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Difficulty of Defining the Reward Function

Sequential Decision Making under Uncertainty

s

...

...

a

R(s,a)
...

s’

...

P(s,a, s′)

. . .

...

...

MDP
• S set of states
• A set of actions
• P : S×A×S → [0,1]
• R : S × A→ IR

• history γ
• % over policies π
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Markov Decision Processes
Difficulty of Defining the Reward Function

Value Functions and Solution Methods

Value functions

• vπt (s) = R(s, π(s)) + β
∑
s′∈S

P(s, π(s), s′)vπt−1(s
′)

• π % π′ ⇔ ∀s, vπ(s) ≥ vπ
′
(s)

• v∗(s) = max
a∈A

R(s,a) + β
∑
s′∈S

P(s,a, s′)v∗(s′)

Family of solution methods
• Value iteration
• Policy iteration
• Linear Programming
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Markov Decision Processes
Difficulty of Defining the Reward Function

Optimal Policies Depend on the Reward Function...

Example with β = 0.5

1 2
a
r ′

b r

b
r

a
r ′′

• r � r ′ � r ′′

• 2 � 1 � 0
• 10 � 9 � 0

. . . Except for One Simple Case

Proposition

If R(s,a) ∈ {0, r}, changing r does not impact optimal policies.
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Difficulty of Defining the Reward Function

When is it easy to define numeric rewards?
• rewards = money, length, duration. . .
• ex: stochastic shortest path problem

When is it difficult?
• values not known precisely or of qualitative nature
• ex: video games where reward represents utility

Ordinal Reward MDP (OMDP)
• R : S × A→ E
• E = {r1 > r2 . . . > rn}
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Definition
Assumptions in Standard MDPs
Assumptions for ODMPs

Towards Preference over vectors

Histories
• γ yields a sequence of ordinal rewards r1, . . . , rn

• Idea: count the number of each reward yielded by γ
• γ valued by (Nβ

1 (γ), ...,N
β
n (γ))

H. preference over histories = preference over vectors

Policies in a state
• application of π in a state yields a probability distribution

over histories
• π valued by the expectation of vectors (Nβ

1 (γ), ...,N
β
n (γ))
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Definition
Assumptions in Standard MDPs
Assumptions for ODMPs

Assumptions for a Numeric Reward Functions

Axioms
A1. % is a complete preorder on IRn

+

A2. N % N ′ ⇔ ∀i = 1, . . . ,n, N + ei % N ′ + ei

A3. N � N ′ ⇒ ∃n ∈ IN, nN + M % nN ′ + M ′

Theorem
The two following propositions are equivalent:
(i) % satisfies Axioms A1, A2 and A3.
(ii) there exists a function u : E → IR such that ∀N,N ′ ∈ IRn:

N % N ′ ⇔
n∑

k=1

Nku(ek ) ≥
n∑

k=1

N ′ku(ek )
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Assumptions for Reference Point-Based Preferences

Additional Axioms
A4. e1 % e2 % . . . % en

A5. N ∼ N + ek0

Corollary

The two following propositions are equivalent:
(i) % satisfies Axioms A1 to A5.
(ii) there exists a reference point Ñ ∈ IRn

+ such that ∀N,N ′ ∈ IRn:

N % N ′ ⇔ φÑ(N) ≥ φÑ(N
′)

where φÑ(N) =

k0−1∑
k=1

Nk

k0−1∑
j=k

Ñj −
n∑

k=k0+1

Nk

k∑
j=k0+1

Ñj
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k0−1∑
k=1

Nk

k0−1∑
j=k
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+ such that ∀N,N ′ ∈ IRn:

N % N ′ ⇔ φÑ(N) ≥ φÑ(N
′)

where φÑ(N) =
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Assumptions in Standard MDPs
Assumptions for ODMPs

Interpretation of φÑ (1/2)

Positive Feedbacks (k0 = n)

• φÑ(N) =
n−1∑
k=1

Nk

n−1∑
j=k

Ñj

φ′
Ñ
(N) =

φÑ(N)
n∑

k=1

Nk

n∑
k=1

Ñk

• φÑ(N) : number of times a reward selected in N is better
than one selected in Ñ

• φ′
Ñ
(N) : probability that a reward drawn from N is better

than one drawn in Ñ

Example (n = 3)

N = (1,0,2) N ′ = (0,2,1) Ñ = (1,2,0)
φÑ(N) = 1× (1 + 2) + 0 = 3 φÑ(N

′) = 0 + 2× 2 = 4

Paul Weng – LIP6, UPMC Ordinal Reward MDPs: Reference Point-Based Preferences



Background
Framework
Conclusion

Definition
Assumptions in Standard MDPs
Assumptions for ODMPs

Interpretation of φÑ (1/2)
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Ñ
(N) =
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Interpretation of φÑ (2/2)

Negative Feedbacks (k0 = 1)

• φÑ(N) = −
n∑

k=2

Nk

k∑
j=2

Ñj φ′
Ñ
(N) = 1 +

φÑ(N)
n∑

k=1

Nk

n∑
k=1

Ñk

Positive and Negative Feedbacks (1 < k0 < n)

φÑ(N) =

k0−1∑
k=1

Nk

k0−1∑
j=k

Ñj −
n∑

k=k0+1

Nk

k∑
j=k0+1

Ñj
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Definition
Assumptions in Standard MDPs
Assumptions for ODMPs

Vade Mecum

How to Use Reference Point-Based Preference OMDPs
• define an OMDP
• pick a reference point
• determine vector Ñ and compute associated rewards

uÑ(rk ) = 0 if k = k0

=
∑k0−1

j=k Ñj if k < k0

= −
∑k

j=k0+1 Ñj if k > k0

• solve with any standard method

Choosing a Reference Point
• step of the qualitative scale E
• probability distribution over E
• history
• policy

Paul Weng – LIP6, UPMC Ordinal Reward MDPs: Reference Point-Based Preferences
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Assumptions for ODMPs

Reference-Point Based Preferences in Standard
MDPs: One-Shot Decision

Principle

• compute an optimal policy π∗ of (S,A,P,R)

• compute Ñ and then RÑ

• compute an optimal policy π∗∗ of (S,A,P,RÑ)

Example

V a = 10 + 0.2 + 0.89 = 11.09
V b = 2

Ñ = (0.01,0.1,0.89)
V a = 0.9011
V b = 0.99
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• compute an optimal policy π∗∗ of (S,A,P,RÑ)

Example

a

21000 1

b

2

0.01 0.1 0.89 1

V a = 10 + 0.2 + 0.89 = 11.09
V b = 2
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• compute Ñ and then RÑ
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Ñ = (0.01,0.1,0.89)
V a = 0.9011
V b = 0.99

Paul Weng – LIP6, UPMC Ordinal Reward MDPs: Reference Point-Based Preferences



Background
Framework
Conclusion

Conclusion and Future Work

• how to define a semantically justified reward function

• experimental evaluation
• relax some of the axioms
• more qualitative preference relations over vectors
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