Empirical Game-Theoretic Analysis and the Behavior of Software Agents

Michael P. Wellman
University of Michigan

Previously at AIPS/ICAPS...

- 92: Modular utility representation for decisiontheoretic planning (Wellman & Doyle)
- 04: Price prediction strategies for market-based scheduling (MacKie-Mason et al.)
- 04: Distributed feedback control for decision making on supply chains (Kiekintveld et al.)

Planning in Strategic Environments

- Planning problem
 - find agent behavior satisfying/optimizing objectives wrt environment

- When environment contains other agents
 - model them as rational planners as well
 - problem is a game
 - search now multi-dimensional, different (global) objective

Real-World Games

complex dynamics and uncertainty

- rich strategy space
 - strategy: obs* × time →action
- severely incomplete information
 - interdependent types (signals)
 - info partially revealed over time
- → analytic game-theoretic solutions few and far between

two approaches

- 1. analyze (stylized) approximations
 - one-shot, complete info...
- 2. simulation-based methods
 - search
 - empirical: statistics, machine learning,...

Empirical Game-Theoretic Analysis (EGTA)

- Game described procedurally, no directly usable analytical form
- Parametrize strategy space based on agent architecture
- Selectively explore strategy/profile space
- Induce game model (payoff function) from simulation data

EGTA Process

TAC Supply Chain Mgmt Game

Two-Strategy Game (Unpreempted)

Two-Strategy Game (Unpreempted)

Three-Strategy Game: Deviations

Scaling #Players

Improving Scalability

- Exploit locality of interaction
 - graphical games, MAIDs,
 action-graph games, ...
- Aggregate agents
 - hierarchical reduction(Wellman et al. AAAI-05)
 - clustering (Ficici et al. UAI-08)

Hierarchical Game Reduction

• p-player reduced version of symmetric game Γ

$$\Gamma \downarrow_{p} = \langle p, S, \hat{u}() \rangle$$

where

$$\hat{u}_i(s_1,\dots,s_p) = u_{q\cdot i}(\underbrace{s_1,\dots,s_2,\dots,s_p,\dots}_q,\dots)$$

Premise: Reduced game often a good approximation of original, with dramatically smaller profile space.

Why Trust Reduced-Game Results?

- Claim: Equilibria in reduced game likely to be relatively stable in full game
- Evidence:
 - Random instances of local-effect games (LEGs)
 - FPSB auctions

Research Questions

- What is the space of reduction aggregations?
 - and which are most effective for what classes of games?
- How to adjust for systematic biases of reduction?
- How to automatically cluster agents in nonsymmetric games?
- How to reason at multiple levels of aggregation?

TAC/SCM-06 Deviation Graph

CDA Deviation Graph

4 strategies: GD, GDX, ZI, Kap

Ranking Strategies: TAC/SCM-07

SCM-07 Tournament

Agent	Finals	Semifinals
PhantAgent	8.67	10.38 [2]
TacTex DeepMaize	6.31 5.45	5.75 [2] 9.759 [1]
Maxon	1.79	5.631 [1]
Tinhorn	1.34	6.94 [1]
CMieux	1.24	2.66 [2]

SCM-07 EGTA

Agent	NE Regret	Max Regret
DM07 S [C07-9]	0.32	3.40
DM07 F [C07-34]	0	2.63
PH07	0	48.84
TT07 S	2.90	16.95
TT07 F	0	10.89
DM06 S	3.21	8.17
PH06	1.31	11.00
TT06	1.03	14.78
MR05	2.98	14.67

Strategy Ranking (TAC Travel)

Strategy Ranking (CDA)

strategy	NE1 regret	NE2 regret	symm. profile payoff
GDX	0	1.32	247.98
GD	0.49	3.26	248.57
RB	2.20	8.64	248.08
ZIP	2.90	9.86	247.95
Kaplan	4.56	24.55	2.02
ZIbtq	14.67	17.44	247.45
ZI	16.42	16.82	248.07

