

Markov Decision Processes with Ordinal Rewards: Reference Point-Based Preferences

Paul Weng

LIP6, UPMC, Paris

14/06/2011

21st International Conference on Automated Planning and Scheduling Freiburg, Germany

Markov Decision Processes Difficulty of Defining the Reward Function

Sequential Decision Making under Uncertainty

Markov Decision Processes Difficulty of Defining the Reward Function

Sequential Decision Making under Uncertainty

MDP

- S set of states
- A set of actions
- $P: S \times A \times S \rightarrow [0, 1]$
- $R: S \times A \rightarrow \mathbb{R}$
- history γ
- \succeq over policies π

Value Functions and Solution Methods

Value functions

•
$$v_t^{\pi}(s) = R(s, \pi(s)) + \beta \sum_{s' \in S} P(s, \pi(s), s') v_{t-1}^{\pi}(s')$$

Markov Decision Processes Difficulty of Defining the Reward Function

Value Functions and Solution Methods

Value functions

•
$$v_t^{\pi}(s) = R(s, \pi(s)) + \beta \sum_{s' \in S} P(s, \pi(s), s') v_{t-1}^{\pi}(s')$$

•
$$\pi \succsim \pi' \Leftrightarrow orall oldsymbol{s}, oldsymbol{v}^{\pi}(oldsymbol{s}) \geq oldsymbol{v}^{\pi'}(oldsymbol{s})$$

Markov Decision Processes Difficulty of Defining the Reward Function

Value Functions and Solution Methods

Value functions

•
$$v_t^{\pi}(s) = R(s, \pi(s)) + \beta \sum_{s' \in S} P(s, \pi(s), s') v_{t-1}^{\pi}(s')$$

•
$$\pi \succsim \pi' \Leftrightarrow orall oldsymbol{s}, oldsymbol{v}^{\pi}(oldsymbol{s}) \geq oldsymbol{v}^{\pi'}(oldsymbol{s})$$

•
$$v^*(s) = \max_{a \in A} R(s, a) + \beta \sum_{s' \in S} P(s, a, s') v^*(s')$$

Markov Decision Processes Difficulty of Defining the Reward Function

Value Functions and Solution Methods

Value functions

•
$$v_t^{\pi}(s) = R(s, \pi(s)) + \beta \sum_{s' \in S} P(s, \pi(s), s') v_{t-1}^{\pi}(s')$$

•
$$\pi \succsim \pi' \Leftrightarrow orall {m s}, {m v}^\pi({m s}) \ge {m v}^{\pi'}({m s})$$

•
$$v^*(s) = \max_{a \in A} R(s, a) + \beta \sum_{s' \in S} P(s, a, s')v^*(s')$$

Family of solution methods

- Value iteration
- Policy iteration
- Linear Programming

Markov Decision Processes Difficulty of Defining the Reward Function

Optimal Policies Depend on the Reward Function...

Example with $\beta = 0.5$

Markov Decision Processes Difficulty of Defining the Reward Function

Optimal Policies Depend on the Reward Function...

Example with $\beta = 0.5$

• $r \succ r' \succ r''$ • $2 \succ 1 \succ 0$

Markov Decision Processes Difficulty of Defining the Reward Function

Optimal Policies Depend on the Reward Function...

Example with $\beta = 0.5$

- $r \succ r' \succ r''$
- $2 \succ 1 \succ 0$
- 10 ≻ 9 ≻ 0

Markov Decision Processes Difficulty of Defining the Reward Function

Optimal Policies Depend on the Reward Function...

Example with $\beta = 0.5$

- $r \succ r' \succ r''$
- 2 ≻ 1 ≻ 0
- 10 ≻ 9 ≻ 0

... Except for One Simple Case

Proposition

If $R(s, a) \in \{0, r\}$, changing r does not impact optimal policies.

Paul Weng – LIP6, UPMC Ordinal Reward MDPs: Reference Point-Based Preferences

Difficulty of Defining the Reward Function

When is it easy to define numeric rewards?

- rewards = money, length, duration...
- ex: stochastic shortest path problem

Difficulty of Defining the Reward Function

When is it easy to define numeric rewards?

- rewards = money, length, duration...
- ex: stochastic shortest path problem

When is it difficult?

- values not known precisely or of qualitative nature
- ex: video games where reward represents utility

Difficulty of Defining the Reward Function

When is it easy to define numeric rewards?

- rewards = money, length, duration...
- ex: stochastic shortest path problem

When is it difficult?

