Translation-based approaches to Conformant and Contingent Planning

Alexandre Albore and Héctor Palacios

Universitat Pompeu Fabra \& Universitat Carlos III de Madrid
ICAPS - June 2011

Get it real!

Get it real!


```
3)
Iwitter / Marspinoenix: Didmt: receive new commands... - Mozilla Firefox
Archivo Editar Ver Historial Marcadores Herramientas Ayuda del_icio.us
```


ETwitter/MarsPhoenix [Twitter/MarsPhoenix: D...

Didn't receive new commands today, so I carried out a pre-programmed sequence to gather data and send it home. New commands coming tomorrow
06:13 PM May 27, 2008 from web

MarsPhoenix

Get it real!

I know it LOOKS easy, but you try following instructions sent from 182 million miles away! Next sample goes to microscope, poss Wednesday.
10:49 AM June 10, 2008 from web

- Let's get real, but principled!

Problem addressed in this tutorial

- Planning is the

Problem of finding the actions that achieve a goal, starting from an initial situation

- Classical planning assume complete information on initial state, actions effects, ...
- Conformant Planning
incomplete information on init state and effects but still one sequence of actions
- Contingent Planning is like Conformant but
allow observations. Plans are not sequences anymore.

Classical Planning

Conformant Planning

Classical problem for one state of a Conformant (I)

Classical problem for one state of a Conformant (II)

Conformant Planning (again)

Contingent Planning

Translation to Classical planning

Features

- Conformant plans are sequences like classical ones
- but Contingent are not. Something else is needed

Classical Planning

Problem of finding a sequence of deterministic actions that achieves a goal, starting from a given initial state.

- action cost = 1
- no observations

Expressed in high-level language

Classical Planning

Problem of finding a sequence of deterministic actions that achieves a goal, starting from a given initial state.

- action cost = 1
- no observations

Expressed in high-level language

- Init: p, q
- Goal: g
- Actions:
a Precondition: p. Effect: r
b Precondition: q. Effect: $r \rightarrow g$
c Precondition: q. Effect: $\neg q \wedge r$
- Plan: a, b

Classical Planning Syntax

Classical planning problems P are tuples of the form $P=\langle F, I, O, G\rangle$ where

- F : fluent symbols in the problem
- I : set of fluents true in the initial situation
- O: set of operators or actions. Every action a has
- a precondition Pre(a) given by a set of fluents
- a set of conditional effects $C \rightarrow L$ where C is a set of fluent literals and L is a single fluent literal.
- G : set of fluents defining the goal

Classical Planning Model

- Languages such as Strips, ADL, PDDL, ... , represent models in compact form
- A classical planner is a solver over the class of models given by:
- a state space S
- a known initial state $s_{0} \in S$
- a set $S_{G} \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic transition function $s^{\prime}=f(a, s)$ for $a \in A(s)$
- uniform action costs $c(a, s)=1$
- Given a problem P, states of its corresponding model are set of fluents of P
- Their solutions (plans) are sequences of applicable actions that map s_{0} into S_{G}

Classical Planning

State-of-the-art Classical Planning

Two main approaches currently:

- Heuristic-search based (McDermott, 1996; Bonet et al., 1997)
- SAT-based (Kautz \& Selman, 1992)

State-of-the-art Classical Planning

Two main approaches currently:

- Heuristic-search based (McDermott, 1996; Bonet et al., 1997)
- SAT-based (Kautz \& Selman, 1992)
- The good news: classical planning works
- heuristic search-based solve large problems very fast (non-optimally)
- Not so good: limitations
- No Uncertainty (no probabilities)
- No Incomplete Information (no sensing)

Conformant Planning

- Extend classical planning model to
- incomplete information about initial state and
- non-deterministic actions
- Conformant plan: a sequence of actions that achieves the goal for any possible initial state and state transition
- Harder than classical planning
verifying if sequence of actions is a conformant plan is hard
- For polynomial length, classical planning is NP-complete, but conformant planning is \sum_{2}^{p}-complete $=N P^{N P}$-complete

Examples

- Cleaning robot: there maybe debris in a grid room. A robot can collect debris in a cell. A conformant plan for cleaning the room is to collect debris in all the cells.
- Heal a patient: patient has a possible set of pathologies. A sequence of treatment actions that cures a patient for any of such pathologies is a conformant plan.
- Init: illness ${ }_{1} \vee$ illness $_{2}$, alive
- Goal: healthy, alive
- Actions:
treat $_{1}$ Precondition: true. Effect: illness ${ }_{1} \rightarrow$ healthy
treat $_{2}$ Precondition: true. Effect: illness ${ }_{2} \rightarrow$ healthy
treat $_{3}$ Precondition: true. Effect: illness $s_{2} \rightarrow$ healthy,

$$
\neg \text { illness }{ }_{2} \rightarrow \text { حalive }
$$

Omit precondition if true

- Init: illness ${ }_{1} \vee$ illness $_{2}$, alive
- Goal: healthy, alive
- Actions:
treat $_{1}$: illness $s_{1} \rightarrow$ healthy
treat $_{2}$: illness $s_{2} \rightarrow$ healthy
treat $_{3}:$ illness ${ }_{2} \rightarrow$ healthy,
\neg illness ${ }_{2} \rightarrow$ alive

Look-n-grab 8x8

- Actions: move,
look-and-grab, putdown
- Init: object can be anywhere.
- Goal: object at Trash
- Robot should visit Trash after each look-and-grab

Conformant Planning: the Trouble with Incomplete Info

Problem: A robot must move from an uncertain I into G with certainty, one cell at a time, in a grid $n \times n$

- Conformant and classical planning look similar except for uncertain I (assuming actions are deterministic).
- Yet plans can be quite different: best conformant plan must move robot to a corner first! (in order to localize)

Why it's important?

- What we really want is observations, probabilities, time, resources, etc, yet

Why it's important?

- What we really want is observations, probabilities, time, resources, etc, yet
- Better Conformant Planning leads to better Planning with Observations (contingent)
- Contingent-FF uses Conformant-FF's heuristic
- POND does both: conformant and contingent
- CLG for planning with observations presented in this tutorial
actions are applied to a set of possible configurations.
- Classical plannina is symbolic reachability, and conformant is reachability between set of configurations.

Why it's important?

- What we really want is observations, probabilities, time, resources, etc, yet
- Better Conformant Planning leads to better Planning with Observations (contingent)
- Contingent-FF uses Conformant-FF's heuristic
- POND does both: conformant and contingent
- CLG for planning with observations presented in this tutorial
- Conformant planning is relevant to any planning setting where actions are applied to a set of possible configurations.
is reachability between set of configurations.

Why it's important?

- What we really want is observations, probabilities, time, resources, etc, yet
- Better Conformant Planning leads to better Planning with Observations (contingent)
- Contingent-FF uses Conformant-FF's heuristic
- POND does both: conformant and contingent
- CLG for planning with observations presented in this tutorial
- Conformant planning is relevant to any planning setting where actions are applied to a set of possible configurations.
- Classical planning is symbolic reachability, and conformant is reachability between set of configurations.

Conformant Planning Syntax

Deterministic conformant planning problems P are tuples $P=\langle F, I, O, G\rangle$ where

- F : fluent symbols in the problem
- I: set of clauses over F defining the initial situation
- O: set of operators or actions. Every action a has
- a precondition Pre(a) given by a set of fluents
- a set of conditional effects $C \rightarrow L$ where C is a set of fluent literals and L is a single fluent literal.
- G: set of literals over F defining the (conjunctive) goal

Conformant Planning: Semantic

- a set $S_{0} \subseteq S$ of possible initial states
- a set of possible goals $S_{G} \subseteq S$ st $s_{g} \in S_{G}$ iff $G \subseteq s_{g}$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function F s.t. $F(a, s)=s^{\prime}$, the state resulting of applying a on s

Conformant Planning: Semantic

- a set $S_{0} \subseteq S$ of possible initial states
- a set of possible goals $S_{G} \subseteq S$ st $s_{g} \in S_{G}$ iff $G \subseteq s_{g}$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function F s.t. $F(a, s)=s^{\prime}$, the state resulting of applying a on s
- a conformant plan is an action sequence that maps each initial state s_{0} in S_{0} into some goal state s_{g}

Conformant Planning: Semantic

- a set $S_{0} \subseteq S$ of possible initial states
- a set of possible goals $S_{G} \subseteq S$ st $s_{g} \in S_{G}$ iff $G \subseteq s_{g}$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a deterministic state transition function F s.t. $F(a, s)=s^{\prime}$, the state resulting of applying a on s
- a conformant plan is an action sequence that maps each initial state s_{0} in S_{0} into some goal state s_{g}
- It can be cast as a path-finding problem over belief-states

Conformant Planning

Belief space search

- Almost all previous approaches to conformant planning use search on graph whose nodes are set of possible states (belief states)

Key issues:

- Representation: compact and efficient
- Heuristic: for guiding the search

Roadmap of First Part

- Basic Translation Scheme $K_{0}(P)$
- General Translation Scheme $K_{T, M}(P)$
- Complete Instances of $K_{T, M}(P)$
- Conformant Width of P bounds complexity of translation
- Poly translation K_{i} that is complete if width $\leq i$
- Width of some benchmarks
- Creating a planner using $K_{T, M}(P)$
- Other translation-based algorithms

Spoilers!

