)

Covering translations $K_{T,M}(P)$ are complete; i.e., if π is a conformant plan for P, then there is a classical plan π' for $K_{T,M}(P)$ such that π is π' with the merge actions removed.

Example of Covering Translation

Example: K_{s0}

The merge $\{s_0^1, \ldots, s_0^n\}$ is covering because (1) is valid (2) each initial state s_0^i satisfies each clause

Example: oneof

If $C_l(L) = \{L_1 \lor \cdots \lor L_n, \neg L_i \lor \neg L_j \text{ for all } i \neq j\}$, then the merge $\{L_1, \ldots, L_n\}$ is covering because (1) disjunction in *I* are valid and (2) each L_i implies $\neg L_i$ (for $j \neq i$) and then L_i satisfies each clause in $C_l(L)$

イロト 不得 トイヨト イヨト 正言 のなる

Example of Covering Translation

Example: K_{s0}

The merge $\{s_0^1, \ldots, s_0^n\}$ is covering because (1) is valid (2) each initial state s_0^i satisfies each clause

Example: oneof

If $C_l(L) = \{L_1 \lor \cdots \lor L_n, \neg L_i \lor \neg L_j \text{ for all } i \neq j\}$, then the merge $\{L_1, \ldots, L_n\}$ is covering because (1) disjunction in *I* are valid and (2) each L_i implies $\neg L_i$ (for $j \neq i$) and then L_i satisfies each clause in $C_l(L)$

Cover it!

- Covering translation guarantee **completeness**.
- How do we **get** a covering translation? In principle we want small *T*, *M*
- Naive: just combinations of clauses is unbounded on size
 - ... but sometimes is a good idea.

53/99

Definition (Width of Literal)

The conformant width of a literal *L*, written w(L), is the **size** of the *smallest set of clauses* C in $C_l^*(L)$ such that cover c(C) satisfies $C_l(L)$.

- Roughly, cover c(C) is combination of literals of clauses C
- $C_l^*(L)$ = relevant clauses $C_l(L) \cup$ tautologies for unknown literals $p \lor \neg p$
- Idea: smallest C can be made of
 - Clauses in $C_I(L)$
 - Last resort: combination of tautologies p ∨ ¬p
- Then, w(L) is at most *n*, the number of unknown fluents
- If $C_l(L)$ is empty, w(L) = 0

(本語) (本語) (本語) (法語)

Definition (Width of Literal)

The conformant width of a literal *L*, written w(L), is the **size** of the *smallest set of clauses* C in $C_l^*(L)$ such that cover c(C) satisfies $C_l(L)$.

- Roughly, cover c(C) is combination of literals of clauses C
- $C_l^*(L)$ = relevant clauses $C_l(L) \cup$ tautologies for unknown literals $p \lor \neg p$
- Idea: smallest C can be made of
 - Clauses in C_l(L)
 - Last resort: combination of tautologies $p \lor \neg p$
- Then, w(L) is at most *n*, the number of unknown fluents
- If $C_l(L)$ is empty, w(L) = 0

(日) (周) (日) (日) (日) (日) (0)

Definition (Width of Literal)

The conformant width of a literal L, written w(L), is the **size** of the smallest set of clauses C in $C_{l}^{*}(L)$ such that cover c(C) satisfies $C_{l}(L)$.

- Roughly, cover $c(\mathcal{C})$ is combination of literals of clauses \mathcal{C}
- $C_{I}^{*}(L)$ = relevant clauses $C_{I}(L) \cup$ tautologies for unknown literals $p \vee \neg p$

Definition (Width of Literal)

The conformant width of a literal *L*, written w(L), is the **size** of the *smallest set of clauses* C in $C_l^*(L)$ such that cover c(C) satisfies $C_l(L)$.

- Roughly, cover c(C) is combination of literals of clauses C
- C^{*}_l(L) = relevant clauses C_l(L) ∪ tautologies for unknown literals p ∨ ¬p
- Idea: smallest C can be made of
 - Clauses in C_l(L)
 - ► Last resort: combination of tautologies p ∨ ¬p
- Then, w(L) is at most n, the number of unknown fluents
 If C_l(L) is empty, w(L) = 0

54

Definition (Width of Literal)

The conformant width of a literal *L*, written w(L), is the **size** of the *smallest set of clauses* C in $C_l^*(L)$ such that cover c(C) satisfies $C_l(L)$.

- Roughly, cover c(C) is combination of literals of clauses C
- C^{*}_l(L) = relevant clauses C_l(L) ∪ tautologies for unknown literals p ∨ ¬p
- Idea: smallest C can be made of
 - Clauses in C_l(L)
 - ► Last resort: combination of tautologies p ∨ ¬p
- Then, w(L) is at most *n*, the number of unknown fluents
- If $C_l(L)$ is empty, w(L) = 0

Definition (Width of Problem)

The conformant width of a problem *P*, written as w(P), is $w(P) = \max_L w(L)$, where *L* ranges over the precondition and goal literals in *P*.

