ICAPS 2011

IPPC Results Presentation

Scott Sanner

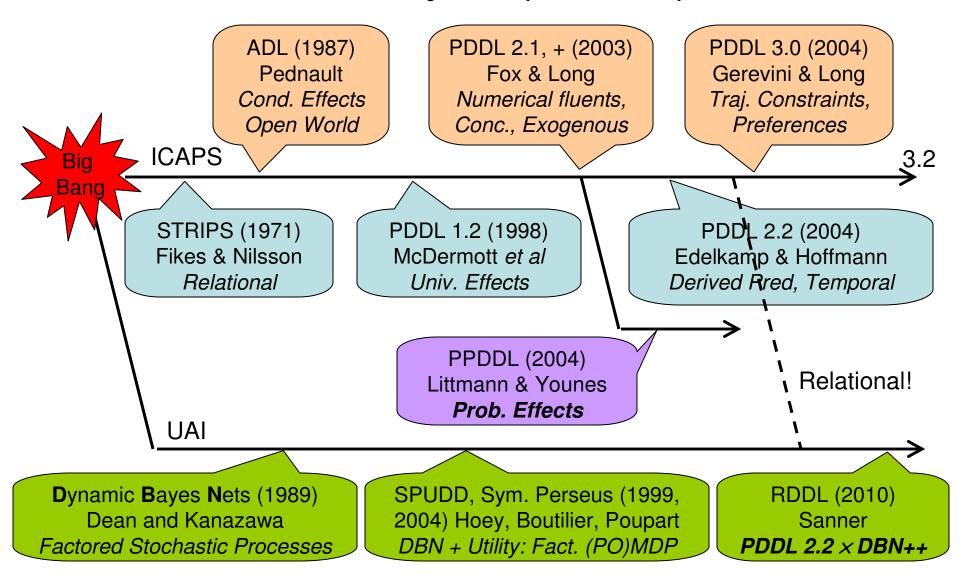
Sungwook Yoon

Additional domain development by Tom Walsh (ASU)

Main Objective for IPPC 2011

More realistically motivated problems

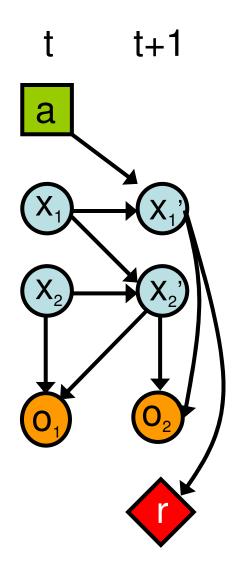
- PPDDL cannot represent many probabilistic domains
 - Traffic Control
 - Elevator Control
 - Mars Rovers


Needed

- \rightarrow concurrency
- → independent exogenous effects
- → continuing processes and non-goal rewards
- → partial observability
- → distributions that are complex function of state
- → enumerated, integer, continuous variables (no competitors)

- Required a new language

RDDL (new lifted DBN transition semantics)


A Brief History of (ICAPS) Time

PDDL history from: http://ipc.informatik.uni-freiburg.de/PddlResources

What is RDDL?

- Relational Dynamic Influence Diagram Language
 - Relational[DBN + Influence Diagram]
 - Everything is a fluent!
 - states
 - observations
 - actions
 - derived (stochastic) predicates
 - Uniform expression language

Other Objectives for IPPC 2011

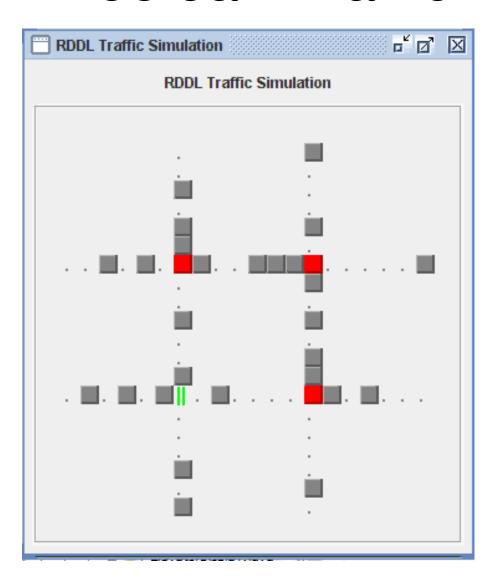
- Translations to draw in different communities
 - Factored MDP / POMDP community
 - ICAPS PPDDL community
 - 11 competitors!
- Single normalized evaluation criteria
 - Previously
 - plan length
 - goal %
 - planner time