- Conformant problems mapped into classical ones
- Plans obtained using an off-the-shelf classical planner
- Translation exponential in worst case

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

$$
\begin{array}{rll}
\text { Conformant } P & \Rightarrow & \text { Classical } K_{0}(P) \\
\langle F, I, O, G\rangle & \Rightarrow & \left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle \\
\text { Fluent } L & \Rightarrow & K L, K \neg L \text { (two fluents) } \\
& \Rightarrow & K L \wedge \neg K \neg L \\
& \Rightarrow & \neg K L \wedge \neg K \neg L \text { (both false) } \\
& \Rightarrow & K L \\
& \Rightarrow & a \text { has prec } K L \\
& \Rightarrow\left\{\begin{array}{rlll}
a: & K C & \rightarrow & K L \\
a: & \neg K \neg C & \rightarrow & \neg K \neg L
\end{array}\right.
\end{array}
$$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

$$
\begin{array}{rll}
\text { Conformant } P & \Rightarrow & \text { Classical } K_{0}(P) \\
\langle F, I, O, G\rangle & \Rightarrow & \left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle \\
\text { Fluent } L & \Rightarrow & K L, K \neg L \text { (two fluents) } \\
\text { known lit } L & \Rightarrow & K L \wedge \neg K \neg L \\
& \Rightarrow & \neg K L \wedge \neg K \neg L \text { (both false) } \\
& \Rightarrow & K L \\
& \Rightarrow & a \text { has prec } K L \\
& \Rightarrow\left\{\begin{array}{rlll}
a: & K C & \rightarrow & K L \\
a: & \neg K \neg C & \rightarrow & \neg K \neg L
\end{array}\right.
\end{array}
$$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant $P \quad \Rightarrow \quad$ Classical $K_{0}(P)$

$$
\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle
$$

Fluent $L \quad \Rightarrow \quad K L, K \neg L$ (two fluents)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$

$$
\Rightarrow \quad \neg K L \wedge \neg K \neg L \text { (both false) }
$$

$$
\Rightarrow \quad K L
$$

$$
\Rightarrow \quad a \text { has prec } K L
$$

$$
\Rightarrow \quad\left\{\begin{array}{rrrr}
a: & K C & \rightarrow K L \\
a: & \neg K \neg C & \rightarrow & \neg K \neg L
\end{array}\right.
$$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant $P \quad \Rightarrow \quad$ Classical $K_{0}(P)$

$$
\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle
$$

Fluent $L \quad \Rightarrow \quad K L, K \neg L$ (two fluents)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$ unknown lit $L \quad \Rightarrow \quad \neg K L \wedge \neg K \neg L$ (both false)
$\Rightarrow \quad K L$
$\Rightarrow \quad a$ has prec $K L$

$$
\Rightarrow\left\{\begin{array}{rrrr}
a: & K C & \rightarrow K L \\
a: & \neg K \neg C & \rightarrow & \neg K \neg L
\end{array}\right.
$$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant $P \quad \Rightarrow \quad$ Classical $K_{0}(P)$

$$
\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle
$$

Fluent $L \quad \Rightarrow \quad K L, K \neg L$ (two fluents)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$ unknown lit $L \quad \Rightarrow \quad \neg K L \wedge \neg K \neg L$ (both false)

Goal $L \quad \Rightarrow \quad K L$
$\Rightarrow \quad a$ has prec $K L$

$$
\Rightarrow\left\{\begin{array}{rrrr}
a: & K C & \rightarrow & K L \\
a: & \neg K \neg C & \rightarrow & \neg K \neg L
\end{array}\right.
$$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant $P \quad \Rightarrow \quad$ Classical $K_{0}(P)$

$$
\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle
$$

Fluent $L \quad \Rightarrow \quad K L, K \neg L$ (two fluents)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$ unknown lit $L \quad \Rightarrow \quad \neg K L \wedge \neg K \neg L$ (both false)

Goal $L \quad \Rightarrow \quad K L$
Operator a has prec $L \quad \Rightarrow \quad$ a has prec $K L$

$$
\Rightarrow\left\{\begin{array}{rrrr}
a: & K C & \rightarrow K L \\
a: & \neg K \neg C & \rightarrow & \neg K \neg L
\end{array}\right.
$$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant $P \quad \Rightarrow \quad$ Classical $K_{0}(P)$

$$
\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle
$$

Fluent $L \quad \Rightarrow \quad K L, K \neg L$ (two fluents)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$ unknown lit $L \quad \Rightarrow \quad \neg K L \wedge \neg K \neg L$ (both false)

Goal $L \quad \Rightarrow \quad K L$
Operator a has prec $L \quad \Rightarrow \quad$ a has prec $K L$
Operator $a: C \rightarrow L \Rightarrow\left\{\begin{array}{cccc}a: & K C & \rightarrow & K L \\ a: & \neg K \neg C & \rightarrow & \neg K \neg L\end{array}\right.$

Translation from P into $K_{0}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

Conformant $P \quad \Rightarrow \quad$ Classical $K_{0}(P)$

$$
\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle
$$

Fluent $L \quad \Rightarrow \quad K L, K \neg L$ (two fluents)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$ unknown lit $L \quad \Rightarrow \quad \neg K L \wedge \neg K \neg L$ (both false)

Goal $L \quad \Rightarrow \quad K L$
Operator a has prec $L \quad \Rightarrow \quad a$ has prec $K L$
Operator $a: C \rightarrow L \quad\left\{\begin{array}{rrll}a: & K C & \rightarrow & K L \\ a: & K \neg C & \rightarrow & \emptyset \\ a: & \neg K \neg C & \rightarrow & \neg K \neg L\end{array}\right.$

K_{0} example

Problem P with

- Init: $p \vee q, r$, Goal: g
- Actions:

$$
\begin{aligned}
& a: p \rightarrow q \\
& b: q \rightarrow g \\
& c: r \rightarrow q
\end{aligned}
$$

- $<a, b>$ and $<c, b>$ are conformant plans.

K_{0} example

Problem P with

- Init: $p \vee q, r$, Goal: g
- Actions:

$$
\begin{aligned}
& a: p \rightarrow q \\
& b: q \rightarrow g \\
& c: r \rightarrow q
\end{aligned}
$$

- $<a, b>$ and $<c, b>$ are conformant plans.
$K_{0}(P)$ is:
- Init: $K r$, Goal: $K g$
- Actions:

$$
\begin{aligned}
& a: K p \rightarrow K q, a: \neg K \neg p \rightarrow \neg K \neg q \\
& b: K q \rightarrow K g, b: \neg K \neg q \rightarrow \neg K \neg g \\
& c: K r \rightarrow K q, c: \neg K \neg r \rightarrow \neg K \neg q
\end{aligned}
$$

- $\langle c, b\rangle$ is a classical plan, but $\langle a, b\rangle$ is not.

K_{0} example. Cancellation rules

Problem P with

- Init: $p \vee q, r, s$, Goal: t, g
- Actions:

$$
\begin{aligned}
& a: p \rightarrow \neg r, a: s \rightarrow t \\
& b: r \rightarrow g
\end{aligned}
$$

- $<b, a>$ is a conformant plan but $<a, b>$ is not.

K_{0} example. Cancellation rules

Problem P with

- Init: $p \vee q, r, s$, Goal: t, g
- Actions:

$$
\begin{aligned}
& a: p \rightarrow \neg r, a: s \rightarrow t \\
& b: r \rightarrow g
\end{aligned}
$$

- $<b, a>$ is a conformant plan but $<a, b>$ is not.
$K_{0}(P)$ but without cancellation rules is:
- Init: $K r, K s, \neg K p, \neg K q, \neg K \neg p, \neg K \neg q$, Goal: $K t, K g$
- Actions:

$$
\begin{aligned}
& a: K p \rightarrow K \neg r, a: K s \rightarrow K t \\
& b: K r \rightarrow K g
\end{aligned}
$$

- $<a, b>$ and $<b, a>$ are both classical plans. ERROR

K_{0} example. Cancellation rules

Problem P with

- Init: $p \vee q, r, s$, Goal: t, g
- Actions:

$$
\begin{aligned}
& a: p \rightarrow \neg r, a: s \rightarrow t \\
& b: r \rightarrow g
\end{aligned}
$$

- $<b, a>$ is a conformant plan but $<a, b>$ is not.
$K_{0}(P)$ but with cancellation rules is:
- Init: $K r, K s, \neg K p, \neg K q, \neg K \neg p, \neg K \neg q$, Goal: $K t, K g$
- Actions:

$$
\begin{aligned}
& a: K p \rightarrow K \neg r, a: K s \rightarrow K t, \\
& a: \neg K \neg p \rightarrow \neg K \neg r, a: \neg K \neg s \rightarrow \neg K \neg t \\
& b: K r \rightarrow K g, b: \neg K \neg r \rightarrow \neg K \neg g
\end{aligned}
$$

- $<b, a>$ is a classical plan but $<a, b>$ is not.

Basic Properties and Extensions

- Translation $K_{0}(P)$ is sound:
- If π is a classical plan that solves $K_{0}(P)$, then π is a conformant plan for P.
- But too incomplete
- often $K_{0}(P)$ will have no solution while P does
- works only when uncertainty is irrelevant

Basic Properties and Extensions

- Translation $K_{0}(P)$ is sound:
- If π is a classical plan that solves $K_{0}(P)$, then π is a conformant plan for P.
- But too incomplete
- often $K_{0}(P)$ will have no solution while P does
- works only when uncertainty is irrelevant
- Extension $K_{T, M}(P)$ we present now can be both complete and polynomial

Key elements in Translation $K_{T, M}(P)$

- a set T of tags t : consistent set of assumptions (literals) about the initial situation /

$$
I \not \vDash \neg t
$$

- a set M of merges m : valid subsets of tags

$$
I \models \bigvee_{t \in m} t
$$

- Literals $K L / t$ meaning that L is true given that initially t; i.e. $K\left(t_{0} \supset L\right)$

Intuition of merge actions

- Init: Candy in hall $(h) \vee$ Candy in room (r)
- Goal: Hold the candy (c)

Intuition of merge actions

- Init: Candy in hall $(h) \vee$ Candy in room (r)
- Goal: Hold the candy (c)
- Apply pick-from-hall, get $K c / h$
- Apply pick-from-room, get Kc/r
- Then, for sure, holding the candy (Kc) from

Intuition of merge actions

- Init: Candy in hall $(h) \vee$ Candy in room (r)
- Goal: Hold the candy (c)
- Apply pick-from-hall, get $K c / h$
- Apply pick-from-room, get $K c / r$
- Then, for sure, holding the candy $(K c)$ from merge $K c / h \wedge K c / r \rightarrow K c$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
$\Rightarrow \quad K L \wedge \neg K \neg L$
$\Rightarrow \quad K L / t \wedge \neg K \neg L / t$
$\Rightarrow \quad K L$
$\Rightarrow \quad a$ has prec $K L$
$\Rightarrow\left\{\begin{array}{cll}\text { for all tags } t & \\ a: \quad K C / t & \rightarrow & K L / t \\ a: & \neg K \neg C / t & \rightarrow\end{array} \neg K \neg L / t\right.$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$
$\Rightarrow \quad K L / t \wedge \neg K \neg L / t$
$\Rightarrow \quad K L$
$\Rightarrow \quad a$ has prec $K L$
$\Rightarrow\left\{\begin{array}{cll}\text { for all tags } t & \\ a: \quad K C / t & \rightarrow & K L / t \\ a: & \neg K \neg C / t & \rightarrow\end{array} \neg K \neg L / t\right.$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$

$$
\text { if } I \models(t \supset L) \quad \Rightarrow \quad K L / t \wedge \neg K \neg L / t
$$