Calculate w(L) requires find a subset of clauses of C^{*}_l(L) whose cover satisfies C_l(L)

 \rightarrow exponential on size of $C_l^*(L)$

- But verify whether $w(L) \le i$ is polynomial for fixed *i*
 - \rightarrow For each subset of *i* clauses, try to get a cover

Width (examples)

- If $C_l(L)$ is $oneof(x_1, ..., x_m)$, then w(L) = 1 because $C = \{x_1 \lor \cdots \lor x_m\}$ generates the cover $c(C) = \{\{x_1\}, ..., \{x_m\}\}$ that satisfies $C_l(L)$.
- If C_l(L) is (p ∨ ¬p) and (q ∨ ¬q), then w(L) = 2 as the smallest C in C^{*}_l(L) whose cover satisfies C_l(L) is C_l(L) itself.
- Sqr-center. Init = oneof(x_1, \ldots, x_n), oneof(y_1, \ldots, y_n). Goal = x_{center} , y_{center} . Actions: up, down, left, right. Rules like up: $y_i \rightarrow y_{i+1} \land \neg y_i$
 - Has width 1 because x_i not relevant to y_i

Width (examples)

- If $C_l(L)$ is $oneof(x_1, ..., x_m)$, then w(L) = 1 because $C = \{x_1 \lor \cdots \lor x_m\}$ generates the cover $c(C) = \{\{x_1\}, ..., \{x_m\}\}$ that satisfies $C_l(L)$.
- If C_l(L) is (p ∨ ¬p) and (q ∨ ¬q), then w(L) = 2 as the smallest C in C^{*}_l(L) whose cover satisfies C_l(L) is C_l(L) itself.
- Sqr-center. Init = oneof(x_1, \ldots, x_n), oneof(y_1, \ldots, y_n). Goal = x_{center} , y_{center} . Actions: up, down, left, right. Rules like up: $y_i \rightarrow y_{i+1} \land \neg y_i$
 - Has width 1 because x_i not relevant to y_i

Width (examples)

- If $C_I(L)$ is $oneof(x_1, ..., x_m)$, then w(L) = 1 because $C = \{x_1 \lor \cdots \lor x_m\}$ generates the cover $c(C) = \{\{x_1\}, ..., \{x_m\}\}$ that satisfies $C_I(L)$.
- If C_l(L) is (p ∨ ¬p) and (q ∨ ¬q), then w(L) = 2 as the smallest C in C^{*}_l(L) whose cover satisfies C_l(L) is C_l(L) itself.
- Sqr-center. Init = oneof(x_1, \ldots, x_n), oneof(y_1, \ldots, y_n). Goal = x_{center} , y_{center} . Actions: up, down, left, right. Rules like up: $y_i \rightarrow y_{i+1} \land \neg y_i$
 - Has width 1 because x_i not relevant to y_j

Translation $K_i(P)$

Definition (Translation K_i)

The translation $K_i(P)$ is obtained from $K_{T,M}(P)$ where

- If w(P) ≤ i, then one merge m = c(C) for the selected clauses C of each precond and goal literal L in P.
- Otherwise, one merge m = c(C) for L for each set C of i clauses in C^{*}_I(L).
- *T* is the collection of tags appearing in those merges and the empty tag.

Theorem (Properties *K*_i)

For a fixed i, the translation $K_i(P)$ is sound, polynomial, and if $w(P) \leq i$, covering and complete.

イロト 不得 トイヨト イヨト 正言 のなる

Translation $K_i(P)$

Definition (Translation K_i)

The translation $K_i(P)$ is obtained from $K_{T,M}(P)$ where

- If w(P) ≤ i, then one merge m = c(C) for the selected clauses C of each precond and goal literal L in P.
- Otherwise, one merge m = c(C) for L for each set C of i clauses in C^{*}_I(L).
- *T* is the collection of tags appearing in those merges and the empty tag.

Theorem (Properties K_i)

For a fixed i, the translation $K_i(P)$ is sound, polynomial, and if $w(P) \leq i$, covering and complete.

Translation $K_i(P)$

Definition (Translation K_i)

The translation $K_i(P)$ is obtained from $K_{T,M}(P)$ where

- If w(P) ≤ i, then one merge m = c(C) for the selected clauses C of each precond and goal literal L in P.
- Otherwise, one merge m = c(C) for L for each set C of i clauses in C^{*}_I(L).
- *T* is the collection of tags appearing in those merges and the empty tag.

Theorem (Properties K_i)

For a fixed *i*, the translation $K_i(P)$ is sound, polynomial, and if $w(P) \le i$, covering and complete.

Width of Conformant Benchmarks

	Domain-Parameter # Unknown Fluents		Width
1	Safe- <i>n</i> combinations	п	1
2	UTS- <i>n</i> locs	п	1
3	Ring- <i>n</i> rooms	4 <i>n</i>	1
4	Bomb-in-the-toilet- <i>n</i> bombs	п	1
5	Comm- <i>n</i> signals	п	1
6	Square-Center- $n \times n$ grid	2 <i>n</i>	1
7	Cube-Center- $n \times n \times n$ cube	3 <i>n</i>	1
8	Grid- <i>n</i> shapes of <i>n</i> keys	$n \times m$	1
9	Logistics <i>n</i> pack <i>m</i> locs	$n \times m$	1
10	Coins-n coins m locs	$n \times m$	1
11	Block-Tower-n Blocks	$n \times (n-1) + 3n + 1$	same
12	Sortnet- <i>n</i> bits	n	п
13	Adder <i>n</i> pairs of bits	2 <i>n</i>	2 <i>n</i>
14	Look-and-Grab <i>m</i> objs from $n \times n$ locs	$n \times n \times m$	т
15	1-dispose <i>m</i> objs from $n \times n$ locs	$n \times n \times m$	т

ICAPS – June 2011 58 / 99

▲□ → ▲圖 → ▲ 画 → ▲ 画 = つくで

Width of some problems

- Blocks have maximal width.
- But blocks, with a magic action to achieve the goal
 - Trivial (solved by K₀)
- Look-n-grab for *m* objs has width *m*, but does not depend on size of the grid.
 - Why? Every clause relevant to handempty, that is relevant to all goals

Conformant Width: intuitions

- It is not necessary to deal with all relevant clauses C_l(L) to achieve KL, for L goal or precond
 - some of them are enough for deciding the others
 - How many? w(L)
- Let P_N a problem of size N, having $w(P_N) = i$ for any N. It maybe that for $K_i(P_N)$:
 - ▶ the number of tags grows linear on *N*, but ...
 - the number of initial states of P_N grows exponentially on N
 - How can be K_i complete?