(skipping hard problems could increase domain averages)

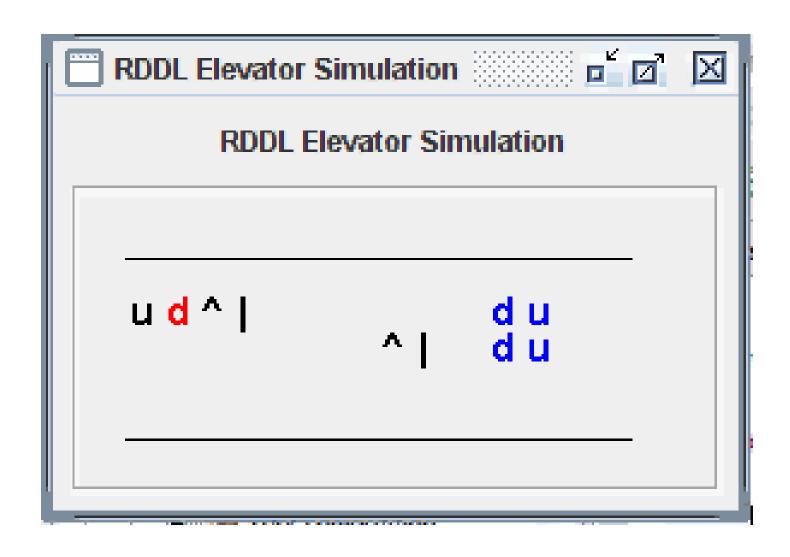
RDDLSim Software

Open source & online at

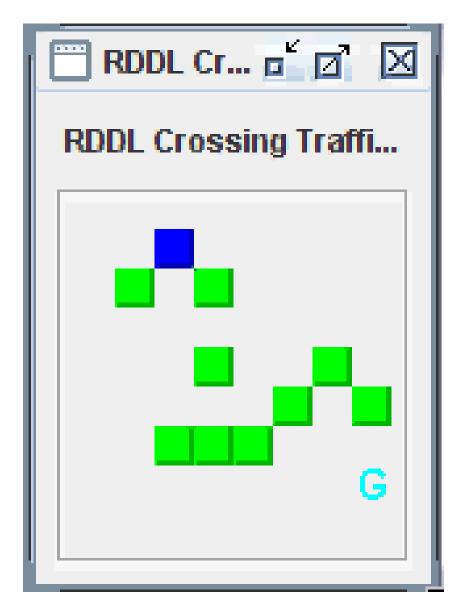
http://code.google.com/p/rddlsim/

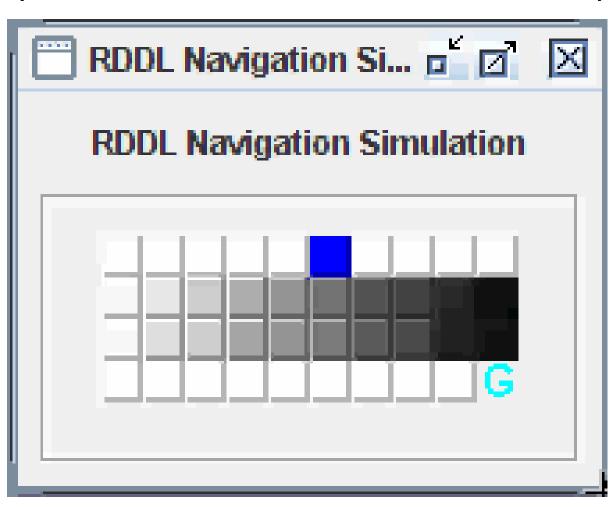

RDDL Software Overview

- BNF grammar and parser
- Simulator
- Automatic translations
 - LISP-like format (easier to parse)
 - SPUDD & Symbolic Perseus (boolean subset)
 - Ground PPDDL (boolean subset)
- Client / Server
 - Java and C/C++ sample clients
 - Evaluation scripts for log files
- Visualization
 - DBN Visualization
 - Domain Visualization see how your planner is doing