$\Rightarrow \quad K L$
$\Rightarrow \quad a$ has prec $K L$
$\Rightarrow\left\{\begin{array}{clll}\text { for all tags } t & \\ a: \quad K C / t & \rightarrow & K L / t \\ a: & \neg K \neg C / t & \rightarrow & \neg K \neg L / t\end{array}\right.$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$

$$
\text { if } I \vDash(t \supset L) \quad \Rightarrow \quad K L / t \wedge \neg K \neg L / t
$$

Goal $L \quad \Rightarrow \quad K L$
$\Rightarrow \quad a$ has prec $K L$
$\Rightarrow\left\{\begin{array}{clll}\text { for all tags } t & \\ a: \quad K C / t & \rightarrow & K L / t \\ a: & \neg K \neg C / t & \rightarrow & \neg K \neg L / t\end{array}\right.$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$

$$
\text { if } I \vDash(t \supset L) \quad \Rightarrow \quad K L / t \wedge \neg K \neg L / t
$$

Goal $L \quad \Rightarrow \quad K L$
Operator a has prec $L \quad \Rightarrow \quad$ a has prec $K L$

$$
\Rightarrow \quad\left\{\begin{array}{ccc}
\text { for all tags } t \\
a: \quad K C / t & \rightarrow & K L / t \\
a: & \neg K \neg C / t & \rightarrow
\end{array} \neg K \neg L / t\right.
$$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$

$$
\text { if } I \models(t \supset L) \quad \Rightarrow \quad K L / t \wedge \neg K \neg L / t
$$

Goal $L \quad \Rightarrow \quad K L$
Operator a has prec $L \quad \Rightarrow \quad$ a has prec $K L$

Translation from P into $K_{T, M}(P)$

For a conformant problem $P=\langle F, O, I, G\rangle$
Conformant $P \quad \Rightarrow \quad$ Classical $K_{T, M}(P)$
$\langle F, I, O, G\rangle \quad \Rightarrow \quad\left\langle F^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
Fluent $L \quad \Rightarrow \quad K L / t, K \neg L / t$ (for all tags t)
Init: known lit $L \quad \Rightarrow \quad K L \wedge \neg K \neg L$

$$
\text { if } I \models(t \supset L) \quad \Rightarrow \quad K L / t \wedge \neg K \neg L / t
$$

Goal $L \quad \Rightarrow \quad K L$
Operator a has prec $L \quad \Rightarrow \quad$ a has prec $K L$
Operator a: $C \rightarrow L \Rightarrow\left\{\begin{array}{ccc}\text { for all tags } t & & \\ a: \quad K C / t & \rightarrow & K L / t \\ a: \neg K \neg C / t & \rightarrow & \neg K \neg L / t\end{array}\right.$
For each lit L and merge $m \in M$ with $m=\left\{t_{1}, \ldots, t_{n}\right\}$, add to O^{\prime} :

$$
\operatorname{merge}_{L, m}: K L / t_{1} \wedge \ldots \wedge K L / t_{n} \rightarrow K L
$$

Idea of $K_{T, M}(P)$

- Given literal L and tag t, atom $K L / t$ means
- $K\left(t_{0} \supset L\right)$: $K L$ true if t is true initially
- Classical Problem $K_{T, M}(P)$:

- After merge ${ }_{g}$
- Goal satisfied: Kg

Idea of $K_{T, M}(P)$

- Given literal L and tag t, atom $K L / t$ means
- $K\left(t_{0} \supset L\right): K L$ true if t is true initially
- Conformant Problem P:

Init: $x_{1} \vee x_{2}, \neg g$
Goal: g
Actions: $a_{1}: x_{1} \rightarrow g, a_{2}: x_{2} \rightarrow g$

Idea of $K_{T, M}(P)$

- Given literal L and tag t, atom $K L / t$ means
- $K\left(t_{0} \supset L\right): K L$ true if t is true initially
- Conformant Problem P:

Init: $x_{1} \vee x_{2}, \neg g$
Goal: g
Actions: $a_{1}: x_{1} \rightarrow g, a_{2}: x_{2} \rightarrow g$

- Classical Problem $K_{T, M}(P)$:

Init: $K x_{1} / x_{1}, K x_{2} / x_{2}, K \neg g, \neg K g, \neg K x_{1}, \neg K \neg x_{1}, \ldots$
After $a_{1}: K g / x_{1}, K x_{1} / x_{1}, K x_{2} / x_{2}, \neg K \neg g$,
After $a_{2}: K g / x_{2}$,
\square

Idea of $K_{T, M}(P)$

- Given literal L and tag t, atom $K L / t$ means
- $K\left(t_{0} \supset L\right): K L$ true if t is true initially
- Conformant Problem P:

Init: $x_{1} \vee x_{2}, \neg g$
Goal: g
Actions: $a_{1}: x_{1} \rightarrow g, a_{2}: x_{2} \rightarrow g$

- Classical Problem $K_{T, M}(P)$:

Init: $K x_{1} / x_{1}, K x_{2} / x_{2}, K \neg g, \neg K g, \neg K x_{1}, \neg K \neg x_{1}, \ldots$
After $a_{1}: K g / x_{1}, K x_{1} / x_{1}, K x_{2} / x_{2}, \neg K \neg g$,
After $a_{2}: K g / x_{2}$,
New action merge $_{g}: K g / x_{1} \wedge K g / x_{2} \rightarrow K g$

Idea of $K_{T, M}(P)$

- Given literal L and tag t, atom $K L / t$ means
- $K\left(t_{0} \supset L\right): K L$ true if t is true initially
- Conformant Problem P:

Init: $x_{1} \vee x_{2}, \neg g$
Goal: g
Actions: $a_{1}: x_{1} \rightarrow g, a_{2}: x_{2} \rightarrow g$

- Classical Problem $K_{T, M}(P)$:

Init: $K x_{1} / x_{1}, K x_{2} / x_{2}, K \neg g, \neg K g, \neg K x_{1}, \neg K \neg x_{1}, \ldots$
After $a_{1}: K g / x_{1}, K x_{1} / x_{1}, K x_{2} / x_{2}, \neg K \neg g$,
After $a_{2}: K g / x_{2}$,
New action merge $_{g}: K g / x_{1} \wedge K g / x_{2} \rightarrow K g$
After merge ${ }_{g}$: Kg,
Goal satisfied: $K g$

Example of T, M

Given $I=\{p \vee q, v \vee \neg w\}, T$ and M can be:

$$
\begin{aligned}
T & =\{\{ \}, p, q, v, \neg w\} \quad T^{\prime}=\{\{ \},\{p, v\},\{q, v\}, \ldots\} \\
M & =\{\{p, q\},\{v, \neg w\}\} M^{\prime}=\ldots
\end{aligned}
$$

Interesting properties of the translation $K_{T, M}$?

- Soundness: are correct the plans we are obtaining?
- If not, are they useful?
- Completeness: is there a classical plan if there is a conformant one?
- Is there a one-to-one relationship between conformant and classical plans?
- Performance: what are the limitations of a planner based on this translation?
- What is the size of the resulting problem?
- How do current classical planners perform on the translation?

Properties of Translation $K_{T, M}$

- If T contains only the empty tag, $K_{T, M}(P)$ reduces to $K_{0}(P)$
- $K_{T, M}(P)$ is always sound

We will see that...

- For suitable choices of T, M translation is complete
- ... and sometimes polynomial as well

Soundness

- If sequence of actions π makes $K L / t$ true in $K_{T, M}(P)$, π makes L true in P starting from all the initial states satisfying t
- At least one of the tags t is true
- Then, merging $K L$ is sound

Soundness

- If sequence of actions π makes $K L / t$ true in $K_{T, M}(P)$, π makes L true in P starting from all the initial states satisfying t
- At least one of the tags t is true
- Then, merging $K L$ is sound

Theorem (Soundness $K_{T, M}(P)$)
If π is a plan that solves the classical planning problem $K_{T, M}(P)$, then the action sequence π^{\prime} that results from π by dropping the merge actions is a plan that solves the conformant planning problem P.

Soundness

A complete but exponential instance of $K_{T, M}(P)$: $K_{\text {s0 }}$

$K_{s 0}$ is a complete instance of $K_{T, M}(P)$, by setting

- T to $\left\{\left\}, s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right.$, and
- M to $\left\{\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right\}$
where $s_{0}^{1}, \ldots, s_{0}^{n}$ are the possible initial states of P.
- Only one merge for the disjunction of possible initial states
- Intuition

A complete but exponential instance of $K_{T, M}(P)$: $K_{\text {s0 }}$

$K_{s 0}$ is a complete instance of $K_{T, M}(P)$, by setting

- T to $\left\{\left\}, s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right.$, and
- M to $\left\{\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right\}$
where $s_{0}^{1}, \ldots, s_{0}^{n}$ are the possible initial states of P.
- Only one merge for the disjunction of possible initial states
- This instance is complete, but exponential in the number of

> although not a bad conformant planner

A complete but exponential instance of $K_{T, M}(P): K_{s 0}$

$K_{s 0}$ is a complete instance of $K_{T, M}(P)$, by setting

- T to $\left\{\left\}, s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right.$, and
- M to $\left\{\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right\}$
where $s_{0}^{1}, \ldots, s_{0}^{n}$ are the possible initial states of P.
- Only one merge for the disjunction of possible initial states
- Intuition
- Applying actions in $K_{s 0}$ keeps track of each fluent L for each possible initial state $s_{0}: K L / s_{0}$
- Merge goals using $K G / s_{0}^{1} \wedge \ldots \wedge K G / s_{0}^{n} \rightarrow K G$

A complete but exponential instance of $K_{T, M}(P): K_{s 0}$

$K_{s 0}$ is a complete instance of $K_{T, M}(P)$, by setting

- T to $\left\{\left\}, s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right.$, and
- M to $\left\{\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right\}$
where $s_{0}^{1}, \ldots, s_{0}^{n}$ are the possible initial states of P.
- Only one merge for the disjunction of possible initial states
- Intuition
- Applying actions in $K_{s 0}$ keeps track of each fluent L for each possible initial state $s_{0}: K L / s_{0}$
- Merge goals using $K G / s_{0}^{1} \wedge \ldots \wedge K G / s_{0}^{n} \rightarrow K G$
- This instance is complete, but exponential in the number of fluents
- ... although not a bad conformant planner

Example: complete but compact instance of $K_{T, M}$

- Consider the problem P_{n}
- Init: $x_{1} \vee \cdots \vee x_{n}$
- Goal: g
- Actions: $a_{i}: x_{i} \rightarrow g$
- $2^{n}-1$ initial states
- But having a merge $\left\{x_{1}, \ldots, x_{n}\right\}$ (and according tags) generates $K_{T, M}\left(P_{n}\right)$ complete - Enough with merge $K g / x_{1} \wedge \ldots \wedge K g / x_{n} \rightarrow K g$ - Linear on n