A **tag** t **summarize information** about all the initial states consistent with t

イロト 不得 トイヨト イヨト 正言 のなる

Conformant Width: intuitions

- It is not necessary to deal with all relevant clauses C_l(L) to achieve KL, for L goal or precond
 - some of them are enough for deciding the others
 - How many? w(L)
- Let P_N a problem of size N, having w(P_N) = i for any N. It maybe that for K_i(P_N):
 - the number of tags grows linear on N, but ...
 - the number of initial states of P_N grows exponentially on N
 - How can be K_i complete?

A tag t summarize information about all the initial states consistent with t

Basis

- Given *P* a conformant problem and $S \subseteq S_0$ a subset of the possible initial states of P.
- Let P[S] the conformant problem that is like P but with the set of initial states restricted to S.

Definition

S is a **basis** for P iff any conformant plan for P[S] is a conformant plan for P.

61/99

Basis

- Given *P* a conformant problem and $S \subseteq S_0$ a subset of the possible initial states of P.
- Let P[S] the conformant problem that is like P but with the set of initial states restricted to S.

Definition

S is a **basis** for P iff any conformant plan for P[S] is a conformant plan for P.

Theorem

Conformant problems P with width(P) $\leq i$ have basis of size |S|exponential in i. (Even if $|S_0|$ is exponential on number of fluents)

You can plan just for a basis (if you are able to find one)! Why?

Basis examples

Oneof

• Consider a problem *P* with $I = \{x_1 \lor \cdots \lor x_n, \neg x_i \lor \neg x_j \text{ for all } i \neq j\}$. A basis maybe:

$$\{x_1, \neg x_2, \dots, \neg x_n\}$$
$$\{\neg x_1, x_2, \dots, \neg x_n\}$$
$$\dots$$
$$\{\neg x_1, \neg x_2, \dots, x_n\}$$

• Consider a problem *P* with $I = \{x_1 \lor \cdots \lor x_n\}$. A basis is the same previous set of states.

• Why is this a basis for both problems?

A 目 > A 目 > A 目 > 目 = のQQ

Monotonicity

ICAPS – June 2011

비로 세로에 세로에 세팅히

There exist a Basis!

- Giving literal *L* and a covering merge *m* = {*t*₁,..., *t_n*, for any state *s* there exist *i* s.t. *rel*(*t_i*^{*}, *L*) ⊆ *rel*(*s*, *L*).
- Pick s_i s.t. $rel(t_i^*, L) \subseteq rel(s_i, L)$ and there is no s_j s.t. $rel(s_j, L) \subset rel(s_i, L)$.

Hint: like picking the set of 'smaller' s_i'

• The set $\{s_1, \ldots, s_n\}$ is a basis!

Hint:

- You don't need to use K_{T,M}. If you are able to identify a basis S, do free-style conformant plan with initial states S.
- If you use a subset of initial states *S* that is not a basis, you will not get sound solutions.
 - Will be useful for relaxations/heuristics.

イロト 不得 トイヨト イヨト 正言 のなる

There exist a Basis!

- Giving literal *L* and a covering merge *m* = {*t*₁,..., *t_n*, for any state *s* there exist *i* s.t. *rel*(*t_i*^{*}, *L*) ⊆ *rel*(*s*, *L*).
- Pick s_i s.t. $rel(t_i^*, L) \subseteq rel(s_i, L)$ and there is no s_j s.t. $rel(s_j, L) \subset rel(s_i, L)$.

Hint: like picking the set of 'smaller' s_i'

• The set
$$\{s_1, \ldots, s_n\}$$
 is a basis!

Hint:

- You don't need to use K_{T,M}. If you are able to identify a basis S, do free-style conformant plan with initial states S.
- If you use a subset of initial states *S* that is not a basis, you will not get sound solutions.
 - Will be useful for relaxations/heuristics.

A 目 > A 目 > A 目 > 目 = のQQ

- Remember you just need:
 - Valid set of tags T
 - Merges: valid disjunctions of tags in *M*.
- Grab clauses in I and do whatever you method you have to do so. Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.
- Clear semantics of K_{T,M} tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

 In any state where you get ¬KL/t ∧ ¬K¬L/t, you know you lost track of L for any initial state satisfying t.

- Remember you just need:
 - Valid set of tags T
 - **Merges**: valid disjunctions of tags in *M*.
- Grab clauses in *I* and do whatever you method you have to do so. *Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.*
- Clear semantics of K_{T,M} tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

In any state where you get ¬*KL/t* ∧ ¬*K*¬*L/t*, you know you lost track of *L* for any initial state satisfying *t*.

- Remember you just need:
 - Valid set of tags T
 - Merges: valid disjunctions of tags in *M*.
- Grab clauses in *I* and do whatever you method you have to do so. *Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.*
- Clear **semantics** of *K*_{*T*,*M*} tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

 In any state where you get ¬KL/t ∧ ¬K¬L/t, you know you lost track of L for any initial state satisfying t. Monitor execution!

- Remember you just need:
 - Valid set of tags T
 - **Merges**: valid disjunctions of tags in *M*.
- Grab clauses in *I* and do whatever you method you have to do so. *Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.*
- Clear semantics of K_{T,M} tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

In any state where you get ¬*KL*/*t* ∧ ¬*K*¬*L*/*t*, you know you lost track of *L* for any initial state satisfying *t*.
 Monitor execution!