Domains and Evaluation

- Eight domains
 - Traffic Control: exogenous, concurrent
 - Elevator Control: exogenous, concurrent
 - Game of Life: highly combinatoric
 - SysAdmin: exogenous, complex transitions
 - Navigation: goal-oriented, determinization killer
 - Crossing Traffic: goal-oriented, deterministic if move far left
 - Skill Teaching: relatively sparse transitions
 - Reconnaissance: relatively sparse transitions
- 10 instances per domain
- No discount, finite horizon of 40
- Average normalized score [0,1]
 - Min: random / noop
 - Max: best competitor
 - Scores < 0 set to 0</p>


Boolean Traffic


Boolean Elevators

Crossing Traffic (aka Frogger)

Navigation (aka deteminization killer)

Competition Format

- Amazon EC2 (Elastic Compute Cloud)
 - 11 instances on demand
 - Ensures everyone has same computational power
 - Everyone has admin access to their machines
 - Just pay for time used
 - received an Amazon EC2 grant of \$1000 for competition
 - so running it was free
 - → Highly recommended for future competitions!!!

Competitors: Boolean MDP Track

Competitors	Algorithm
PROST (Eyerich, Keller – Uni. Freiburg)	UCT/Single Outcome Determinization, Caching
Glutton (Kolobov, Dai, Mausam, Weld – UW)	Iterative Deepening RTDP, Caching
MIT-ACL (Ure, Toksoz, Redding, Gemifard – MIT)	RL / Linear Fun. Approx, Feature Discovery
Beaver (Nadamuni, Joshi, Fern, Tadepalli – OSU)	UCT, SPUDD Guidance
SPUDD (Zhu, Grzes, Hoey – Uni. Waterloo)	Value Iteration with ADDS

Results: Boolean MDP Track

1st Place: PROST

2nd Place: Glutton

Additional standard error analysis on non-truncated scores shows separation

PROST (Eyerich, Keller)	0.902	± 0.07 ± 0.03
	0.902	± 0.03
Glutton (Kolobov, Dai, Mausam, Weld)	0.815	± 0.07
	0.812	± 0.03
MIT-ACL (Ure, Toksoz, Redding, Gemifard)	0.109	± 0.06
Beaver (Nadamuni, Joshi, Fern, Tadepalli)	0.047	± 0.04
SPUDD (Zhu, Grzes, Hoey)	0.016	± 0.02

Competitors: Boolean POMDP Track

Competitors	Algorithm
POMDPX_NUS (Wu, WS Lee)	SARSOP / UCT (POMCP)
KAIST-AILAB (D Kim, K Lee, K-E Kim)	Symbolic HSVI (ADDs), Symmetry Detection
HyPlanClient (Borera, Pyeatt)	~RTDP-Bel
POND (Bryce, Olsen)	Translation to Conf. Planning, Hindsight Opt
Symbolic Perseus (Poupart, Hoey, Morrison)	PBVI with ADDs
McGill (Png, Ong, Pineau)	UCT (POMCP)

Results: Boolean POMDP Track

- Distinguished 1st: POMDPX_NUS
- Tie for 1st (within 95% stderr): KAIST-AILAB

POMDPX_NUS (Wu, WS Lee)	0.559	± 0.10
KAIST-AILAB (D Kim, K Lee, K-E Kim)	0.529	± 0.19
HyPlanClient (Borera, Pyeatt)	0.175	± 0.08
POND (Bryce, Olsen)	0.161	± 0.06
Symbolic Perseus (Poupart, Hoey, Morrison)	0.124	± 0.07
McGill (Png, Sylvie Ong, Joelle Pineau)	0.036	± 0.03

Thanks to All Competitors!