DeepMaize-08 Design Exploration

		P	rediction	ns				Contr	roller		- 1
	Custon	mer Dataset	Comp	onent Horizon	Treatment	Bid I	mprove	ement	EG:	Procure	ement
ID	SCM05	SCM[06-07]	AIO	INTRP-Bug	INTERP	EQ	SA	GA	07	PH	07+
0	✓		✓			√			✓		
1	✓			✓		✓			✓		
2		✓	✓			✓			✓		
3-5		✓		✓		✓			✓		
6		✓		✓		✓				✓	
7		✓		✓		✓					✓
8		✓		✓			✓			✓	
9		✓		✓				✓		✓	
10	✓	✓		✓		✓				✓	
11	✓				✓	✓			✓		
13		✓			✓			✓			✓
14		✓			✓	✓				✓	
15		✓	✓			✓				✓	
17-27		✓		✓		✓				✓	
28-29		✓			✓	✓				✓	

Table 5.15: DeepMaize 08 tested feature matrix.

Sampling Control Problem

- Revealed payoff model
 - sample provides exact payoff
 - minimum-regret-first search (MRFS)
 - attempts to refute best current candidate
- Noisy payoff model
 - sample drawn from payoff distribution
 - information gain search (IGS)
 - sample profile maximizing entropy difference wrt probability of being min-regret profile

Min-Regret-First Search

start (arbitrary)

	c1	c2	c3	c4
r1	9,5			
r2				
r3				
r4				

Profile	ε-bound
(r1,c1)	0
_	

evaluated best

	c1	c2	c3	c4
r1	9,5	3,3		
r2				
r3				
r4				

Profile	ε-bound
(r1,c1)	0
(r1,c2)	2

Select random deviation from current best profile

	c1	c2	c3	c4
r1	9,5	3,3		
r2	6,4			
r3				
r4				

Profile	ε-bound
(r1,c1)	0
(r1,c2)	2
(r2,c1)	3

	c1	c2	c3	c4
r1	9,5	3,3		
r2	6,4			
r3	2,2			
r4				

Profile	ε-bound
(r1,c1)	0
(r1,c2)	2
(r2,c1)	3
(r3,c1)	7

	c1	c2	c3	c4
r1	9,5	3,3		4,8
r2	6,4			
r3	2,2			
r4				

Profile	ε-bound
(r1,c1)	3
(r1,c2)	5
(r2,c1)	3
(r3,c1)	7
(r1,c4)	0

	c1	c2	c3	c4
r1	9,5	3,3		4,8
r2	6,4			5,3
r3	2,2			
r4				

Profile	ε-bound
(r1,c1)	3
(r1,c2)	5
(r2,c1)	3
(r3,c1)	7
(r1,c4)	1
(r2,c4)	1

	c1	c2	c3	c4
rl	9,5	3,3		4,8
r2	6,4	8,8		5,3
r3	2,2			
r4				

Profile	ε-bound
(r1,c1)	3
(r1,c2)	5
(r2,c1)	4
(r3,c1)	7
(r1,c4)	1
(r2,c4)	5
(r2,c2)	0

	c1	c2	c3	c4
r1	9,5	3,3		4,8
r2	6,4	8,8	3,0	5,3
r3	2,2			
r4				

Profile	ε-bound
(r1,c1)	3
(r1,c2)	5
(r2,c1)	4
(r3,c1)	7
(r1,c4)	1
(r2,c4)	5
(r2,c2)	0
(r2,c3)	8

	c1	c2	c3	c4
rl	9,5	3,3		4,8
r2	6,4	8,8	3,0	5,3
r3	2,2	2,1		
r4				

Profile	ε-bound
(r1,c1)	3
(r1,c2)	5
(r2,c1)	4
(r3,c1)	7
(r1,c4)	1
(r2,c4)	5
(r2,c2)	0
(r2,c3)	8
(r3,c2)	6

evaluated best

NE Confirmed!

	c1	c2	c3	c4
r1	9,5	3,3		4,8
r2	6,4	8,8	3,0	5,3
r3	2,2	2,1		
r4		2,0		

Profile	ε-bound
(r1,c1)	3
(r1,c2)	5
(r2,c1)	4
(r3,c1)	7
(r1,c4)	1
(r2,c4)	5
(r2,c2)	0*
(r2,c3)	8
(r3,c2)	6
(r4,c2)	6

Finding Approximate PSNE

Construct Empirical Game

- Simplest approach: direct estimation
 - employ control variates and other variance reduction techniques

