

The Web as an Adaptive Network: Coevolution of Web Behaviour and Web Structure

Connor McCabe, Dr. Richard A. Watson, Dr. Jane S. Prichard and Professor Dame Wendy Hall

Adaptive Networks on the Web

- Adaptive Web Networks is a growing multidisciplinary research area at the intersection of Web & Network Science & Complex Systems.
- Combines the study of dynamics 'on' (behavior) and 'of' (structure) complex networks
- Structure (**topology**) e.g. (small world, scale free, community structure, dyads, triads)
- Behaviour (**state**) e.g. (communicating, blogging, sharing links, pictures, changing opinion)

Web as a Complex Adaptive System

The Web is not just another complex network, it is a selforganising complex adaptive system (CAS). It co-evolves with Web user behaviour and exhibits emergent complexity.

Fig. "2 Magics of Web Science." Berners-Lee's diagram of how some complexity on the Web can emerge.

Research Questions

• Question 1: How does topology affect behaviour and how does behaviour affect topology, in different Web networks?

• Question 2: What are the implications of adaptive mechanisms for Web networks?

State-topology Coevolution Cycle

state affects how topology changes

Gross, T. and Sayama, H. 2009. Adaptive Networks. Springer-Verlag: Berlin

Behaviour Affecting Structure

Dynamical linking (DL), or active linking, describes how actors re-wire links to suit their own individual preferences.

- DL is a key feature of adaptive networks
- Unlike static networks, adaptive networks with DL have been shown to support emergent phenomena at the macrolevel (network level).
- Several theories exist for DL in different contexts, and how it can be applied e.g. (Hebbian Learning, Homophily and social segregation).

Dynamical Linking at Different Timescales

A separation of timescales between DL & structural process effects nodes state, can result in very different statetopology co-evolution. e.g. Opinion Dynamics Model (ZuErbach-Shoenberg & McCabe et. al 2011).

zu Erbach-Schoenberg, E., C. McCabe, et al. (2011) On the interaction of adaptive timescales on networks. Proc. European Conference on Artificial Life, Paris, France.

Dynamical Linking

Assortative Mixing

Fast DL

Slow topological effects

Structure Affecting Behaviour

How does structure affect behaviour?

- For Web networks, structure can relate to how documents, objects and web users are linked together. (explicit hyperlinks, or implicit social links based on interactions)
 - Structure affects information dynamics: how easily items can be browsed; search engine results, and who connects directly to whom.
- Different topologies of Web networks (small world and random lattice), can impact collective user behaviour (e.g. Centola, 2010).

State-topology Coevolution of the Web

1. Information Networks, (e.g. the Web Graph)

State-topology Coevolution of the Web

State-topology Coevolution of the Web

3. Collaborative filtering, **embedded user-user collaborative recommendations** e.g. Netflix, Amazon.

Implications of Adaptive Web Networks

- The hallmarks of adaptive networks (Blasius and Gross, 2009) have implications for adaptive networks in Web Science.
- Robust topological self-organization
- Spontaneous emergence of hierarchies and division of labour, e.g. (distributed optimization behaviour)
- Complex system-level dynamics, e.g.(self re-inforcing loops).

Blasius, B. and Gross, T. 2009 Dynamic and Topological Interplay in Adaptive Networks . Wiley-VCH Weinheim.

and Computer Science

Summary and Conclusions

- Adaptive network theory and methods offer a formal framework to study Web complexity ("magics of web science")
- State affects the structure of Web networks, and reflexively the structure affects state on adaptive Web Networks.
- Coupled state-topology generates positive feedback loops
- Dynamic linking produces adaptive Web networks
- Process can happen at different timescales, and lead to different co-evolved state-topology.

References

- 1. Giddens, A. (1984) The constitution of society. Polity Press, Cambridge.
- 2. Miller, J. H. and Page, S. E. (2007) Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press.
- 3. Tetlow, P. D. (2007). The Web's Awake: An Introduction to the Field of Web Science and the Concept
- 4. Centola, D. et al. (2007), Cultural Drift and the Co-Evolution of Cultural Groups. 2007. Journal of Conflict Resolution, 51, 6, 905-929.
- 6. Rupert, M., Rattrout, A. and Hassas, S. (2008). The Web from a Complex Adaptive Systems Perspective. J. Comput. Syst. Sci. 74, 2, 133-145.
- 7. Gross, T. & Sayama, H. (2009) Adaptive Networks. Springer-Verlag: Berlin

References

- 6. Castillo, C. & Davison, B.D.(2010) Adversarial Web Search, Foundations and Trends in Information Retrieval, Now Publishers, Volume 4, Issue 5, p.377-486.
- 7. Halford, S., Pope, C., and Carr, L., (2010) A Manifesto for Web Science. In: Proceedings of the WebSci10: Extending the Frontiers of Society On-Line, April 26-27th.
- 8. Halpin, H., Clark, A., and Wheeler, M. (2010) Towards a Philosophy of the Web: Representation, Enaction, Collective Intelligence. In Proc. of the WebSci10: Extending the Frontiers of Society On-Line, April 26-27th.
- 9. Complex systems: A survey, M. E. J. Newman, (2011) Am. J. Phys., in press. of Web Life. Wiley-Blackwell.
- 10. zu Erbach-Schoenberg, E, McCabe C., and Bullock S., (2011) On the interaction of adaptive timescales on networks", Procs. ECAL 2011, (in press)