Example: complete but compact instance of $K_{T, M}$

- Consider the problem P_{n}
- Init: $x_{1} \vee \cdots \vee x_{n}$
- Goal: g
- Actions: $a_{i}: x_{i} \rightarrow g$
- $K_{s 0}\left(P_{n}\right)$ size is exponential on n
- $2^{n}-1$ initial states

Example: complete but compact instance of $K_{T, M}$

- Consider the problem P_{n}
- Init: $x_{1} \vee \cdots \vee x_{n}$
- Goal: g
- Actions: $a_{i}: x_{i} \rightarrow g$
- $K_{s 0}\left(P_{n}\right)$ size is exponential on n
- $2^{n}-1$ initial states
- But having a merge $\left\{x_{1}, \ldots, x_{n}\right\}$ (and according tags) generates $K_{T, M}\left(P_{n}\right)$ complete
- Enough with merge $K g / x_{1} \wedge \ldots \wedge K g / x_{n} \rightarrow K g$
- Linear on n

Example: complete but compact instance of $K_{T, M}$

- Consider the problem P_{n}
- Init: $x_{1} \vee \cdots \vee x_{n}$
- Goal: g
- Actions: $a_{i}: x_{i} \rightarrow g$
- $K_{s 0}\left(P_{n}\right)$ size is exponential on n
- $2^{n}-1$ initial states
- But having a merge $\left\{x_{1}, \ldots, x_{n}\right\}$ (and according tags) generates $K_{T, M}\left(P_{n}\right)$ complete
- Enough with merge $K g / x_{1} \wedge \ldots \wedge K g / x_{n} \rightarrow K g$
- Linear on n
- How can we generate compact instances of $K_{T, M}$?

Covering Translation

Definition (Covering Translation)

A covering translation is a valid translation $K_{T, M}(P)$ that includes one merge $m=t_{1}, \ldots, t_{n}$ that covers L, for each precondition and goal literal L in P.

Theorem (Completeness)

Covering translations $K_{T, M}(P)$ are complete; i.e., if π is a conformant plan for P, then there is a classical plan π^{\prime} for $K_{T, M}(P)$ such that π is π^{\prime} with the merge actions removed.

Covering

Key notions:

- Relevant clauses of a literal L: $C_{l}(L)$
- A tag t satisfies a clause C
- A set of tags m satisfies a clause C, a.k.a. m covers C

Relevance

Definition

Informally, L is relevant to L^{\prime} basically when a: $C \rightarrow L^{\prime}$ in P with $L \in C$, plus transitivity, etc

Remark: preconditions do not contribute to relevance.
Given actions with rules $a: A, B \rightarrow C, b: C \rightarrow D, b: B \rightarrow \neg C$.

- A is relevant to A, C, D.
- B is relevant to $B, C, D, \neg C$.
- $\neg A$ is relevant to $\neg A, \neg C, \neg D$.

Relevant Clauses

Suppose problem P with $I=$

$$
\begin{gathered}
p \vee \neg p \\
\text { bailoutbanks } \vee \neg \text { bailoutbanks }
\end{gathered}
$$

zapatero \vee merkel \vee berlusconi \vee chavez
cucumber $\vee \neg$ cucumber
5 Suppose both p and $-p$ are relevant to goal G.

- Also suppose bailoutbanks is relevant to goal G, but \neg bailoutbanks is not. All other literals are not relevant.
- Will not get a solution by reasoning on bailoutbanks $\vee \neg$ bailoutbanks
- Enough to reason on $p \vee \neg p$, the only relevant clause

Relevant Clauses

Suppose problem P with $I=$

$$
p \vee \neg p
$$

bailoutbanks $\vee \neg$ bailoutbanks
zapatero \vee merkel \vee berlusconi \vee chavez
cucumber $\vee \neg$ cucumber

- Suppose both p and $\neg p$ are relevant to goal G.
- Also suppose bailoutbanks is relevant to goal G, but \neg bailoutbanks is not. All other literals are not relevant.
- Will not get a solution by reasc
bailoutbanks $\vee \neg$ bailoutbanks
- Enough to reason on $p \vee \neg p$, the only relevant clause.

Relevant Clauses

Suppose problem P with $I=$

$$
p \vee \neg p
$$

bailoutbanks $\vee \neg$ bailoutbanks
zapatero \vee merkel \vee berlusconi \vee chavez
cucumber $\vee \neg$ cucumber

- Suppose both p and $\neg p$ are relevant to goal G.
- Also suppose bailoutbanks is relevant to goal G, but \neg bailoutbanks is not. All other literals are not relevant.
- Will not get a solution by reasoning on
bailoutbanks $\vee \neg$ bailoutbanks
- Enough to reason on $p \vee \neg p$, the only relevant clause.

Relevant Clauses (2)

Definition

Relevant Clause A clause c in $/$ is relevant to a literal L in P if all literals $L^{\prime} \in C$ are relevant to L.
The set of clauses in / relevant to L is denoted as $C_{l}(L)$.

Relevant Clauses (2)

Definition
 Relevant Clause A clause c in $/$ is relevant to a literal L in P if all literals $L^{\prime} \in C$ are relevant to L.
 The set of clauses in / relevant to L is denoted as $C_{l}(L)$.

Next step: $\operatorname{tag} t$ satisfy a clause C.

Satisfy

- Warning: cannot afford expensive inference while building translation $K(P)$.
- But we need to check $I \models(t \supset L)$ for adding $K L / t$ to the initial state.
- No general inference on clauses. Use unit-resolution - enough when clauses in Prime Implicate form.
- Given tag t, consistent set of literals.
t satisfies $C=L_{1} \vee \cdots \vee L_{n}$ if some L_{i} is in the consequences of t given I, i.e. $I \models(t \supset L)$
- Let m a valid disjunctions of tags
m satisfies a clause C if each tag t satisfies C

Example Satisfy

Suppose $I=\left\{\operatorname{oneof}\left(x_{1}, \ldots, x_{n}\right)\right.$, oneof $\left.\left(y_{1}, \ldots, y_{n}\right)\right\}$, and x_{i} is relevant to any $x_{j}, \neg x_{j}, y_{i}$ is relevant to any $y_{j}, \neg y_{j}$.
Notice than oneof $\left(x_{1}, \ldots, x_{n}\right)$ means $x_{1} \vee \ldots \vee x_{n}$ and $\neg x_{i} \vee \neg x_{j}$, for any $i \neq j$.

- The tag $\left\{x_{1}, y_{1}\right\}$ satisfies all clauses.
because the consequence of $\left\{x_{1}, y_{1}\right\}$ is
$\left\{x_{1}, y_{1}, \neg x_{2}, \neg y_{2}, \ldots, \neg x_{n}, \neg x_{n}\right\}$.
- The merge $m=\left\{x_{1}, \ldots, x_{n}\right\}$ satisfies $C_{l}\left(x_{n}\right)$, and m is valid.
- The merge $m^{\prime}=\left\{\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\},\right\}$ satisfies $C_{l}\left(x_{n}\right)$, but m^{\prime} is not valid.

Grid problem

Example Satisfy (2)

Suppose $I=\left\{\operatorname{oneof}\left(x_{1}, \ldots, x_{n}\right)\right.$, oneof $\left.\left(y_{1}, \ldots, y_{n}\right)\right\}$, and x_{i} is relevant to any $x_{j}, \neg x_{j}, y_{i}$ is relevant to any $y_{j}, \neg y_{j}$. Also suppose x_{i} is relevant to any $y_{j}, \neg y_{j}$, and y_{i} is relevant to $x_{j}, \neg x_{j}$. Everything is relevant to everything.

- the $\operatorname{tag}\left\{x_{1}, y_{1}\right\}$ satisfies both clauses.
- The merge $m=\left\{x_{1}, \ldots, x_{n}\right\}$ does not satisfy $C_{l}\left(x_{n}\right)$, even though m is valid.
- The merge $m^{\prime}=\left\{\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right.$, $\}$ does satisfy $C_{l}\left(x_{n}\right)$, but m^{\prime} is not valid.
- The merge $m^{\prime \prime}=\left\{x_{1}, \ldots, x_{n}\right\} \times\left\{y_{1}, \ldots, y_{n}\right\}$ does satisfy $C_{l}\left(x_{n}\right)$, and $m^{\prime \prime}$ is valid.

Covering Translation

Definition (Covering Merges)
A valid merge m in a translation $K_{T, M}(P)$ covers a literal L if m satisfies $C_{/}(L)$, the set of clauses in I relevant to L

Definition (Covering Translation)

A covering translation is a valid translation $K_{T, M}(P)$ that includes one merge $m=t_{1}, \ldots, t_{n}$ that covers L, for each precondition and goal literal L in P.

Theorem (Completeness)

Covering translations $K_{T, M}(P)$ are complete; i.e., if π is a conformant plan for P, then there is a classical plan π^{\prime} for $K_{T, M}(P)$ such that π is π^{\prime} with the merge actions removed.

Example of Covering Translation

Example: $K_{s 0}$

The merge $\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}$ is covering because (1) is valid (2) each initial state s_{0}^{i} satisfies each clause

Example of Covering Translation

Example: $K_{s 0}$

The merge $\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}$ is covering because (1) is valid (2) each initial state s_{0}^{i} satisfies each clause

Example: oneof

If $C_{l}(L)=\left\{L_{1} \vee \cdots \vee L_{n}, \neg L_{i} \vee \neg L_{j}\right.$ for all $\left.i \neq j\right\}$, then the merge $\left\{L_{1}, \ldots, L_{n}\right\}$ is covering because (1) disjunction in / are valid and (2) each L_{i} implies $\neg L_{j}$ (for $j \neq i$) and then L_{i} satisfies each clause in $C_{l}(L)$

Cover it!

- Covering translation guarantee completeness.
- How do we get a covering translation?

In principle we want small T, M

- Naive: just combinations of clauses is unbounded on size
... but sometimes is a good idea.

Width

Definition (Width of Literal)

The conformant width of a literal L, written $w(L)$, is the size of the smallest set of clauses \mathcal{C} in $C_{l}^{*}(L)$ such that cover $c(\mathcal{C})$ satisfies $C_{l}(L)$.

Width

Definition (Width of Literal)

The conformant width of a literal L, written $w(L)$, is the size of the smallest set of clauses \mathcal{C} in $C_{l}^{*}(L)$ such that cover $c(\mathcal{C})$ satisfies $C_{l}(L)$.