Translation Kmodels(P)

Definition

The translation Kmodels(P) from the general $K_{T,M}(P)$

 Merge *m* for each precond and goal *L*: models* of *C_I(L)* that are consistent with *I*

Theorem

The translation Kmodels(P) is sound and complete.

Key points:

- Kmodels is equivalent to K_{S0} when all the clauses in I are relevant to all the precondition and goal literals L.
- But Kmodels **exponential** on number of **vars in** $C_1(L)$, while K_{S0} exponential in the number of unknown **vars in** *I*.

Translation Kmodels(P)

Definition

The translation Kmodels(P) from the general $K_{T,M}(P)$

 Merge *m* for each precond and goal *L*: models* of *C_I(L)* that are consistent with *I*

Theorem

The translation Kmodels(P) is sound and complete.

Key points:

- Kmodels is equivalent to K_{S0} when **all** the clauses in I are relevant to all the precondition and goal literals L.
- But Kmodels **exponential** on number of **vars in** $C_1(L)$, while K_{S0} exponential in the number of unknown **vars in** *I*.

The planner T_0

- Conformant Planner T_0 , winner at IPC-2006, was based on K_1 + FF, an effective classical planner.
 - Using SAT-based conformant planner when FF did not find solution in K₁
- version for IPC-2008 *K*₁ + *Kmodels*
 - CpA(H) was the winner.

T₀ optimizations

- Non-uniform tags: tags for L are only literals in $C_l(L)$
- Remove from PDDL KL/t and cond-effects that does not affect merge results
- If using K_{s0}, Kmodels or K_i for width ≤ i cancellation can be tracked by support rules
 - Given rule C → L, instead of both KC → KL and ¬K¬C → ¬K¬L
 - keep only $KC \to KL \land \neg K \neg L$
- For **invariant** oneof(x_1, \ldots, x_n): keep Kx_i updated. Example:

$$K \neg x_1 \land \ldots \land K \neg x_{n-1} \to K x_n$$

 Sometimes for width > 1, can be solved if allowing merge not only for precs and goal

68

Translating *P* into $K_1(P)$: size

	P		Translation	$K_1(P)$	
Problem	#Fluents	#Effects	time (secs)	#Fluents	#Effects
Bomb-100-100	402	40200	1,36	1304	151700
Sqr-64-ctr	130	504	2,34	16644	58980
Sqr-120-ctr	242	952	12,32	58084	204692
Logistics-4-10-10	872	7640	1,44	1904	16740
1-Dispose-8-3	486	1984	26,72	76236	339410
Look-n-Grab-8-1-1	356	2220	4,03	9160	151630

- After some simplifications made for T₀ to the PDDL
- Translation is not the bottleneck

Performance on current classical planners?

- Size of grounded instances
- Support for conditional effects
- Sensibility of heuristics

Thanks FF for

- accepting big grounded PDDLs
- dealing with lots of conditional effects

We still got issues with LAMA.

Digression: on conditional effects

Conditional effects are very expressive!

one of the few ADL extensions than cannot be compiled away with some blow-up

If classical planning is symbolical reachability where differences from an state to another are

- verified easily (STRIPS preconditions)
- represented compactly (STRIPS add and delete)
- Conditional effects are
 - essentially different because simultaneous changes by the same action
 - also a compact representation of change
- Button line: good support of conditional effects is needed from classical planners. Challenge accepted!
 - Current planners are tested with hand-made problems with a few cond-effects.
 - Even simple cases are not well treated.

ICAPS – June 2011

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

• Sampling: pick a set of initial states and plan for them.

- A complete sample will be a basis!
- Recall *P*[*S*] is the conformant problem *P* but restricted to the set of initial states *S*.
- Let $KS(P) = K_{s0}(P[S])$. Complete if S is a basis!
- Define **new instance** $K_S^i(P)$ that is
 - **Exponential** on *i*, the size of tags.
 - Always complete.
 - Not always sound.
 - Sound if conformant width $w(P) \leq i$.

ICAPS – June 2011

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

- Sampling: pick a set of initial states and plan for them.
 - A complete sample will be a basis!
- Recall *P*[*S*] is the conformant problem *P* but restricted to the set of initial states *S*.
- Let $KS(P) = K_{s0}(P[S])$. Complete if S is a basis!
- Define **new instance** $K_S^i(P)$ that is
 - Exponential on i, the size of tags.
 - Always complete.
 - Not always sound.
 - Sound if conformant width $w(P) \leq i$.

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

- Sampling: pick a set of initial states and plan for them.
 - A complete sample will be a basis!
- Recall *P*[*S*] is the conformant problem *P* but restricted to the set of initial states *S*.
- Let $KS(P) = K_{s0}(P[S])$. Complete if S is a basis!
- Define **new instance** $K_S^i(P)$ that is
 - **Exponential** on *i*, the size of tags.
 - Always complete.
 - Not always sound.
 - Sound if conformant width $w(P) \leq i$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Sampling (2)

• $K_{S}^{i}(P)$ is KS(P) with a base of size exponential on *i*.

- Why may $K_{S}^{i}(P)$ be unsound?
- Relaxation of K_{T,M} allows to always get a solution!
- Almost classic belief state planner using $K_S^i(P)$ for heuristic.
 - Tricky part was choosing a good approximated basis Spoiler: minimal cardinality on propositional logic!
- See (Shani & Brafman, 2011), that is based on $K_{T,M}$ for using sampling in contingent planning.

Sampling (2)

• $K_S^i(P)$ is KS(P) with a base of size exponential on *i*.