Payoff data from selected profiles

Payoff Function Regression

FPSB2 Example

Vorobeychik et al., ML 2007

Generalization Risk Approach

- Model variations
 - functional forms, relationship structures, parameters
 - strategy granularity
- Approach:
 - Treat candidate game model as a predictor for payoff data
 - Adopt loss function for predictor
 - Select model candidate minimizing expected loss

Sensitivity Analysis

392 twostrategy mixtures

Iterative EGTA Process

Learning New Strategies: EGTA+RL

CDA Learning Problem Setup

H₁: Moving average History of H₂: Frequency weighted ratio, threshold= V recent H₃: Frequency weighted ratio, trades threshold= A **Q**₁: Opposite role Quotes State **Q**₂: Same role Space T₁: Total Time T₂: Since last trade **U**: Number of trades left Pending V: Value of next unit to be traded **Trades**

Actions

A: Offset from V

Rewards

R: Difference between unit valuation and trade price

EGTA/RL Round 1

Strategies	Payoff	NE	Learning	
			Strategy	Dev. Payoff
Kaplan ZI ZIbtq	248.1	1.000 ZI	L1	268.7
L1	242.5	1.000 L1		

EGTA/RL Round 2

Strategies	Payoff	NE	Learning	
			Strategy	Dev. Payoff
Kaplan ZI ZIbtq	248.1	1.000 ZI	L1	268.7
L1	242.5	1.000 L1		
ZIP	248.0	1.000 ZIP		
GD	248.6	1.000 GD	L2-L8 L9	 251.8
L9	246.1	0.531 GD 0.469 L9	L10	252.1

EGTA/RL Rounds 3+

Strategies	Payoff	NE	Learning	
			Strategy	Dev. Payoff
L10	248.0	0.191 GD 0.809 L10	L11	251.0
L11	246.2	1.000 L11		
GDX	245.8	0.192 GDX 0.808 L11	L12	248.3
L12	245.8	0.049 L11 0.951 L12	L13	245.9
L13	245.6	0.872 L12 0.128 L13	L14	245.6
RB	245.6	0.872 L12 0.128 L13		

Final champion

Strategy Exploration Problem

• Premise:

- Limited ability to cover profile space
- Expectation to reasonably evaluate all considered strategies
- Need deliberate policy to decide which strategies to introduce
- RL for strategy exploration
 - attempt at best response to current equilibrium
 - is this a good heuristic (even assuming ideal BR calc?)

Example

Introduce strategies in order: A1, A2, A3, A4

Regret may *increase* over subsequent steps!

	A1	A2	A 3	A4
A1	1, 1	1, 2	1, 3	1, 4
A2	2, 1	2, 2	2, 3	2, 6
A3	3, 1	3, 2	3, 3	3, 8
A4	4, 1	6, 2	8, 3	4, 4

Strategy Set	Candidate Eq.	Regret wrt True Game
{A1}	(A1,A1)	3
{A1,A2}	(A2,A2)	4
{A1,A2,A3}	(A3,A3)	5
{A1,A2,A3,A4}	(A4,A4)	0

FPSB2 Regret Surface

Exploration Policies

- RND: Random (uniform) selection
- Deviation-Based
 - DEV: Uniform among strategies that deviate from current equilibrium
 - BR: Best response to current equilibrium
 - BR+DEV: Alternate on successive iterations
 - $ST(\tau)$: Softmax selection among deviators, proportional to gain

MEMT:

 Select strategy that maximizes the gain (regret) from deviating to a strategy outside the set from *any* mixture over the set.

CDA↓4

EGTA Applications

- Market games
 - TAC: Travel, Supply Chain, Ad Auction
 - Canonical auctions: SAAs, CDAs, SSPSBs,...
 - Equity premium in financial trading
- Other domains
 - Privacy: information sharing attacks
 - Networking: routing, wireless AP selection
 - Credit network formation
- Mechanism design

Conclusion: EGTA Methodology

- Extends scope of GT to procedurally defined scenarios
- Embraces statistical underpinnings of strategic reasoning
- Search process:
 - GT for establishing salient strategic context
 - Strategy exploration:
 - e.g., RL to search for best response to that context
 - → Principled approach to evaluate complex strategy spaces
- Growing toolbox of EGTA techniques