- Roughly, cover $c(\mathcal{C})$ is combination of literals of clauses \mathcal{C}

Width

Definition (Width of Literal)

The conformant width of a literal L, written $w(L)$, is the size of the smallest set of clauses \mathcal{C} in $C_{l}^{*}(L)$ such that cover $c(\mathcal{C})$ satisfies $C_{l}(L)$.

- Roughly, cover $c(\mathcal{C})$ is combination of literals of clauses \mathcal{C}
- $C_{l}^{*}(L)=$ relevant clauses $C_{l}(L) \cup$ tautologies for unknown literals $p \vee \neg p$

Width

Definition (Width of Literal)

The conformant width of a literal L, written $w(L)$, is the size of the smallest set of clauses \mathcal{C} in $C_{l}^{*}(L)$ such that cover $c(\mathcal{C})$ satisfies $C_{l}(L)$.

- Roughly, cover $c(\mathcal{C})$ is combination of literals of clauses \mathcal{C}
- $C_{l}^{*}(L)=$ relevant clauses $C_{l}(L) \cup$ tautologies for unknown literals $p \vee \neg p$
- Idea: smallest \mathcal{C} can be made of
- Clauses in $C_{l}(L)$
- Last resort: combination of tautologies $p \vee \neg p$

Width

Definition (Width of Literal)

The conformant width of a literal L, written $w(L)$, is the size of the smallest set of clauses \mathcal{C} in $C_{l}^{*}(L)$ such that cover $c(\mathcal{C})$ satisfies $C_{l}(L)$.

- Roughly, cover $c(\mathcal{C})$ is combination of literals of clauses \mathcal{C}
- $C_{l}^{*}(L)=$ relevant clauses $C_{l}(L) \cup$ tautologies for unknown literals $p \vee \neg p$
- Idea: smallest \mathcal{C} can be made of
- Clauses in $C_{l}(L)$
- Last resort: combination of tautologies $p \vee \neg p$
- Then, $w(L)$ is at most n, the number of unknown fluents
- If $C_{l}(L)$ is empty, $w(L)=0$

Width

Definition (Width of Problem)

The conformant width of a problem P, written as $w(P)$, is $w(P)=\max _{L} w(L)$, where L ranges over the precondition and goal literals in P.

- Calculate $w(L)$ requires find a subset of clauses of $C_{l}^{*}(L)$ whose cover satisfies $C_{l}(L)$
\rightarrow exponential on size of $C_{l}^{*}(L)$
- But verify whether $w(L) \leq i$ is polynomial for fixed i
\rightarrow For each subset of i clauses, try to get a cover

Width (examples)

- If $C_{l}(L)$ is $\operatorname{oneof}\left(x_{1}, \ldots, x_{m}\right)$, then $w(L)=1$ because $\mathcal{C}=\left\{x_{1} \vee \cdots \vee x_{m}\right\}$ generates the cover $c(\mathcal{C})=\left\{\left\{x_{1}\right\}, \ldots,\left\{x_{m}\right\}\right\}$ that satisfies $C_{l}(L)$.
and $(q \vee \neg q)$, then $w(L)=2$ as
the smallest \mathcal{C} in $C_{l}^{*}(L)$ whose cover satisfies $C_{l}(L)$ is $C_{l}(L)$ itself. Goal $=x_{\text {center }}, y_{\text {center }}$. Actions Rules like - Has width 1 because x_{i} not relevant to y_{j}

Width (examples)

- If $C_{l}(L)$ is oneof $\left(x_{1}, \ldots, x_{m}\right)$, then $w(L)=1$ because $\mathcal{C}=\left\{x_{1} \vee \cdots \vee x_{m}\right\}$ generates the cover $c(\mathcal{C})=\left\{\left\{x_{1}\right\}, \ldots,\left\{x_{m}\right\}\right\}$ that satisfies $C_{l}(L)$.
- If $C_{l}(L)$ is $(p \vee \neg p)$ and $(q \vee \neg q)$, then $w(L)=2$ as the smallest \mathcal{C} in $C_{l}^{*}(L)$ whose cover satisfies $C_{l}(L)$ is $C_{l}(L)$ itself.

Width (examples)

- If $C_{l}(L)$ is oneof $\left(x_{1}, \ldots, x_{m}\right)$, then $w(L)=1$ because $\mathcal{C}=\left\{x_{1} \vee \cdots \vee x_{m}\right\}$ generates the cover $c(\mathcal{C})=\left\{\left\{x_{1}\right\}, \ldots,\left\{x_{m}\right\}\right\}$ that satisfies $C_{l}(L)$.
- If $C_{l}(L)$ is $(p \vee \neg p)$ and $(q \vee \neg q)$, then $w(L)=2$ as the smallest \mathcal{C} in $C_{l}^{*}(L)$ whose cover satisfies $C_{l}(L)$ is $C_{l}(L)$ itself.
- Sqr-center. Init $=\operatorname{oneof}\left(x_{1}, \ldots, x_{n}\right)$, oneof $\left(y_{1}, \ldots, y_{n}\right)$.

Goal $=x_{\text {center }}, y_{\text {center }}$. Actions: up, down, left, right.
Rules like up: $y_{i} \rightarrow y_{i+1} \wedge \neg y_{i}$

- Has width 1 because x_{i} not relevant to y_{j}

Translation $K_{i}(P)$

Definition (Translation K_{i})
The translation $K_{i}(P)$ is obtained from $K_{T, M}(P)$ where

- If $w(P) \leq i$, then one merge $m=c(\mathcal{C})$ for the selected clauses \mathcal{C} of each precond and goal literal L in P.
- T is the collection of tags appearing in those merges and the
empty tag.

Translation $K_{i}(P)$

Definition (Translation K_{i})

The translation $K_{i}(P)$ is obtained from $K_{T, M}(P)$ where

- If $w(P) \leq i$, then one merge $m=c(\mathcal{C})$ for the selected clauses \mathcal{C} of each precond and goal literal L in P.
- Otherwise, one merge $m=c(\mathcal{C})$ for L for each set \mathcal{C} of i clauses in $C_{l}^{*}(L)$.
- T is the collection of tags appearing in those merges and the empty tag.

Translation $K_{i}(P)$

Definition (Translation K_{i})

The translation $K_{i}(P)$ is obtained from $K_{T, M}(P)$ where

- If $w(P) \leq i$, then one merge $m=c(\mathcal{C})$ for the selected clauses \mathcal{C} of each precond and goal literal L in P.
- Otherwise, one merge $m=c(\mathcal{C})$ for L for each set \mathcal{C} of i clauses in $C_{l}^{*}(L)$.
- T is the collection of tags appearing in those merges and the empty tag.

Theorem (Properties K_{i})

For a fixed i, the translation $K_{i}(P)$ is sound, polynomial, and if $w(P) \leq i$, covering and complete.

Width of Conformant Benchmarks

	Domain-Parameter	\# Unknown Fluents	Width
1	Safe- n combinations	n	1
2	UTS- n locs	n	1
3	Ring- n rooms	$4 n$	1
4	Bomb-in-the-toilet- n bombs	n	1
5	Comm- n signals	n	1
6	Square-Center- $n \times n$ grid	$2 n$	1
7	Cube-Center- $n \times n \times n$ cube	$3 n$	1
8	Grid- n shapes of n keys	$n \times m$	1
9	Logistics n pack m locs	$n \times m$	1
10	Coins- n coins m locs	$n \times m$	1
11	Block-Tower- n Blocks	$n \times(n-1)+3 n+1$	same
12	Sortnet n bits	n	n
13	Adder n pairs of bits	$2 n$	$2 n$
14	Look-and-Grab m objs from $n \times n$ locs	$n \times n \times m$	m
15	$1-$ dispose m objs from $n \times n$ locs	$n \times n \times m$	m

Width of some problems

- Blocks have maximal width.
- But blocks, with a magic action to achieve the goal
- Trivial (solved by K_{0})
- Look-n-grab for m objs has width m, but does not depend on size of the grid.
- Why? Every clause relevant to handempty, that is relevant to all goals

Conformant Width: intuitions

- It is not necessary to deal with all relevant clauses $C_{l}(L)$ to achieve $K L$, for L goal or precond
- some of them are enough for deciding the others
- How many? w(L)

Conformant Width: intuitions

- It is not necessary to deal with all relevant clauses $C_{l}(L)$ to achieve $K L$, for L goal or precond
- some of them are enough for deciding the others
- How many? w(L)
- Let P_{N} a problem of size N, having $w\left(P_{N}\right)=i$ for any N. It maybe that for $K_{i}\left(P_{N}\right)$:
- the number of tags grows linear on N, but ...
- the number of initial states of P_{N} grows exponentially on N
- How can be K_{i} complete?

A tag t summarize information about all the initial states consistent with t

Basis

- Given P a conformant problem and $S \subseteq S_{0}$ a subset of the possible initial states of P.
- Let $P[S]$ the conformant problem that is like P but with the set of initial states restricted to S.

Definition

S is a basis for P iff any conformant plan for $P[S]$ is a conformant plan for P.

Basis

- Given P a conformant problem and $S \subseteq S_{0}$ a subset of the possible initial states of P.
- Let $P[S]$ the conformant problem that is like P but with the set of initial states restricted to S.

Definition

S is a basis for P iff any conformant plan for $P[S]$ is a conformant plan for P.

Theorem

Conformant problems P with width $(P) \leq i$ have basis of size $|S|$ exponential in i. (Even if $\left|S_{0}\right|$ is exponential on number of fluents)

You can plan just for a basis (if you are able to find one)! Why?

Basis examples

Oneof

- Consider a problem P with $I=\left\{x_{1} \vee \cdots \vee x_{n}, \neg x_{i} \vee \neg x_{j}\right.$ for all $\left.i \neq j\right\}$. A basis maybe:

$$
\begin{gathered}
\left\{x_{1}, \neg x_{2}, \ldots, \neg x_{n}\right\} \\
\left\{\neg x_{1}, x_{2}, \ldots, \neg x_{n}\right\} \\
\ldots \\
\left\{\neg x_{1}, \neg x_{2}, \ldots, x_{n}\right\}
\end{gathered}
$$

- Consider a problem P with $I=\left\{x_{1} \vee \cdots \vee x_{n}\right\}$.

A basis is the same previous set of states.

- Why is this a basis for both problems?

Monotonicity

There exist a Basis!