- values not known precisely or of qualitative nature
- ex: video games where reward represents utility

Ordinal Reward MDP (OMDP)

• $R: S \times A \rightarrow E$

•
$$E = \{r_1 > r_2 \dots > r_n\}$$

Towards Preference over vectors

Histories

- γ yields a sequence of ordinal rewards r_1, \ldots, r_n
- Idea: count the number of each reward yielded by γ
- γ valued by $(N_1^{\beta}(\gamma), ..., N_n^{\beta}(\gamma))$

Towards Preference over vectors

Histories

- γ yields a sequence of ordinal rewards r_1, \ldots, r_n
- Idea: count the number of each reward yielded by γ
- γ valued by $(N_1^{\beta}(\gamma), ..., N_n^{\beta}(\gamma))$

H. preference over histories = preference over vectors

Towards Preference over vectors

Histories

- γ yields a sequence of ordinal rewards r_1, \ldots, r_n
- Idea: count the number of each reward yielded by
 γ
- γ valued by $(N_1^{\beta}(\gamma), ..., N_n^{\beta}(\gamma))$

H. preference over histories = preference over vectors

Policies in a state

- application of π in a state yields a probability distribution over histories
- π valued by the expectation of vectors $(N_1^{\beta}(\gamma), ..., N_n^{\beta}(\gamma))$

Assumptions for a Numeric Reward Functions

Axioms

A1. \succeq is a complete preorder on \mathbb{R}^n_+

Assumptions for a Numeric Reward Functions

Axioms

A1. \succeq is a complete preorder on \mathbb{R}^n_+

A2.
$$N \succeq N' \Leftrightarrow \forall i = 1, \dots, n, N + e_i \succeq N' + e_i$$

Assumptions for a Numeric Reward Functions

Axioms

- A1. \succeq is a complete preorder on \mathbb{R}^n_+
- **A2.** $N \succeq N' \Leftrightarrow \forall i = 1, \dots, n, N + e_i \succeq N' + e_i$
- **A3.** $N \succ N' \Rightarrow \exists n \in \mathbb{N}, nN + M \succeq nN' + M'$

Assumptions for a Numeric Reward Functions

Axioms

A1.
$$\succeq$$
 is a complete preorder on \mathbb{R}^n_+

A2.
$$N \succeq N' \Leftrightarrow \forall i = 1, \dots, n, N + e_i \succeq N' + e_i$$

A3.
$$N \succ N' \Rightarrow \exists n \in \mathbb{N}, nN + M \succeq nN' + M'$$

Theorem

The two following propositions are equivalent:

(i) \succeq satisfies Axioms A1, A2 and A3.

(ii) there exists a function $u : E \to \mathbb{R}$ such that $\forall N, N' \in \mathbb{R}^n$:

$$N \succeq N' \Leftrightarrow \sum_{k=1}^n N_k u(e_k) \ge \sum_{k=1}^n N'_k u(e_k)$$

Assumptions for Reference Point-Based Preferences

Additional Axioms

A4. $e_1 \succeq e_2 \succeq \ldots \succeq e_n$

Assumptions for Reference Point-Based Preferences

Additional Axioms

A4.
$$e_1 \succsim e_2 \succsim \ldots \succsim e_n$$

A5. $N \sim N + e_{k_0}$

Assumptions for Reference Point-Based Preferences

Additional Axioms

A4.
$$e_1 \succeq e_2 \succeq \ldots \succeq e_n$$

A5. $N \sim N + e_{k_0}$

Corollary

The two following propositions are equivalent:

(i) \succeq satisfies Axioms A1 to A5.

(ii) there exists a reference point $\tilde{N} \in \mathbb{R}^n_+$ such that $\forall N, N' \in \mathbb{R}^n$:

$$N \succeq N' \Leftrightarrow \phi_{\tilde{N}}(N) \ge \phi_{\tilde{N}}(N')$$

where
$$\phi_{\tilde{N}}(N) = \sum_{k=1}^{k_0-1} N_k \sum_{j=k}^{k_0-1} \tilde{N}_j - \sum_{k=k_0+1}^n N_k \sum_{j=k_0+1}^k \tilde{N}_j$$

Interpretation of $\phi_{\tilde{N}}$ (1/2)

Positive Feedbacks ($k_0 = n$)

•
$$\phi_{\tilde{N}}(N) = \sum_{k=1}^{n-1} N_k \sum_{j=k}^{n-1} \tilde{N}_j$$

 φ_Ñ(N) : number of times a reward selected in N is better than one selected in Ñ

Interpretation of $\phi_{\tilde{N}}$ (1/2)

Positive Feedbacks ($k_0 = n$)