- Why may $K_{\mathcal{S}}^i(P)$ be unsound?
- Relaxation of K_{T,M} allows to always get a solution!
- Almost classic belief state planner using $K_S^i(P)$ for heuristic.
 - Tricky part was choosing a good approximated basis Spoiler: minimal cardinality on propositional logic!
- See (Shani & Brafman, 2011), that is based on $K_{T,M}$ for using sampling in contingent planning.

Sampling (2)

• $K_{S}^{i}(P)$ is KS(P) with a base of size exponential on *i*.

- Why may $K_{\mathcal{S}}^i(P)$ be unsound?
- Relaxation of K_{T,M} allows to always get a solution!
- Almost classic belief state planner using $K_S^i(P)$ for heuristic.
 - Tricky part was choosing a good approximated basis. Spoiler: minimal cardinality on propositional logic!
- See (Shani & Brafman, 2011), that is based on $K_{T,M}$ for using sampling in contingent planning.

A 目 > A 目 > A 目 > 目 = のQQ

Related Work

• Belief state search (Bonet & Geffner, 2000)

- Translation to classical planning allows to use
 - ★ in many cases a very **compact** representation
 - classical planning heuristics

0-approximation (Baral & Son, 1997)

- Incomplete semantic used for conformant planning
- Extended to be complete with exponential saving respect to standard semantic (Son & Tu, 2006)
- Some problems are exponential for complete 0-approximation, but have width 1
 - * CpA (Tran *et al*, 2009) has optimization for not being exponential in some of these problems.

Related Work

• Belief state search (Bonet & Geffner, 2000)

- Translation to classical planning allows to use
 - in many cases a very compact representation
 - ★ classical planning heuristics

• 0-approximation (Baral & Son, 1997)

- Incomplete semantic used for conformant planning
- Extended to be complete with exponential saving respect to standard semantic (Son & Tu, 2006)
- Some problems are exponential for complete 0-approximation, but have width 1
 - ★ CpA (Tran *et al*, 2009) has optimization for not being exponential in some of these problems.

(日本)

T_0 vs CpA

- K_{T.M} based: local context for each literals. Complete: context is enough for achieving the problem
- 0-approximation extended to be complete: minimal global context for achieving the problem

75/99

T₀ vs CpA

- *K*_{*T,M*} based: **local context** for each literals. Complete: context is enough for achieving the problem
- 0-approximation extended to be complete: minimal global context for achieving the problem
- $K_{T,M}$ maybe be **exponential** better than the 0-approx.
- Merging one-of helps CpA
- We get classical problem. CpA: search algorithm, heuristics.
- But classical problem can be quite big. CpA may have advantage.
- More **recent planners** *CNF*, *DNF* explore different representations and transitions functions.

75

T₀ vs CpA

- *K*_{*T,M*} based: **local context** for each literals. Complete: context is enough for achieving the problem
- 0-approximation extended to be complete: minimal global context for achieving the problem
- $K_{T,M}$ maybe be **exponential** better than the 0-approx.
- Merging one-of helps CpA
- We get classical problem. CpA: search algorithm, heuristics.
- But classical problem can be quite big. CpA may have advantage.
- More **recent planners** *CNF*, *DNF* explore different representations and transitions functions.

75

Summary of first part

- A general K_{T,M} translation scheme for mapping from conformant P into classical P'
- A number of interesting **instances**: K_0 , K_{s0} , K_i
- Characterization of the complexity of the complete K_{T,M} in term of the conformant width
- Translation scheme K_i that is always polynomial and complete if conformant width ≤ i
- A conformant planner T_0 based on instances of $K_{T,M}$

References

- [Baral & Son, ILPS-1997]. Baral, C., & Son, T. C. Approximate reasoning about actions in presence of sensing and incomplete information. ILPS-1997.
- [Bonet & Geffner, AIPS-2000]. Bonet, B., & Geffner, H. Planning with incomplete information as heuristic search in belief space. AIPS-2000.
- [Son & Tu, KR-2006]. Son, T. C., & Tu, P. H. On the completeness of approximation based reasoning and planning in action theories with incomplete information. KR-2006.
- [Tran et al, PADL-2009]. Tran, D., Nguyen, H., Pontelli, E., & Son, T. C. Improving performance of conformant planners: Static analysis of declarative planning domain specifications. PADL-2009.
- [Palacios & Geffner, JAIR-2009]. Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width. Palacios, H., & Geffner, H.. JAIR 2009.
- [Albore et al, ICAPS-2011]Effective Heuristics and Belief Tracking for Planning with Incomplete Information. Albore, A., Ramirez, M., & Geffner, H. ICAPS-2011.
- [Shani & Brafman, IJCAI-2011]. *Replanning in Domains with Partial Information and Sensing Actions*. Shani, G., & Brafman, Ronen. IJCAI-2011.

More references on the second part!

ICAPS – June 2011

77/99

Translation-based Approaches to Conformant and Contingent Planning

Part II

Contingent Planning

- Conformant problem = classical problem + incomplete information
- Contingent problem = conformant problem + sensing actions
- STRIPS Problem P= <F, I, A, G> with three extensions:
 - I is a well-formed formula over F, encoding uncertainty
 - Actions $a \in A$ may have **conditional effects**
 - Sensing actions

Action selection in Wumpus

from Russell & Norvig

What should the agent do next?

Contingent Planning: Sensing and Incomplete Information

- Finding a solution in presence of partial or incomplete information.
 - The belief states space size which is combinatorially large.
 - Difficult to obtain **informed heuristics** in belief space.
- The solution strongly depends on the observation outcome.
 - The size of the solution grows **exponentially** with the number of possible observations.