- Giving literal L and a covering merge $m=\left\{t_{1}, \ldots, t_{n}\right.$, for any state s there exist i s.t. $r e l\left(t_{i}^{*}, L\right) \subseteq r e l(s, L)$.
- Pick s_{i} s.t. $\operatorname{rel}\left(t_{i}^{*}, L\right) \subseteq \operatorname{rel}\left(s_{i}, L\right)$ and there is no s_{j} s.t. $\operatorname{rel}\left(s_{j}, L\right) \subset \operatorname{rel}\left(s_{i}, L\right)$.

Hint: like picking the set of 'smaller' s_{i} '

- The set $\left\{s_{1}, \ldots, s_{n}\right\}$ is a basis!

There exist a Basis!

- Giving literal L and a covering merge $m=\left\{t_{1}, \ldots, t_{n}\right.$, for any state s there exist i s.t. $\operatorname{rel}\left(t_{i}^{*}, L\right) \subseteq \operatorname{rel}(s, L)$.
- Pick s_{i} s.t. $\operatorname{rel}\left(t_{i}^{*}, L\right) \subseteq \operatorname{rel}\left(s_{i}, L\right)$ and there is no s_{j} s.t. $r e l\left(s_{j}, L\right) \subset \operatorname{rel}\left(s_{i}, L\right)$.

Hint: like picking the set of 'smaller' s_{i} '

- The set $\left\{s_{1}, \ldots, s_{n}\right\}$ is a basis!

Hint:

- You don't need to use $K_{T, M}$. If you are able to identify a basis S, do free-style conformant plan with initial states S.
- If you use a subset of initial states S that is not a basis, you will not get sound solutions.
- Will be useful for relaxations/heuristics.

Other instances of $K_{T, M}$?

- Remember you just need:
- Valid set of tags T
- Merges: valid disjunctions of tags in M.

Hint: get your favorite SAT-solver/model-enumeration technique and
salt as you need.

- Clear semantics of $K_{T . M}$ tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

Other instances of $K_{T, M}$?

- Remember you just need:
- Valid set of tags T
- Merges: valid disjunctions of tags in M.
- Grab clauses in I and do whatever you method you have to do so. Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.
invalid or uncovering merges.
Use with responsibility. Thinks may get easier or more complicated. track of L for any initial state satisfying t.

Other instances of $K_{T, M}$?

- Remember you just need:
- Valid set of tags T
- Merges: valid disjunctions of tags in M.
- Grab clauses in I and do whatever you method you have to do so. Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.
- Clear semantics of $K_{T, M}$ tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

Other instances of $K_{T, M}$?

- Remember you just need:
- Valid set of tags T
- Merges: valid disjunctions of tags in M.
- Grab clauses in I and do whatever you method you have to do so. Hint: get your favorite SAT-solver/model-enumeration technique and salt as you need.
- Clear semantics of $K_{T, M}$ tell you the consequences of using invalid or uncovering merges.

Use with responsibility. Thinks may get easier or more complicated.

- In any state where you get $\neg K L / t \wedge \neg K \neg L / t$, you know you lost track of L for any initial state satisfying t.

Monitor execution!

Translation Kmodels((P)

Definition

The translation $\operatorname{Kmodels}(P)$ from the general $K_{T, M}(P)$

- Merge m for each precond and goal L : models* of $C_{/}(L)$ that are consistent with /

Theorem

The translation Kmodels (P) is sound and complete.

Translation Kmodels(P)

Definition

The translation $\operatorname{Kmodels}(P)$ from the general $K_{T, M}(P)$

- Merge m for each precond and goal L : models* of $C_{l}(L)$ that are consistent with /

Theorem

The translation Kmodels (P) is sound and complete.
Key points:

- Kmodels is equivalent to $K_{S O}$ when all the clauses in I are relevant to all the precondition and goal literals L.
- But Kmodels exponential on number of vars in $C_{l}(L)$, while $K_{S 0}$ exponential in the number of unknown vars in 1 .

The planner T_{0}

- Conformant Planner T_{0}, winner at IPC-2006, was based on $K_{1}+$ FF, an effective classical planner.
- Using SAT-based conformant planner when FF did not find solution in K_{1}
- version for IPC-2008 $K_{1}+K m o d e l s$
- CpA (H) was the winner.

T_{0} optimizations

- Non-uniform tags: tags for L are only literals in $C_{l}(L)$
- Remove from PDDL $K L / t$ and cond-effects that does not affect merge results
- If using $K_{s 0}$, Kmodels or K_{i} for width $\leq i$ cancellation can be tracked by support rules
- Given rule $C \rightarrow L$, instead of both

$$
K C \rightarrow K L \text { and } \neg K \neg C \rightarrow \neg K \neg L
$$

- keep only $K C \rightarrow K L \wedge \neg K \neg L$
- For invariant $\operatorname{oneof}\left(x_{1}, \ldots, x_{n}\right)$: keep $K x_{i}$ updated. Example:

$$
K \neg x_{1} \wedge \ldots \wedge K \neg x_{n-1} \rightarrow K x_{n}
$$

- Sometimes for width > 1, can be solved if allowing merge not only for precs and goal

Translating P into $K_{1}(P)$: size

	P		Translation	$K_{1}(P)$	
Problem	\#Fluents	\#Effects	time(secs)	\#Fluents	\#Effects
Bomb-100-100	402	40200	1,36	1304	151700
Sqr-64-ctr	130	504	2,34	16644	58980
Sqr-120-ctr	242	952	12,32	58084	204692
Logistics-4-10-10	872	7640	1,44	1904	16740
1-Dispose-8-3	486	1984	26,72	76236	339410
Look-n-Grab-8-1-1	356	2220	4,03	9160	151630

- After some simplifications made for T_{0} to the PDDL
- Translation is not the bottleneck

Performance on current classical planners?

- Size of grounded instances
- Support for conditional effects
- Sensibility of heuristics

Thanks FF for

- accepting big grounded PDDLs
- dealing with lots of conditional effects

We still got issues with LAMA.

Digression: on conditional effects

- Conditional effects are very expressive!
one of the few ADL extensions than cannot be compiled away with some blow-up
- If classical planning is symbolical reachability where differences from an state to another are
- verified easily (STRIPS preconditions)
- represented compactly (STRIPS add and delete)
- Conditional effects are
- essentially different because simultaneous changes by the same action
- also a compact representation of change
- Button line: good support of conditional effects is needed from classical planners. Challenge accepted!
- Current planners are tested with hand-made problems with a few cond-effects.
- Even simple cases are not well treated.

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

- Sampling: pick a set of initial states and plan for them.
- A complete sample will be a basis!
- Let $K S(P)=K_{s 0}(P[S])$. Complete if S is a basis!
- Define new instance $K_{S}^{i}(P)$ that is
- Exponential on i, the size of tags.
- Always complete.
- Not always sound
sound if conformant width $w(P) \leq i$

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

- Sampling: pick a set of initial states and plan for them.
- A complete sample will be a basis!
- Recall $P[S]$ is the conformant problem P but restricted to the set of initial states S.
- Let $K S(P)=K_{s 0}(P[S])$. Complete if S is a basis!

Sampling

(Albore et al, ICAPS-2011). IIIb, Wednesday 10:30h.

- Sampling: pick a set of initial states and plan for them.
- A complete sample will be a basis!
- Recall $P[S]$ is the conformant problem P but restricted to the set of initial states S.
- Let $K S(P)=K_{s 0}(P[S])$. Complete if S is a basis!
- Define new instance $K_{S}^{i}(P)$ that is
- Exponential on i, the size of tags.
- Always complete.
- Not always sound.
- Sound if conformant width $w(P) \leq i$.

Sampling (2)

- $K_{S}^{i}(P)$ is $K S(P)$ with a base of size exponential on i.
- Why may $K_{S}^{i}(P)$ be unsound?
- Almost classic belief state planner using $K_{S}^{\prime}(P)$ for heuristic.
- Tricky part was choosing a good approximated basis.
Spoiler: minimal cardinality on propositional logic!
- See (Shani \& Brafman, 2011), that is based on $K_{T, M}$ for using sampling in contingent planning.

Sampling (2)

- $K_{S}^{i}(P)$ is $K S(P)$ with a base of size exponential on i.
- Why may $K_{S}^{i}(P)$ be unsound?
- Relaxation of $K_{T, M}$ allows to always get a solution!
\square

Sampling (2)

- $K_{S}^{i}(P)$ is $K S(P)$ with a base of size exponential on i.
- Why may $K_{S}^{i}(P)$ be unsound?
- Relaxation of $K_{T, M}$ allows to always get a solution!
- Almost classic belief state planner using $K_{S}^{i}(P)$ for heuristic.
- Tricky part was choosing a good approximated basis. Spoiler: minimal cardinality on propositional logic!
- See (Shani \& Brafman, 2011), that is based on $K_{T, M}$ for using sampling in contingent planning.

Related Work

- Belief state search (Bonet \& Geffner, 2000)
- Translation to classical planning allows to use
\star in many cases a very compact representation
\star classical planning heuristics
- Incomplete semantic used for conformant planning
Extended to be complete with exponential saving respect to
standard semantic (Son \& Tu, 2006)
- Some problems are exponential for complete 0-approximation, but have width 1
some of these problems.

Related Work

- Belief state search (Bonet \& Geffner, 2000)
- Translation to classical planning allows to use
\star in many cases a very compact representation
\star classical planning heuristics
- 0-approximation (Baral \& Son, 1997)
- Incomplete semantic used for conformant planning
- Extended to be complete with exponential saving respect to standard semantic (Son \& Tu, 2006)
- Some problems are exponential for complete 0-approximation, but have width 1
* CPA (Tran et al, 2009) has optimization for not being exponential in some of these problems.

T_{0} vs CpA

- $K_{T, M}$ based: local context for each literals. Complete: context is enough for achieving the problem
- 0-approximation extended to be complete: minimal global context for achieving the problem
- $K_{T, M}$ maybe be exponential better than the 0 -approx.
- Merging one-of helps CpA
- We get classical problem. CpA: search algorithm, heuristics - But classical problem can be quite big. CpA may have advantage. - More recent planners CNF, DNF explore different representations and transitions functions.

T_{0} vs CpA

- $K_{T, M}$ based: local context for each literals. Complete: context is enough for achieving the problem
- 0-approximation extended to be complete: minimal global context for achieving the problem
- $K_{T, M}$ maybe be exponential better than the 0-approx.
- Merging one-of helps CpA
- More recent planners CNF, DNF explore different
representations and transitions functions.

T_{0} vs CpA

- $K_{T, M}$ based: local context for each literals. Complete: context is enough for achieving the problem
- 0-approximation extended to be complete: minimal global context for achieving the problem
- $K_{T, M}$ maybe be exponential better than the 0-approx.
- Merging one-of helps CpA
- We get classical problem. CpA: search algorithm, heuristics.
- But classical problem can be quite big. CpA may have advantage.
- More recent planners CNF, DNF explore different representations and transitions functions.