•
$$\phi_{\tilde{N}}(N) = \sum_{k=1}^{n-1} N_k \sum_{j=k}^{n-1} \tilde{N}_j$$

 φ_Ñ(N) : number of times a reward selected in N is better than one selected in Ñ

Example (n = 3)

$$egin{aligned} & \mathcal{N} = (1,0,2) & \mathcal{N}' = (0,2,1) & ilde{\mathcal{N}} = (1,2,0) \ & \phi_{ ilde{\mathcal{N}}}(\mathcal{N}) = 1 imes (1+2) + 0 = 3 & \phi_{ ilde{\mathcal{N}}}(\mathcal{N}') = 0 + 2 imes 2 = 4 \end{aligned}$$

Background Definition Framework Assumptions in Standard Conclusion Assumptions for ODMPs

Interpretation of $\phi_{\tilde{N}}$ (1/2)

Positive Feedbacks ($k_0 = n$)

•
$$\phi_{\tilde{N}}(N) = \sum_{k=1}^{n-1} N_k \sum_{j=k}^{n-1} \tilde{N}_j$$
 $\phi'_{\tilde{N}}(N) = \frac{\phi_{\tilde{N}}(N)}{\sum_{k=1}^n N_k \sum_{k=1}^n \tilde{N}_k}$

- φ_Ñ(N) : number of times a reward selected in N is better than one selected in Ñ
- φ'_N(N) : probability that a reward drawn from N is better than one drawn in Ñ

Example (n = 3)

$$\begin{array}{ll} N = (1,0,2) & N' = (0,2,1) & \tilde{N} = (1,2,0) \\ \phi_{\tilde{N}}(N) = 1 \times (1+2) + 0 = 3 & \phi_{\tilde{N}}(N') = 0 + 2 \times 2 = 4 \end{array}$$

Definition Assumptions in Standard MDPs Assumptions for ODMPs

Interpretation of $\phi_{\tilde{N}}$ (2/2)

Negative Feedbacks ($k_0 = 1$) • $\phi_{\tilde{N}}(N) = -\sum_{k=2}^{n} N_k \sum_{j=2}^{k} \tilde{N}_j$ $\phi'_{\tilde{N}}(N) = 1 + \frac{\phi_{\tilde{N}}(N)}{\sum_{k=1}^{n} N_k \sum_{k=1}^{n} \tilde{N}_k}$

Positive and Negative Feedbacks ($1 < k_0 < n$)

$$\phi_{\tilde{N}}(N) = \sum_{k=1}^{k_0-1} N_k \sum_{j=k}^{k_0-1} \tilde{N}_j - \sum_{k=k_0+1}^n N_k \sum_{j=k_0+1}^k \tilde{N}_j$$

ackground	
Framework	Assumptions in Standard MDPs
Conclusion	Assumptions for ODMPs

Vade Mecum

11'

How to Use Reference Point-Based Preference OMDPs

- define an OMDP
- pick a reference point
- determine vector Ñ and compute associated rewards

solve with any standard method

Choosing a Reference Point

- step of the qualitative scale E
- probability distribution over E
- history
- policy

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

• compute an optimal policy π^* of (S, A, P, R)

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^* of (S, A, P, R)
- compute Ñ and then R^Ñ

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^{*} of (S, A, P, R)
- compute Ñ and then R^Ñ
- compute an optimal policy π^{**} of $(S, A, P, R^{\hat{N}})$

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^{*} of (S, A, P, R)
- compute Ñ and then R^Ñ
- compute an optimal policy π^{**} of $(S, A, P, R^{\hat{N}})$

Example

Paul Weng – LIP6, UPMC Ordinal Reward MDPs: Reference Point-Based Preferences

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^{*} of (S, A, P, R)
- compute Ñ and then R^N
- compute an optimal policy π^{**} of $(S, A, P, R^{\hat{N}})$

Example

$V^a = 10 + 0.2 + 0.89 = 11.09$

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^{*} of (S, A, P, R)
- compute Ñ and then R^Ñ
- compute an optimal policy π^{**} of $(S, A, P, R^{\hat{N}})$

Example

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^{*} of (S, A, P, R)
- compute Ñ and then R^Ñ
- compute an optimal policy π^{**} of $(S, A, P, R^{\hat{N}})$

Example

$$V^a = 10 + 0.2 + 0.89 = 11.09$$

 $V^b = 2$
 $ilde{N} = (0.01, 0.1, 0.89)$

Reference-Point Based Preferences in Standard MDPs: One-Shot Decision

Principle

- compute an optimal policy π^{*} of (S, A, P, R)
- compute Ñ and then R^Ñ
- compute an optimal policy π^{**} of $(S, A, P, R^{\hat{N}})$

Example

Conclusion and Future Work

- how to define a semantically justified reward function
- experimental evaluation
- relax some of the axioms
- more qualitative preference relations over vectors