Thus verification and/or generation of a plan takes **exponential** time.

A Translation-based approach to Contingent Planning

- Contingent problems cannot be translated into classical ones, as they have **different solution forms** (trees vs. sequences).
- Offline planning: provide solution tree for all possible contingencies
- Online planning: action sequence generated on-the-fly (interleaving planning and execution).
- As for conformant planning, translation compiles beliefs away: states represent "belief states" over P.

Compiling into classical planning: the CLG approach

- Contingent problem P translated into fully observable but non-deterministic problem X_{T,M}(P).
 - Sensing is modeled as actions with non-deterministic effects
 - X_{T,M}(P) has complete information!
 Solutions to X_{T,M}(P) yield solutions for P!

...but how to deal with sensing? Search has to make explicit effort to obtain information.

 Later on, we will guide the search using relaxation X+(P), that is also a classical planning problem.

Translation X_{T,M}(P)

- Contingent problem P = Conformant problem P' + Sensing actions.
- $X_{T,M}(P) = K_{T,M}(P')$ + Deductive Actions + Sensing Actions
 - Deductive actions:

tag refutation:
$$KL/t \wedge K\neg L \rightarrow K\neg t$$

contingent merge: $\bigwedge_{t \in m, m \in M_L} (KL/t \vee K\neg t) \rightarrow KL$

 Sensing actions obs(L) from P encoded in X_{T,M}(P) as non-deterministic actions:

$$obs(L): \neg KL \land \neg K \neg L \to KL \,|\, K \neg L$$

Complete Translation X_{S0} (P)

- Translation $X_{S0}(P)$ is special case of $X_{T,M}(P)$ with:
 - T equal to the set of **all** possible initial states of P
 - M containing a merge m=T for each precondition and goal literal L of P.

Theorem: $X_{S0}(P)$ is **sound** and **complete**.

This translation is suitable when number of initial states is low; in worst case exponential in number of uncertain fluents.

Example: Problem P

Example: Problem P

• Fluents: opened-door1, opened-door2, corridor, door1, door2, panel, gold-found

 Init: oneof(opened-door1, opened-door2) ∧ at(corridor) ∧¬gold-found

- Goal: gold-found
- Actions: goto(?pos, ?dest), open(?door)
- Observation: inspect-panel

Example Problem P - Actions

goto(?pos, ?dest):

pre: *at(?pos)*

effect: *at(?dest)* ^ ¬ *at(?pos)*

inspect-panel: pre: *at(panel)* observation: *opened-door1* | ¬ *opened-door1*

open(?door):

pre: at(?door) \wedge opened(?door)
effect: gold-found

Example X_{S0} (P) translation

• Tags (2 possible states):

 $s1 \vDash opened-door1 \land \neg opened-door2$

 $s2 \vDash opened-door2 \land \neg opened-door1$

- Merge: {s1, s2}
- Init:

K opened-door1/s1 \land K \neg opened-door2/s1 K opened-door2/s2 \land K \neg opened-door1/s2 K at(corridor)/* \land K \neg gold-found/* $\land \neg$ K...

Example with X_{S0} (P) translation A possible Plan

<u>Plan</u>:

goto(panel), inspect-panel, goto(observed-open-door), open(observed-open-door).

Example with X_{S0} (P) translation A possible Plan

<u>Plan</u>:

goto(panel), inspect-panel, goto(observed-open-door), open(observed-open-door).

Example with X_{S0} (P) translation goto(corridor, panel)

Init goto(corridor,panel) s1

<u>Init</u>: *K at(corridor)/s1* ∧ *K at(corridor)/s2* ∧ *K at(corridor)* ∧ ...

Example with X_{S0} (P) translation goto(corridor, panel)

Init goto(corridor,panel)

<u>Init</u>: *K at(corridor)/s1* ∧ *K at(corridor)/s2* ∧ *K at(corridor)* ∧ ...

goto(corridor, panel):

pre: *K at(corridor)*

effect: *K* at(panel) ∧ *K*¬at(corridor) ∧ *K* at(panel)/ t ∧ *K*¬at(corridor)/ t ∧ ...

Example with X_{S0} (P) translation goto(corridor, panel)

Init goto(corridor,panel) s1

<u>s1</u>: *K at(panel)/s1* ∧ *K at(panel)/s2* ∧ *K at(panel)* ∧ ...

goto(corridor, panel):

pre: *K at(corridor)*

effect: $K at(panel) \land K \neg at(corridor) \land K at(panel)/t \land K \neg at(corridor)/t \land ...$

Example with X_{S0} (P) translation inspect-panel

Init goto(corridor,panel)

<u>s1</u>: *K at(panel)/s1* ∧ *K at(panel)/s2* ∧ *K at(panel)*∧ ...

Example with X_{S0} (P) translation inspect-panel

<u>s1</u>: *K at(panel)/s1* ∧ *K at(panel)/s2* ∧ *K at(panel)*∧ ...

inspect-panel

pre: *K at(panel)*

observation:

 $\neg K \text{ opened-door1} \land \neg K \neg \text{ opened-door1}$

→ K opened-door1 | K ¬ opened-door1

Example with X_{S0} (P) translation inspect-panel

<u>D1</u>: *K* at(panel)/s1 ∧ *K* at(panel)/s2 ∧ *K* at(panel)∧ ¬K¬ opened-door1 ∧ *K* opened-door1 ∧...

inspect-panel

pre: *K at(panel)*

observation:

 $\neg K opened-door1 \land \neg K \neg opened-door1$

→ K opened-door1 | K ¬ opened-door1

goto(corridor,panel)

Init

inspect-panel

<u>D1</u>: *K* at(panel)/s1 ∧*K* at(panel)/s2 ∧ *K* at(panel)∧ *K* opened-door1 ∧ *K*¬opened-door1/s2 ∧ ...