Summary of first part

- A general $K_{T, M}$ translation scheme for mapping from conformant P into classical P^{\prime}
- A number of interesting instances: $K_{0}, K_{s 0}, K_{i}$
- Characterization of the complexity of the complete $K_{T, M}$ in term of the conformant width
- Translation scheme K_{i} that is always polynomial and complete if conformant width $\leq i$
- A conformant planner T_{0} based on instances of $K_{T, M}$

References

- [Baral \& Son, ILPS-1997]. Baral, C., \& Son, T. C. Approximate reasoning about actions in presence of sensing and incomplete information. ILPS-1997.
- [Bonet \& Geffner, AIPS-2000]. Bonet, B., \& Geffner, H. Planning with incomplete information as heuristic search in belief space. AIPS-2000.
- [Son \& Tu, KR-2006]. Son, T. C., \& Tu, P. H. On the completeness of approximation based reasoning and planning in action theories with incomplete information. KR-2006.
- [Tran et al, PADL-2009]. Tran, D., Nguyen, H., Pontelli, E., \& Son, T. C. Improving performance of conformant planners: Static analysis of declarative planning domain specifications. PADL-2009.
- [Palacios \& Geffner, JAIR-2009]. Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width. Palacios, H., \& Geffner, H.. JAIR 2009.
- [Albore et al, ICAPS-2011]Effective Heuristics and Belief Tracking for Planning with Incomplete Information. Albore, A., Ramirez, M., \& Geffner, H. ICAPS-2011.
- [Shani \& Brafman, IJCAI-2011]. Replanning in Domains with Partial Information and Sensing Actions. Shani, G., \& Brafman, Ronen. IJCAI-2011.

More references on the second part!

Translation-based

Approaches to Conformant and Contingent Planning

Part II

Contingent Planning

- Conformant problem = classical problem + incomplete information
- Contingent problem = conformant problem + sensing actions
- STRIPS Problem $P=<F, I, A, G>$ with three extensions:
- I is a well-formed formula over F, encoding uncertainty
- Actions a \in A may have conditional effects
- Sensing actions

Action selection in Wumpus

What should the agent do next?

Contingent Planning: Sensing and Incomplete Information

- Finding a solution in presence of partial or incomplete information.
- The belief states space size which is combinatorially large.
- Difficult to obtain informed heuristics in belief space.
- The solution strongly depends on the observation outcome.
- The size of the solution grows exponentially with the number of possible observations.

Thus verification and/or generation of a plan takes exponential time.

A Translation-based approach to Contingent Planning

- Contingent problems cannot be translated into classical ones, as they have different solution forms (trees vs. sequences).
- Offline planning: provide solution tree for all possible contingencies
- Online planning: action sequence generated on-the-fly (interleaving planning and execution).
- As for conformant planning, translation compiles beliefs away: states represent "belief states" over P.

Compiling into classical planning: the CLG approach

- Contingent problem P translated into fully observable but non-deterministic problem $X_{T, M}(P)$.
- Sensing is modeled as actions with non-deterministic effects
- $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$ has complete information! Solutions to $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$ yield solutions for P !
...but how to deal with sensing?
Search has to make explicit effort to obtain information.
- Later on, we will guide the search using relaxation $\mathbf{X +}(\mathbf{P})$, that is also a classical planning problem.

Translation $X_{T, M}(P)$

- Contingent problem $\mathrm{P}=$ Conformant problem $\mathrm{P}^{\prime}+$ Sensing actions.
- $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})=\mathrm{K}_{\mathrm{T}, \mathrm{M}}\left(\mathrm{P}^{\prime}\right)+$ Deductive Actions + Sensing Actions
- Deductive actions:
tag refutation: $\quad K L / t \wedge K \neg L \rightarrow K \neg t$
contingent merge: $\bigwedge_{t \in m, m \in M_{L}}(K L / t \vee K \neg t) \rightarrow K L$
- Sensing actions obs(L) from P encoded in $X_{T, M}(P)$ as non-deterministic actions:

$$
o b s(L): \neg K L \wedge \neg K \neg L \rightarrow K L \mid K \neg L
$$

Complete Translation $X_{\text {so }}(P)$

- Translation $X_{s o}(P)$ is special case of $X_{T, M}(P)$ with:
- T equal to the set of all possible initial states of P
- M containing a merge $m=T$ for each precondition and goal literal L of P.

Theorem: $X_{s o}(P)$ is sound and complete.

This translation is suitable when number of initial states is low; in worst case exponential in number of uncertain fluents.

Example: Problem P

- Observation: inspect-panel

Example: Problem P

- Fluents: opened-door1, opened-door2, corridor, door1, door2, panel, gold-found
- Init:
oneof(opened-door1, opened-door2) ^ at(corridor) $\wedge \neg$ gold-found
- Goal: gold-found
- Actions: goto(?pos, ?dest), open(?door)
- Observation: inspect-panel

Example
 Problem P - Actions

goto(?pos, ?dest):

pre: at(?pos)
effect: at(?dest) ^ $\neg a t(? p o s)$

inspect-panel:

pre: at(panel)
observation: opened-door1
I \neg opened-door1
open(?door): pre: at(?door) ^ opened(?door) effect: gold-found

Example $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation

- Tags (2 possible states):

$$
\begin{aligned}
& \mathrm{s} 1 \vDash \text { opened-door } 1 \wedge \neg \text { opened-door2 } \\
& \mathrm{s} 2 \vDash \text { opened-door2 } \wedge \neg \text { opened-door } 1
\end{aligned}
$$

- Merge: $\{\mathrm{s} 1, \mathrm{~s} 2\}$
- Init:

K opened-door1/s1 ^ K \neg opened-door2/s1
K opened-door2/s2^ K \neg opened-door1/s2
K at(corridor) ${ }^{*} \wedge K \neg$ gold-found/* $\wedge \neg K . .$.

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation A possible Plan

Plan:

Abstract

goto(panel), inspect-panel, goto(observed-open-door), open(observed-open-door).

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation A possible Plan

Example with $X_{s o}(\mathrm{P})$ translation goto(corridor, panel)

Init:
K at(corridor)/s1 ^
K at(corridor)/s2 ^ K at(corridor)
^...

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation goto(corridor, panel)

Init:
Kat(corridor)/s $1 \wedge$
K at(corridor)/s $2 \wedge K a t($ corridor $)$
^...
goto(corridor, panel):
pre: K at(corridor)
effect: K at(panel) ^K at(corridor) ^K at(panel)/t ^
$K \rightarrow a t($ corridor) $/ t \wedge \ldots$

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation goto(corridor, panel)

$$
\begin{aligned}
& \frac{\text { s1: }}{K} \text { at(panel)/s1 } \wedge \\
& K \text { at }(\text { panel }) / s 2 \wedge K \text { at(panel) } \\
& \wedge \ldots
\end{aligned}
$$

goto(corridor, panel):
pre: K at(corridor)
effect: K at(panel) ^K at(corridor) ^K at(panel)/t ^ $K \rightarrow a t($ corridor) $/ t \wedge \ldots$

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation inspect-panel

s1:
K at(panel)/s1 ^K at(panel)/s2 ^
K at(panel)^...

Example with $X_{s o}(P)$ translation inspect-panel

> s1:
> K at(panel)/s $1 \wedge K$ at(panel)/s2 \wedge
> K at(panel) \wedge
inspect-panel
pre: K at(panel)
observation:
\neg K opened-door1 ^ \neg Kᄀopened-door1
\rightarrow K opened-door1 | K \neg opened-door1

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation inspect-panel

D1:

K at(panel)/s1 ^Kat(panel)/s2 ^ K at(panel)^ $\neg К \neg$ opened-door1 ^
K opened-door1 ^...
inspect-panel
pre: Kat(panel)
observation:
\neg K opened-door1 ^ \neg Kᄀopened-door1
\rightarrow K opened-door1 | K \neg opened-door1

Example with $\mathrm{X}_{\mathrm{so}}(\mathrm{P})$ translation

 tag-refutation: $K L / t \wedge K \neg L \rightarrow K \neg t$Init

D1:
K at(panel)/s1 ^K at(panel)/s2 ^ K at(panel)^K opened-door1 ^ Kᄀopened-door1/s2 ^...

Example with $\mathrm{X}_{\text {so }}(\mathrm{P})$ translation

 tag-refutation: $K L / t \wedge K \neg L \rightarrow K \neg t$```
Init
```



D1:
K at(panel)/s1 ^K at(panel)/s2 ^ K at(panel)^ K opened-door1 ^ Kᄀopened-door1/s2 ^ ...

## tag-refutation

pre: true
effect:
K oopened-door1/s2 $\wedge K$ opened-door1 $\rightarrow K \neg s 2$

## Example with $\mathrm{X}_{\text {so }}(\mathrm{P})$ translation

 tag-refutation: $K L / t \wedge K \neg L \rightarrow K \neg t$

> D1:
> K at(panel)/s1 ^K at(panel)/s2 ^ K at(panel)^ K opened-door1 ^ $K \rightarrow o p e n e d-d o o r 1 / s 2 \wedge K \neg s 2 \wedge \ldots$

## tag-refutation

pre: true
effect:
K oopened-door1/s2 ^ K opened-door1 $\rightarrow$ K $\neg$ s2

## Example with $\mathrm{X}_{\text {so }}(\mathrm{P})$ translation

 tag-refutation: $K L / t \wedge K \neg L \rightarrow K \neg t$

> D1':
> K at(panel)/s1 ^Kat(panel)/s2 ^ K at(panel)^ K opened-door1 ^ K opened-door1/s2 ^ K $\neg$ s2 ^...

...and from now on, no uncertainty is left $\Rightarrow$ classical planning problem (solved like $\mathrm{K}_{0}$ )

## General Translations that are Complete

- Let $\mathrm{O}(\mathrm{L})$ be the observables relevant to L .
- Let $\mathrm{C}_{\mathrm{I}}(\mathrm{L})$ be the clauses in $\mathcal{I}$ relevant to L or $\mathrm{O}(\mathrm{L})$.
- I is assumed to be in prime implicate form.

Definition: A valid translation $X_{T, M}(P)$ is covering if for each precondition and goal literal $L$ of $P$, $M$ contains a merge $m$ for $L$ that satisfies each clause in $C_{\rho}{ }^{\circ}(L)$.

Theorem: Covering translations are sound and complete.

## Width and Complexity

- Width of a problem $w(P)$ is roughly the size of the tags needed for completeness.
- The translation $X_{i}(P)$ is a special case of $X_{T, M}(P)$, with tags of size $\leq i$.
- For fixed i , translation $\mathrm{X}_{\mathrm{i}}(\mathrm{P})$ is polynomial, and complete if $w(P) \leq i$.
- Most contingent benchmarks turn out to have width 1.
where are we?


## where are we?

- $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$, fully-observable non-deterministic problem, done


## where are we?

- $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$, fully-observable non-deterministic problem, done
- Relaxation $\mathbf{X +} \mathbf{( P )}$ to guide the search


## Relaxation $X^{+}(P)$

- Drop "delete" effects, (like in classical planning).
- Move preconditions in as conditions [Hoffmann \& Brafman, 2005].
- Make sensing actions obs(L) deterministic, by adding contingent knowledge operator M :

$$
o b s(L): \neg K L \wedge \neg K \neg L \rightarrow M L \wedge M \neg L \wedge o(L)
$$

- Use M-literal ML as preconditions of action a in $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$, if $L$ is precondition of $a$ in $P$.
- $X^{+}(P)$ is a classical planning problem. Solutions for $X_{T, M}(P)$ are solutions $\mathrm{X}^{+}(\mathrm{P})$.


## Relaxing on action preconditions



## Example with $\mathrm{X}^{+}(\mathrm{P})$

Effects of an observation in $\mathrm{X}^{+}(\mathrm{P})$
$\frac{\mathrm{S}}{\mathrm{K}}$ at(panel)/opened-door1 $\wedge$
$K$ at $($ panel $) /$ opened-door2 $\wedge$
$K$ at $($ panel $) \wedge M$ at $($ panel $) \wedge .$.

## Example with $\mathrm{X}^{+}(\mathrm{P})$

Effects of an observation in $\mathrm{X}+(\mathrm{P})$

> S:
> K at $($ panel $) /$ opened-door1 $\wedge$ $K$ at $($ panel $) /$ opened-door2 $\wedge$
> $K$ at $($ panel $) \wedge M$ at $($ panel $) \wedge \ldots$
inspect-panel:
pre: M at(panel)
observation:
$\neg$ Kopened-door1 $\wedge \neg$ Кᄀ opened-door1
$\rightarrow M$ opend-door1 $\wedge M \neg$ opened-door1 $\wedge$ o(opened-door1)

## Example with $\mathrm{X}^{+}(\mathrm{P})$

Effects of an observation in $\mathrm{X}+(\mathrm{P})$

inspect-panel:
pre: M at(panel)
observation:
$\neg$ Kopened-door1 $\wedge \neg$ Кᄀ opened-door1
$\rightarrow M$ opend-door1 $\wedge M \neg$ opened-door1 $\wedge$ o(opened-door1)

## Example with $\mathrm{X}^{+}(\mathrm{P})$

Effects of an observation in $\mathrm{X}+(\mathrm{P})$

```
\(\underline{S^{\prime}}:\)
K at(panel)/opened-door1 ^
K at(panel)/opened-door2 ^ K at(panel)^ \(M\) at(panel) ^M opened-door1 ^
\(M \neg\) opened-door1 \(\wedge\) o(opened-door1) \(\wedge \ldots\)
```

inspect-panel:
pre: M at(panel)
observation:
$\neg$ Kopened-door1 $\wedge \neg$ Кᄀ opened-door1
$\rightarrow M$ opend-door1 $\wedge M \neg$ opened-door1 $\wedge$ o(opened-door1)

# Example with $\mathrm{X}^{+}(\mathrm{P})$ applying derivation rules 

S':<br>K at(panel)^ M at(panel) ^ M gold-at(door1) ^ $M \neg$ gold-at(door1) $\wedge$ o(gold-at(door1)) ^...

# Example with $\mathrm{X}^{+}(\mathrm{P})$ applying derivation rules 

S':<br>K at(panel)^ $M$ at(panel) ^ M gold-at(door1) $\wedge$ $M \neg$ gold-at(door1) $\wedge$ o(gold-at(door1)) ^...

M-contingent merge:
effect:
$M \neg$ opened-door1 $\rightarrow$ M opened-door2

## Example with $\mathrm{X}^{+}(\mathrm{P})$ applying derivation rules

S":<br>K at(panel)^ M at(panel) ^ M gold-at(door1) ^ $M$ ᄀ gold-at(door1) ^ o(gold-at(door1)) ^ M gold-at(door2) ^ ...

M -contingent merge:
effect:
$M \neg$ opened-door1 $\rightarrow$ M opened-door2

## Example with $\mathrm{X}^{+}(\mathrm{P})$ a possible plan

- In $X^{+}(P)$, the preconditions of the actions open(door1) and open(door2) hold in the relaxed translation.
- A solution plan would be, from Init:

1. goto(corridor, panel)
2. inspect-panel, (observation)
3. goto(panel, door1)
4. open(door1) $\rightarrow$ K gold-found/opened-door1
5. goto(door1,door2)
6. open(door2) $\rightarrow$ K gold-found/opened-door2

- After last action, the goal would be reached because of merge rule: K gold-found/opened-door1 ^ K gold-found/opened-door2
$\rightarrow$ K gold-found


## Closed Loop Greedy Planner

- The CLG planner uses:
-translation $\mathrm{X}_{1}(\mathrm{P})$ to keep track of beliefs;
- relaxation $\mathrm{X}_{1}{ }^{+}(\mathrm{P})$, that is a classical planning problem, to select action to do next.



## Using assumptions on sensing outcome

- Freespace assumption [Koenig at al. 2003]
- Safe Assumption-based planning: belief monitoring and LTL assumptions [Albore \& Bertoli 2006]
- Preferences on observation outcome [Likhachev \& Stentz 2009]
- Sampling and replanning [Shani \& Brafman 2011]
- Based on CLG's and T0's ideas


## Another approach on how to Solve contingent problems with classical planners

- Conditions under wich partially observable problems can be solved by classical planners.
- Simple problem [Bonet \& Geffner 2011]:
- non-unary clauses in Init are all invariant
- no hidden fluent appear in the body of a conditional effect
- Width of $P=1$
- Connected space.


## Planning under optimism

- K'(P) fully-observable non-deterministic problem (based on $\mathrm{K}_{0}$ ) solved by a classical translation $K(P)$, using 2 rules:
- Assumption: if $(\mathrm{C}, \mathrm{L})$ is a sensing action, then
pre: $K C \wedge \neg K L \wedge \neg K \neg L$ effect: $K L$
pre: $K C \wedge \neg K L \wedge \neg K \neg L \quad$ effect: $K \neg L$
- $K C \rightarrow K L$ for invariants $\neg C \vee L$ in $P$
- A prefix of the plan is always executable, until KC is achieved.

Then the assumption can be revealed by sensing.

## Planning under optimism

- If the assumption turns out to be false, then replan
- If the space is connected, replanning is always possible, and reaching the goal is guaranteed if a solution exists.


## Dead-ends [Albore \& Geffner 2009]

- Dead-ends are situations for which there is no strong solution:
- Belief state is a dead-end when at least one state is a dead-end.
- State is a dead-end when the goal cannot be reached even given full observability (e.g. minesweeper).
- Contingent and POMDPs planners will deliver no solution when initial belief is a dead-end.
- Yet these situations are quite common...


## Example with no full solution plan



- The cells in the middle column can be blocked.
- $2^{5}$ possible wall configurations.
- Only 1 wall configuration brings to a dead-end situation.
- Full contingent solution is however non-existent.


## Planners for Problems with No Strong Solutions

- When there is not a strategy that works in all cases, we may look for a strategy working in most cases.
- Non-solvable contingent planning problems can be converted into solvable ones by introducing assumptions.
- The aim is finding a solution for the maximum number of states in the belief state.
- $\mathrm{CLG}^{+}=$CLG ${ }_{o n l i n e}+$ assumptive-actions + costs.


## Encoding Assumptions Into CLG ${ }^{+}$ (pay-for-tags)

- Assuming $K \boldsymbol{K} \boldsymbol{t}$ to make it possible to merge $K L$

$$
\bigwedge_{t \in m, m \in M_{L}}(K L / t \vee K \neg t) \rightarrow K L
$$

- Assumptive actions are encoded in $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$ as deterministic actions with high cost: $\neg K t \wedge \neg K \neg t \rightarrow K \neg t$
- Consequences:
- Plans with assumption are the last option when generating relaxed plans,
- Thus cost optimisation will result in plan strategies that are as strong as possible.


## Use of Assumptions

- Assumptions are integrated in 3 steps, for action selection:

1. Don't use them.
2. Use in relaxed plan but not execute it (ie. excluded from helpful actions of FF). Observations can help later.
3. Allow to execute them as last resort.

Like "betting", taking a risk.

## Problems with Dead-end States

- Some situations might be dead-end.
- These problems are not solvable by existing contingent or POMDPs planners (infinite heuristic)
- Examples: Wumpus, Navigation in Unknown Map, Learning Unknown Model when observation allow to uncover action effects.


## Problems with Pure Dead-end States

- Insoluble problems even if no state is initially dead-end any policy will work for some states, but not for others.
- These problems are solved by "betting", executing an assumption, to get out from the impasse.
- In case the bet is wrong, the execution naturally fails.
- But it is a risk that has to be taken.
- Example: Minesweeper, certain instances of Wumpus domain


## Problems with High Contingent Width

- Contingent width is a measure of the complexity of the problem.
- Roughly, the size of the tags needed to have a complete translation $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$.
- Problems with a high contingent width are solvable problems with a contingent width > 1
- Example: Binary tree of doors.


## Summary of Second Part

- Translation $\mathrm{X}_{\mathrm{T}, \mathrm{M}}(\mathrm{P})$ for contingent problems
- Conditions for completeness and contingent width
- Heuristic relaxation $X^{+}(P)$
- Solving contingent problems with classical planners
- Dealing with dead-ends, CLG+ planner


## Summary of the tutorial

- The presented approaches for conformant and contingent planning relies on:
- Translate problems into classical planning.
- Use such translations for action application and to obtain useful heuristics to guide the search.
- In the case of conformant planning, both action applications and heuristics were done simoultaniously.


## Conclusions

- Translation-based approach has a clear semantics including:
- Conditions for completness and soundness;
- Structural properties characterizing the size of complete translations (width).
- Planners based on complete and sound translations are competitive.
- Better performance can be obtained by
- focusing on special cases ('simple’ problems, with dead-ends)
- obtaining heuristics from unsound but feasible translations