<u>D1</u>: *K at(panel)/s1 ∧K at(panel)/s2 ∧ K at(panel)∧ K opened-door1 ∧ K¬opened-door1/s2 ∧ ...*

tag-refutation

pre: true

effect:

 $K \neg opened-door1/s2 \land K opened-door1 \rightarrow K \neg s2$

<u>D1'</u>: *K at(panel)/s1* ∧ *K at(panel)/s2* ∧ *K at(panel)*∧ *K opened-door1* ∧ *K¬opened-door1/s2* ∧ K ¬s2 ∧...

tag-refutation

pre: true

effect:

 $K \neg opened-door1/s2 \land K opened-door1 \rightarrow K \neg s2$

goto(corridor,panel)

Init

inspect-panel

<u>D1'</u>: *K at(panel)/s1* ∧ *K at(panel)/s2* ∧ *K at(panel)*∧ *K opened-door1* ∧ *K¬opened-door1/s2* ∧ *K* ¬s2 ∧...

...and from now on, no uncertainty is left \Rightarrow classical planning problem (solved like K₀)

General Translations that are Complete

- Let O(L) be the observables relevant to L.
- Let $C_{I^{O}}(L)$ be the clauses in \mathcal{I} relevant to L or O(L).
- \mathcal{I} is assumed to be in **prime implicate form**.

Definition: A valid translation $X_{T,M}(P)$ is **covering** if for each precondition and goal literal L of P, M contains a merge m for L that satisfies each clause in $C_1^O(L)$.

Theorem: Covering translations are sound and complete.

- Width of a problem w(P) is roughly the **size of the tags** needed for completeness.
- The translation X_i(P) is a special case of X_{T,M}(P), with tags of size ≤ i.
- For fixed i, translation X_i(P) is polynomial, and complete if w(P) ≤ i.
- Most contingent benchmarks turn out to have width 1.

where are we?

where are we?

• $X_{T,M}(P)$, fully-observable non-deterministic problem, done

where are we?

- X_{T,M}(P), fully-observable non-deterministic problem, done
- Relaxation X+(P) to guide the search

Relaxation X+(P)

- Drop "delete" effects, (like in classical planning).
- Move preconditions in as conditions [Hoffmann & Brafman, 2005].
- Make sensing actions obs(L) deterministic, by adding contingent knowledge operator M:

$$obs(L): \neg KL \land \neg K \neg L \rightarrow ML \land M \neg L \land o(L)$$

- Use M-literal ML as preconditions of action a in $X_{T,M}(P)$, if L is precondition of a in P.
- X+(P) is a classical planning problem. Solutions for X_{T,M}(P) are solutions X+(P).

Relaxing on action preconditions

Effects of an observation in X⁺(P)

<u>S</u>: *K* at(panel)/opened-door1 ∧ *K* at(panel)/opened-door2 ∧ *K* at(panel)∧ <u>M</u> at(panel) ∧...

Effects of an observation in X⁺(P)

<u>S</u>: *K* at(panel)/opened-door1 ∧ *K* at(panel)/opened-door2 ∧ *K* at(panel)∧ <u>M</u> at(panel) ∧...

inspect-panel:

pre: *M at(panel)*

observation:

 \neg Kopened-door1 $\land \neg$ K \neg opened-door1

→ M opend-door1 ∧ M ¬ opened-door1 ∧ o(opened-door1)

Effects of an observation in X+(P)

added by M-K rule: <u>S</u>: $KL \rightarrow ML$ $K at(panel)/opened-door1 \land$ $K at(panel)/opened-door2 \land$ $K at(panel) \land M at(panel) \land ...$

inspect-panel:

pre: *M at(panel)*

observation:

 \neg Kopened-door1 $\land \neg$ K \neg opened-door1

→ M opend-door1 ∧ M ¬ opened-door1 ∧ o(opened-door1)

Effects of an observation in X⁺(P)

<u>S'</u>: *K* at(panel)/opened-door1 ∧ *K* at(panel)/opened-door2 ∧ *K* at(panel)∧ *M* at(panel) ∧ *M* opened-door1 ∧ *M* ¬ opened-door1 ∧ o(opened-door1) ∧ ...

inspect-panel:

pre: *M at(panel)*

observation:

 \neg Kopened-door1 $\land \neg$ K \neg opened-door1

→ Mopend-door1 ∧ M ¬ opened-door1 ∧ o(opened-door1)

Example with X⁺(P) applying derivation rules

<u>S'</u>: *K* at(panel)∧ *M* at(panel) ∧ *M* gold-at(door1) ∧ *M* ¬ gold-at(door1) ∧ o(gold-at(door1)) ∧ ...

Example with X⁺(P) applying derivation rules

<u>S'</u>: *K* at(panel)∧ *M* at(panel) ∧ *M* gold-at(door1) ∧ *M* ¬ gold-at(door1) ∧ o(gold-at(door1)) ∧ ...

M-contingent merge:

effect: $M\neg opened-door1 \rightarrow M opened-door2$

Example with X⁺(P) applying derivation rules

<u>S</u>": *K* at(panel)∧ *M* at(panel) ∧ *M* gold-at(door1) ∧ *M* ¬ gold-at(door1) ∧ o(gold-at(door1)) ∧ <u>M</u> gold-at(door2) ∧ ...

M-contingent merge:

effect: $M\neg opened-door1 \rightarrow M opened-door2$

Example with X+(P) a possible plan

- In X+(P), the preconditions of the actions open(door1) and open(door2) hold in the relaxed translation.
- A solution plan would be, from Init:
 - 1. goto(corridor, panel)
 - 2. inspect-panel, (observation)
 - 3. goto(panel, door1)
 - 4. open(door1) → K gold-found/opened-door1
 - 5.goto(door1,door2)
 - 6. open(door2) \rightarrow K gold-found/opened-door2
- After last action, the goal would be reached because of merge rule: *K gold-found/opened-door1* ∧ *K gold-found/opened-door2* → *K gold-found*

Closed Loop Greedy Planner

- The CLG planner uses:
 - translation X₁(P) to keep track of beliefs;
 - relaxation X₁+(P), that is a classical planning problem, to select action to do next.

Using assumptions on sensing outcome

- Freespace assumption [Koenig at al. 2003]
- Safe Assumption-based planning: belief monitoring and LTL assumptions [Albore & Bertoli 2006]
- Preferences on observation outcome [Likhachev & Stentz 2009]
- Sampling and replanning [Shani & Brafman 2011]
 - Based on CLG's and T0's ideas

Another approach on how to Solve contingent problems with classical planners

- Conditions under wich partially observable problems can be solved by classical planners.
- Simple problem [Bonet & Geffner 2011]:
 - non-unary clauses in Init are all invariant
 - no hidden fluent appear in the body of a conditional effect
- Width of P = 1
- Connected space.

Planning under optimism

- K'(P) fully-observable non-deterministic problem (based on K₀)
 solved by a classical translation K(P), using 2 rules:
- Assumption: if (C,L) is a sensing action, then

pre:
$$KC \land \neg KL \land \neg K\neg L$$
 effect: KL

pre: $KC \land \neg KL \land \neg K\neg L$ effect: $K\neg L$

- $KC \rightarrow KL$ for invariants $\neg C \lor L$ in P
- A prefix of the plan is always executable, until KC is achieved. Then the assumption can be revealed by sensing.

Planning under optimism

- If the assumption turns out to be false, then **replan**
- If the space is connected, replanning is always possible, and reaching the goal is guaranteed if a solution exists.

- Dead-ends are situations for which there is no strong solution:
 - Belief state is a dead-end when **at least one state** is a dead-end.
 - State is a dead-end when the goal cannot be reached **even** given full observability (e.g. minesweeper).
- Contingent and POMDPs planners will deliver no solution when initial belief is a dead-end.
- Yet these situations are quite common...

Example with no full solution plan

- The cells in the middle column can be blocked.
- 2⁵ possible wall configurations.

- Only 1 wall configuration brings to a dead-end situation.
- Full contingent solution is however non-existent.

Planners for Problems with No Strong Solutions

- •When there is not a strategy that works in **all** cases, we may look for a strategy working in **most** cases.
- •Non-solvable contingent planning problems can be converted into solvable ones by introducing **assumptions**.
- •The aim is finding a solution for the maximum number of states in the belief state.

•CLG+ = CLG_{online} + assumptive-actions + costs.

Encoding Assumptions Into CLG⁺ (pay-for-tags)

• Assuming *K¬t* to make it possible to merge *KL*

$$\bigwedge_{t \in m, m \in M_L} (KL/t \vee K \neg t) \to KL$$

- Assumptive actions are encoded in $X_{T,M}(P)$ as deterministic actions with **high cost**: $\neg Kt \land \neg K \neg t \rightarrow K \neg t$
- Consequences:
 - Plans with assumption are the last option when generating relaxed plans,
 - Thus cost optimisation will result in plan strategies that are as strong as possible.

- Assumptions are integrated in 3 steps, for action selection:
 - 1. Don't use them.
 - 2. Use in relaxed plan but not execute it (ie. excluded from helpful actions of FF). Observations can help later.
 - 3. Allow to execute them as last resort. Like "betting", taking a risk.

Problems with Dead-end States

- Some situations might be dead-end.
- These problems are not solvable by existing contingent or POMDPs planners (infinite heuristic)

• Examples: Wumpus, Navigation in Unknown Map, Learning Unknown Model when observation allow to uncover action effects.

Problems with Pure Dead-end States

- **Insoluble problems** even if no state is initially dead-end any policy will work for some states, but not for others.
- These problems are solved by "**betting**", executing an assumption, to get out from the impasse.
- In case the bet is wrong, the execution naturally fails.
- But it is a risk that has to be taken.

• Example: Minesweeper, certain instances of Wumpus domain

Problems with High Contingent Width

- Contingent width is a measure of the complexity of the problem.
- Roughly, the size of the tags needed to have a complete translation X_{T,M}(P).
- Problems with a high contingent width are solvable problems with a contingent width > 1

• **Example**: Binary tree of doors.

Summary of Second Part

- Translation X_{T,M}(P) for contingent problems
- Conditions for completeness and contingent width
- Heuristic relaxation X⁺(P)
- Solving contingent problems with classical planners
- Dealing with dead-ends, CLG+ planner

Summary of the tutorial

- The presented approaches for conformant and contingent planning relies on:
 - Translate problems into classical planning.
 - Use such translations for action application and to obtain useful heuristics to guide the search.
 - In the case of conformant planning, both action applications and heuristics were done simoultaniously.

Conclusions

- Translation-based approach has a **clear semantics** including:
 - Conditions for **completness** and **soundness**;
 - Structural properties characterizing the size of complete translations (width).
- Planners based on complete and sound translations are **competitive**.
- Better performance can be obtained by
 - focusing on **special cases** ('simple' problems, with dead-ends)
 - obtaining heuristics from unsound but feasible translations